
































































The continuity condition given above could also have been deduced in the
course of deriving the transport equation. It would only be necessary to consider
equation (1.10) in the situation where f and f + Qv!i.t lie on opposite sides of an
interface at fs• Suppose

where s is a distance along n between the points on either side of the interface,
as represented in Fig. 1.6. It would be found that

~~~ [N (ra + !sQ, n, E, t + ;v) - N (ra - !sn, Q, E, t - ;v)] = 0,

which is the same as the continuity condition.
Although in physical systems the neutron angular density is always continuous

in the sense described here, it is sometimes convenient to consider a neutron
source as being concentrated on a surface (§l. If). At such a surface source, the
neutron angular density is not continuous, but the discontinuity can be deter-
mined, as will be seen in the next chapter. Similarly, it is sometimes desirable to
represent a thin strongly absorbing region as a surface of discontinuity in the
neutron angular density. The required discontinuity can then be derived in an
analogous manner.

The neutron transport equation is usually regarded as describing the transport
of neutrons in a finite region of space, in which cross sections are known
functions of position and energy. Such an equation has an infinite number of
possible solutions within any spatial region and in order to determine which of



these corresponds to the physical problem it is necessary to specify the appro-
priate conditions on the neutron angular dt:nsity at the boundary of the region. *

In general, the region of interest is surrounded by a convex (or non-reentrant)
surface; that is to say, a straight line segment connecting any two points in the
region lies entirely within the region. A neutron leaving the surface of such a
region cannot intersect the surface again. If the physical surface is a reentrant
one, it can be assumed to be surrounded by a convex surface at which the
boundary conditions 'are imposed. If neutrons enter the region from external
sources, then the incoming neutron flux must be specified.

If no' neutrons enter from external sources and if a neutron, once it leaves the
surface, cannot return, then the surface is called afree surface. The boundary
conditions on the neutron angular density at a free surface are as follows. Let
fi be a unit vector in the direction of the outward normal at a position r on the
surface. Then any neutron at r having fi.. Q > 0 will be crossing the. surface inan
outward direction whereas a neutron for which fi.. Q < 0 will be crossing in the
inward direction. Hence, the requirement that there be no incoming neutrons is
that for all positions r on the boundary surface

In a practical situation it is, of course, not possible to isolate a system com-
pletely from its environment. A neutron leaving the system will have a finite
probability of returning; hence, the free-surface boundary conditions are an
idealization. Nevertheless, they are very useful because (a) for many systems the
probability of neutron return is negligible, and (b) it is always possible to choose
the bounding surface far enough from the volume of interest that approximate
boundary conditions suffice. For example, small deviations from free-surface
boundary conditions imposed at the outside of a reactor shield, or even of the
reflector. have a negligible effect on the criticality.

The neutron transport equation is simply a statement of neutron conservation.
as applied to an infinitesimal element of volume, direction, and energy. If it is
integrated over all directions, the result will be a statement of neutron conserva-
tion for a small element of volume and energy. Before performing the integration,
however, it should be noted that since the gradient operator involves derivatives

• In addition to conditions at the boundary of the spatial region, some conditions on the
neutron density. or alternatively on the source and cross sections, may be required at high
enerJies.· Normally, the energy variable is restricted to a finite range 0 ~ E ~ Emu.;
neutrons of higher energy than Emu are not considered except insofar as they may produce
some neutrons with E < E ••.• which would be included in the source, Q. Furthermore,
initial conditions on the neutron angular density are required in order to determine the
solution to the transport equation, as will be seen in §1.5a.



-vI n·VNdQ = l'v.J QNdQ = V.J,
4n 4n

in accordance with the definition of the neutron current, J, in equation (1.6).
Integration of equation (1.13) over all values of Q consequently gives

~:n+ V. J + al'n = J a(r; E' -+ E)v'n' dE' + Q,
~t .

Q == Q(r,E,t) = J Q(r,n.E,t)dQ

a(r: E' ~ E) == f a(r. E')f(r: Q', E' -+ Q, E) dQ.

That is. the integral of af over all final directions gives a(r: E' -~ E), which is
defined to be the cross section at r for collisions which result in a neutron of
energy E' being replaced by one of energy E.

Integration t)f equation (1.17) over a finite region of volume and energy now
yields a consenatit)n equation for the whole population of neutrons in the
regitH1. Thus. the result of integrating equatit)n (1.17) over a finite volume and
0\ cr energy IS

c' II 1/ cI I.cI E • • f -
--(-,-- + .1.1 V, J cll' dE + .I ran ell' dE

II III

= III a(r: E' -- £)r',,' dE' ell' dE + II Q cll' dE.

IV V

Each of the fi\ e terms in equation ( 1.19) has a clear physical significance, as will
now be shown.

The quanti,.y II" cll' dE is. the tntal number of neutrons in the space-energy
region under co~sideration: 'hence. term I is the time rate of change of the total
number of neulrnns in this region.



II \7.J dV dE = II J·fa dA dE,
v A

where ciA refers to an element of area, A, on the bounding surface of the region,
V, under consideration and fa is a unit vector normal to the surface element and
directed outward from the region. By definition, J·fa is the net number of neu-
trons crossing unit area of the surface in unit time. Hence, term II is the net
number of neutrons flowing out of the space-energy region per unit time.

Term III is the rate at which neutrons are entering into collisions in the given
region. i.e., the total collision rate, and IV is the rate at which they emerge from"
these collisions. Hence, IV - II I is the net rate at which neutrons are generated
in collisions. Finally, term V gives the rate at which neutrons from independent
sources are introduced into the region. If equation (1.19) is rearranged in the
form

it does indeed represent neutron conservation in the space-energy region under
consideration. for this expression states that

Rate of change
of neutrons

Net rate of generation
of neutrons in collisions

Rate of introduction+ of source neutrons
Net rate of outflow
of neutrons.

I i <I" •- -.- + Q" \7<1> + a<l> = II af<I>' dQ' dE'
r CI •• "

i" linear. \\here the term "linear" implies that if <1>1 and <.1>:z(or N1 and N2 in the
cc,rre~ronJing e\rre~sion for (·N ()/) are solutions then <1>1 + <1>2 (or N1 + N2) is
also a solution. Certain (homogeneous) boundary conditions must be satisfied,
as \\ iII he seen shortly.

Fllr the inhlmlOgeneous transport equation. i.e .. for a system with a source,
the lmcarit) has a related consequence. If a solution <1>1 corresponds to a source
Ql and a slliution (1'2 to a source Q:z, then. subject to certain boundary conditions,
thc flu\ el'l + <1>2 is a solution for the source Q1 + Q2' In general, if a complex
source Q can be di\ ided into a number of simpler sources, Qj, so that



where each <l>i is a solution of the transport equation for the source Qi> provided
the boundary conditions mentioned below are satisfied.

The result given above depends on the existence of boundary conditions for
the problem so that all solutions <l>i and also their sum, <1>, satisfy these condi-
tions. Such boundary conditions are often called homogeneous. For a volume
source with free-surface boundary conditions, i e., no incoming neutrons, as
defined earlier, this is certainly the case. If the boundary conditions correspond
to an incident flux, the latter can be treated as a surface source with free-surface
boundary conditions, as will be seen below.

The additivity of the individual values of <Djsuggests that the solution of the
transport equation for any arbitrary complex source could be obtained by the
superposition (or integral) of the solutions for simple point (or other) sources.
The solution for the simple source is known as Creen's(i.mCfion for the problem,
and various special forms can be found for different geometries. The (one-speed)
Green's function for plane geometry will be derived in Chapter 2.

As an example of the use of Green's function, consider. first, the time-
independent neutron transport equation (1.14) for the flux, i.e., with «Die! = O.
The results will be generalized later to the time-dependent situation. Let the
Green's function C(ro. Qo. Eo -- r. Q. E) he the neutron angular flux at r, Q, E
due to a unit point source. i.e .. a source emitting I neutron/see, located at
roo Qo. Eo· By definition. this satisfies the transport equation (1.14); thus, for
free-surface boundary conditions,

The other symbols have the same significance as before.
If (1)(r. Q. E) is the solution of the transport equation for the arbitrary source

Q(r. Q, E). then because of the linearity of this equation

As already mentioned. Q can he eith~r a volume source with free-surface condi-
tions or a surface source chosen to reproduce the incident flux condi'tion, or
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some combination of the two. The magnitude of the equivalent surface source,
represented by Qs(r, Q, E), can be determined by supposing the incident flux at a
point r on the surface is <l\nc(r, Q, E) per unit direction and energy. Then the
number of neutrons crossing an element of area ciA with outward normal fJ. will
be given by

Number of neutrons crossing = -fi·Q<l\nc(r, Q, E) dA

per unit direction and energy. The minus sign is introduced because fiois an out-
ward normal and Q is an inward direction, so that fJ.. Q < O. Hence, this incident
flux may be replaced by an equivalent surface source such that

The fact that Green's function has been written for a time-independent problem
is of no particular significance. A time-dependent function

)

I ~
I

G(ro, Qo, Eo, 10 -'? r, Q, E, I)

can be obtained simply by adding the time derivative on the left of equation
(1.20} and including the faGtor 8(1 - 10) in the delta function representing the
poi nt Sl)Urce.

Some ~pecial forms of Green's function will be derived in later sections of
this hl)l)k. and rclationships hetween various Green's functions will be indicated.

The neutron tranSpl)rt equation is an integro-differential equation for the
ncutrl)n an~ubr densit: (l)r flux). In this section an equivalent integral equation
\\ ill he dcrt\ed. Thi~ rai~es the question of whether there is or is not also an
eLllll\aknt purel: difTerentlal expression for the neutron transport problem.
The an ...\\Cf I" that there I" lwL for the following reason. In deriving the transport
eLlu~illl)Jl It \\~h nece •..sary to consider the neutron angular density in the im-
mt:dl~lle ("paCe-lime) \ lcinity only of the point under consideration, whereas the
\\ hl)le range PI' energies and angles had to be included in the transport equation
fl)r the angular den~it~ at a particular energy and angle. Hence, the formulation'
is local. involving derivatives. in space and time, but it is extended, involving
integrals. in energy and angle.

The phy~ical basis of the foregoing situation is that, in a collision. the position
and tIme as\ociated \\ ith a neutron change continuously whereas the energy and
angle \\ III change in a discontinuous manner. As a consequence. a mathematical
formulation of the neutron transport problem must contain integrals over energy
and angle. In the multlgroup treatments of the transport equation, described in
Chapters 4 and 5. th~ integrals are approximated by sums.

, ::.
0" • I



1.2b Derivation of the Integral Equation

Since the neutron transport equation is a linear first order partial differential-
integral equation, it can be converted into an integral equation by a standard
procedure known as the method of characteristics,9 as will be shown below.
Two special cases of the integral equation will then be derived: one for isotropic
scattering and the other for general anisotropic scattering. The integral equation
for neutron transport can also be obtained directly from neutron conservation
considerations, as will be indicated.

For the application of the method of characteristics to the neutron transport
equation, the latter, in the form of equation (1.14), may be written as

10'- ~ <I>(r, n, E, t) + n·V<I> + u<tJ = q(r, n, E, t),v (/t

q(r, n, E, t) = J I a(r, E')f(r; n', E' -+ n, E)<I>(r, n', E', t) dn' dE'

+ Q(r, n, E, t). (1.24)

Thus, q is the total rate at which neutrons appear at r, n, E, and t as a result of
both collisions and the independent source, Q.

The first two (derivative) terms on .the left side of equation (1.23) may be
written, in a cartesian coordinate system, as

and, in the method of characteristics, a corresponding total derivative can be
represented by

d<I> 0<I>dt 0<I>dx t3<l> dy 0<I>dz
- = -- +-- +-.-- +--.ds at ds ox ds oy ds az ds

Upon identifying terms in these two ex.pressions, it is found that

dt 1 s
ds = v with solutions t = to + v
dx _ .Q
ds - x



where to, Xo, Yo, and Zo are arbitrary constants. Hence, the transport equation
(1.23) can be written as

;s <1>(ro + sQ, Q, E, to + ;) + a<1>== q(ro + sQ, Q, E, to + ~). (1.25)

The r(s) and t(s) curves are called the characteristic curves of the differential
equation, and for every ro and to, at fixed values of Q and E, there is one curve
passing through that point. The derivative in equation (1.25) is a derivative
along a characteristic curve and it is evidently llv times the total time derivative
(dN /dt) in the original derivation of the neutron transport equation; s, as before,
is a distance along the direction Q of neutron travel. Indeed equation (1.25) is,
except for notation, just the same as equation (1.10).

Equation (1.25) is seen to be a linear first-order ordinary differential equation
which may be integrated. This can be done by introducing an integrating factor,
so that equation (1.25) becomes

~ [<1>(ro + sQ, Q, E, to + ~)exp JS a(ro + s'Q, E) ds']

= exp [fS a(ro + s'Q, E) ds']q(ro + sQ,~, E, to + ~). (1.26)

This expression is now integrated from s = -00, and as a result the integral
terms will include earlier times, to some upper limit s.

If it is assumed that

as would be true. for example. if there were no neutrons in the system at times
long past. then the left side of equation (1.26) becomes

<1:J(ro + sQ. Q, E. 10 + ~) .:xp fS a(ro + s'Q, E) ds'.

Upon multiplYing both sides of the equation by exp (-fa ds'), the result is

<t>(ro + sn. n, E, 10 + n
= f~<£ exp [J.~-a(ro + s"n, E) ds"] [q(ro + s'n, n, E, to + s;)] ds'.

S
fa + sn = f and 10 + - = Iv



and changing the signs of the variables so that the integration runs from 0 to 00

and 0 to s' in the two integrals. It is thus found that

<1>(r,Q, E, t) = foCXJ

exp [- J:' a(r - s"Q, E) ds"]q(r - s'Q, Q, E, t - :) ds',

(1.27)

which is the required form of the integral transport equation for the neutron
angular flux.

Equation (1.27) implies that the flux at r is made up of neutrons which
appeared in the direction Q and energy E at all other possible positions r - s'Q.
with all positive values of s', multiplied by the attenuation factor

exp [ - .r:' a(r - s",Q. E) cis"]

by which the flux is reduced in going to s = O. The integration over s' to x, can
be terminated at the boundary if there is no incoming flux. Similarly. in the
treatment above. it v,ould not be necessary to let s -+- -"X but only to let
r + s,Q proceed to the boundary. If there is incoming flux. this can be replaced
by a surface source as in ~I.I f. together with free-surface boundary conditions.

Attention may be called to two points of interest. Since I a is equal to the
mean free path. the exponent in the attenuation f:.tctor is equ:.tl to the number
of collision mean free paths along the straight line hetween rand r - s',Q. It is
frequently c:.tlled the opTical [1aTh lengTh hetween the two points and is denoted
hy 7"(£; r - s',Q -. r). If 0 is const:.tnt. it is simpl~ 0:.\'1.

Further. if the explicit form of q. as gi\ en hy equation (1.~4). is introduced into
equation (1.27). the result may be written as

where K is the required integral operator and Q' is :.t knov,:n function. assuming
Q to be known. Consider the solutions of equatillf1 (I.~S) oht:.tined hy iteration:
thus.

(1)0 Q':
l1'l = 1\(1)0'

c.1>" • 1 = K tl) p\.

Clearly <110 is the angular flux of neutwn~ "hich have made no collisions after
being introduced from the independent Sllurce: thb \\ ill he called the flux of
uncollided neutrons. Similarly. (1)1 is the flux of first-collision neutrons. i.e.,

>'

those which have made only one COlllsll.lf1. and so on. I f the series 2 <1>" con-
" •. a

verges. it represents a solution to equation (I.:!X). This approach. in which
neutrons are enumerated by collisions. is often useful and will be utilized in
subsequent chapters.



1.2c Isotropic Scattering and Source

The integral transport equation (1.27) can be integrated over all directions to
yield equations that are useful in some instances. Consider, for example, the
simple case of isotropic scattering and an isotropic source, where f and Q are
not dependent on Q or Q'. It is then possible to write

af(r: Q', E' -~ Q, E) = -41 a(r; E' -+ E),
. rr

.I
Q(r, Q, E, t) = 4rr Q(r, E, t).

qlr. Q. E. t) = 4
1

rrJ a(r: E' -: E)<p(r, E', t) dE' + 4~ Q(r, E, t),

where the integral of the angular flux on the right side has been replaced by the
c()rrespnnuing d>(r. E'. 1).

The cxpression for q obtained in this manner may be inserted into equation
(1.27) and Integration carried out over all directions, Q, to give the total neutron
nux. ,f,(r. L. r l. The quantity cis' clQ on the right side is just a volume element,
tll·'. ui\ideJ h~ (s'f. The integration goes over the volume of the system; hence,
replacil1~ r ,'Q hy r' and cis' tlQ hy cll//;(S')2 = dV' !ir - r'!2, it is found that

_ ,'e\r [- T(E: r' --- ~)l.,
,,~(r. r:. r) -- 4 I T d ~

. rrlr-r -

;.: [.I' a(r': E' -. E)cP(r', E'. t - Ir ~ r'l) dE'

+ Q(r" E, t - _Ir ~ r'I)} (1.29)

E4u~tl(ln (I.:\)) f()r isotropic scattering and an isotropic source has been
rn:4ut:ntl~ u ...t:d III l)(lt:-spt:ed problems \vhere the energy variable is absent. It
...hnulJ ht:' llh •.•t:nt:d that it I~ an c\pression for the total flux alone: the angular
ul"trlhutldn 1.)1' the neutrons docs not enter because both scattering and source
arc assumed ll) he isotropic.

)r R is \Hitten fnr r - r'!. then in the simple case of total cross section
lIluepcndent \If po~ilion and no dependence of <p on time, equation (1.29) becomes

,f,(r. E) = J (';~;~RclV'[J a(r/: E' -+ E)¢>(r/, E') dE' + Q(r/. E)). (1.30)

In this form. It can be seen that the quantity in the square brackets in equation
( 1.30t, and hence a),o in equation ( 1.29), is the rate at which neutrons of -energy



E appear (isotropically) at r' due both to collisions and to the independent source
at r'. The factor e-C1R/47TR2 is the probability that a neutron appearing at r' will
reach r without suffering a collision. The integration over all values of r' is
equivalent to adding neutrons from all possible sources. It is of interest to note
that e-C1R/47TR2 is Green'sfunction (§l.lf) for a unit isotropic source at r' in an
absorbing medium. Similar expressions in other forms of the integral transport
equation are also Green's functions.

The foregoing interpretation may be reversed to provide an alternative
method for obtaining the integral transport equation on the basis of neutron
conservation, analogous to that used in deriving the integro-differential form of
the equation. For simplicity, the time-independent case of isotropic scattering
and an isotropic source will be treated. Consider the neutrons which at time t
are present in a volume element dV about r; the expected flux is then c/>(r, E) dV
per unit energy. Each of these neutrons must have either reached r directly
from the source, without intervening collisions, or it must have had a last
collision before proceeding to r. All the neutrons at r may thus be ~iivided into
two categories, according to whether the neutrons have or have not come
directly from the source.

Consider a volume element dV' at r' (Fig. 1.7). The expected rate at which
neutrons emerge from collisions and from the source is then

Rate at fWhich/nv~utrons = [a(r'; E' ~ E)c/>(r', E') + Q(r', E)] dV'.
emerge rom (,

These neutrons emerge isotropically from dV' and so if there were no attenuation
between r' and r, they would contribute an amount

[a(r'; E' ~ E)c/>(r', E') + Q(r', E)] dV'
47T\r - r'12

FIG. 1.7 VOLUME ELEMENTS FOR
INTEGRAL EQUATION.



toward the flux of the neutrons at r~The attentuation by the medium, however,
reduces this flux by the factor e-cr1r-r'l. The flux ep(r, E) of neutrons of energy
E at r may now be found by summing the contributions from all possible
volume elements dV'. The result is then equivalent to equation .(1.30). The
foregoing derivation of the integral equation has referred to an especially simple
case, but the same general procedure can be used to obtain equation (1.27).

1.2d Anisotropic Scattering

When neutron scattering is anisotropic, an integral equation for ep alone cannot
be obtained because the angular dependence of the neutron distribution must be
included. Nevertheless, it is possible to derive an integral equation where the
kernel is similar to that in equation (1.29). To do this, it shDuld first be noted
again that q is the sum of source neutrons plus those that appear as the result of
collisions. Let \fr(r. Qo, Eo. t) represent the collision source, i.e., the number of
neutrons per unit time and unit volume that, due to collisions, appear per
steradian about Qo and per unit energy about Eo; thus,

q(r, Q, E, t) = ~(r, Q, E, t) + Q(r, Q, E, t).

Equation (1.'27) is now multiplied by af(r; Q, E -+ Qo, Eo) and integrated
over dQ and dE; the result is found to be

x [~(r - s'Q, Q, E, t - ~) + Q(r - s'Q, Q, E, t - S~)] ds'.

I {CD J dV'
dQ Jo ds' = Ir _ r'12'

r - r'
Q = 1 '1'r - r



Except for the factor af in the integrand of equation (1.31), the integral kernel
is similar to that in equation (1.29). Integral equations of the form of equation
(1.31) have been used in the study of one-speed problems and of simple forms of
anisotropy.lo

Solutions of the energy-dependent integral transport equation have not been
widely employed in general reactor problems. Nevertheless, the integral equation
approach, in which the flux at r is represented as made up of contributions
from all r', has been found useful for many special cases. Examples will be given
in the determination of collision probabilities in Chapters 2 and 8, and in a widely
used method of computing thermal neutron spectra in Chapter 7. In one-speed
problems, the integral method has often been utilized in the derivation of the
mathematical properties of the solutions.ll

In solving the neutron transport equation, it is necessary to have expressions
for the quantity n·VN which appears in the streaming term of the equation.
Such expressions can be derived quite simply for coordinate systems where the
position vector r is given in terms of rectangular, spherical, or cylindrical
coordinates. Two angular coordinates are required to specify the neutron
direction and these are chosen to be a polar angle and an azimuthal angle
(see §l. 7a). Computation of n·VN is facilitated by noting that it is the direc-
tional derivative of N in the direction n. Some examples are given below; the
energy and time variables are suppressed to simplify the notation.

For plane geometry, in which the neutron angular density (for a specific
energy) is a function only of z and 8 (Fig. 1.8).

dN oN dz oN. oN
n·V N = ds = oz ds = OZ cos 8 = p. oz'



FIG. 1.8 NE'UTRON MOTION IN PLANE
GEOMETRY

v.here f-L = cos e. For this geometry, it is convenient to set N(r, Q) equal to
.V(:. jJ.). and when integrating over all directions. dQ may be replaced by
djJ.dg; in polar coordinates (~l.lb). Since the neutron distribu1ion·tn plane
gel)mctry has azimuthal symmetry, integration over qJ gives 2n, aoo hence for
integration over Q. dQ = 2n djJ.. Thus. for plane geometry.

. flI N(r. Q) dQ = 2n _ N(::, It) djJ..
• • 1

For .\{'ht'fical gcoII/clry. i.e .. spherically symmetrical about a point, it is
L.·lln\cnicnt to gi\c the neutron direction Q relative to the radius vector T. If. in
particular.

Q. i = jJ.,

\\ here r I~ a unit \ector. then N is a function of rand f-L only. But asfhe neutron



moves with constant Q, the value of fL changes from cos 0 to cos 0' (Fig. 1.9).
Hence

Q,.VN(r ) = dN(r, fL) = aN dr + aN dfL.
, fL ds 8r ds afL ds

dr
- = fL = cos 0ds

dfL _ d cos 0 dO _ -(sin 0)(- sin
r

0) _
ds - dO ds-

eN I - fL2 aN
Q·VN(r,fL)=fL-~ +---r .

cr r CfL

More general expressions for Q. V N (or Q. V¢) and for f dQ in various
rectangular, spherical, and cylindrical geometries are given in §1.7a. It should
be noted that the expressions involving Nand ¢ have exactly the same
dependence on all the variables.

It was noted earlier that the neutron transport equation is simply a statement of
neutron conservation in an infinitesimal element of direction, volume, and
energy (tIQ. dl '. and tiE). \\'hen integrated over all directions and over a finite
volume, the result is a relation for the conservation of neutrons in that volume.
For performing these integrations in curved geometries. it is convenient to
e\pre~s Q, V S in a particular form which facilitates the integration procedure.
The term Q. V N is then said to be expressed in conserrario!1 form.

Consider the simple case of a system\\ith spherical symmetry. The integral
of Q. V X dl' clQ over a finite volume and all directions is obtained by writing
471',:2 tI, for tll' and integrating over' from'l to,'2 (Fig. 1.10) and replacing dQ
hy 271' till and integrating over fl- from - 1 to I.The latter substitution is permis-
~ihle because the neu~ron distribution in spherical geometry is azimuthally
symmetrical. as it is for plane geometry (§ 1.3a). Thus, the integral under con-
sideration can be written

J'r Q. Vi'·l dV dQ = J'=: 47Tr2 f~ 27T(Q·V N) dfL dr
• '1. 1

47T f'2= - r:J[V ·J(r)] dr
v '1



FIG. 1.10 CALCULATION OF STREAMING TERM IN CONSERVATION FORM IN
SPHERICAL GEOMETRY.

recalling the definition of the neutron current in equation (1.6). This result
should. of course, be obtainable by substituting the right side of equation (1.32)
in the second integrand on the right of equation (1.33) and performing the
integration directly. The two terms obtained in this manner combine mathe-
matically to yield equation (1.34), as required, but the individual terms have no
physical signifIcance.

A prcfcrahk appmach is to express the right side of equation (1.32) in an
a Itern a t i\ e fl) rm. i.e ..

(x , 1- fl'2c'N fl (l(r2N) I d(1 - fl2)N] (1.35)
, fL - -r --- -. - = -; . + - .

( r r Cfl r~ cr r ('p

\\'hen this c\pres"ion is multiplied by the volume element 4rrr2 dr. it is seen that
the fIrst term ()f1 the right is a function of fl, namely fl. multiplied by a derivative
\l, ith n:~rcct tl) r. \\ hereas the second term is a function of r. namely r, multiplied
hy a l.krl\atl\c \\ ith respect to fl. When the right side of equation (1.35) is
Inte~rated ll\ er r and fl. as above. the first term gives the right side of equation
( 1.341 dlrecth. and the intcl.!ral of the second term goes to zero. Thus,. ~ ~

I"J ",'1 2rr i(r
2

.N) 4rrST:?i[r
2

j(r)]4r.r -., fl . dfl dr = - . dr
• , I • - 1 r ~ ( r l' TIer

which is the net rate at which neutrons leave the volume divided by the neutron
speed. L· and

,"'J t_r2,-1 211([(1 - f.L2)N] J d fT
2 2 2 jj=l

•••• .' fl r = 877 r dr[(l - fl )N] = O.
•. '1 •. -1 r {fl T

1
p·-l

• \\ hcn the anlular flu,. ¢', IS u~d in place of the angular density, N, as in §§1.7a, 5.3b,
the Integral 11\0 the actual rate at which neutrons leave the volume.



The two terms on the right side of equation (1.35) thus have physical significance
when integrated over a finite volume and all directions, and they express
Q. V N for spherical geometry in conservation form.

In general, when Q. V N is written in conservation form, the coefficient of each
derivative term multiplied by the volume element does not involve the variable
of differentiation. When integrated over all directions and a volume bounded
by surfaces along which one space variable is constant, the terms can be readily
interpreted as currents across such surfaces (see last paragraph in ~I.7a). This
property of the conservation forms makes them useful in deriving difference
approximations to the transport equation (see Chapter 5) or in considering
boundary conditions. Expressions for Q. V <1>, which also apply to Q. V N, in
conservation form for spherical and cylindrical geometries are included in the
appendix to this chapter (§ l. 7a).

It was seen in §1.2c that when the source and scattering are isotropic and the
cross sections are independent of position within the region being considered,
the integral equation takes the particularly simple form of equation (1.30); the
latter, in which 4> is independent of time, may be written as

r e -ol1:.".lR

4>(r, E) = J 41TR'2 q(r', E) dV',

q(r', E) = .I aCE' -~ E)4>(r', E') dE'. + Q(r', E).

Furthermore, when the geometrical region is simple, the spatial integral may be
simplified.

In plane geometry, with q a function of x and £ only, Fig. 1.11 shows that the
volume element

R2 = Ix - x'12 + (r')2.

so that, if x - x' is constant,
R dR = r'dr'.

Equation (1.36) then takes the form

I· ~«. -olE;IR

4>(x, E) = ..,J dx' J . q(x'. E) e R dR
- Ix -x I

= ~I q(x'. E)E1[a(E)lx - x'll dx'



FIG 1.11 CALCULATJON OF INTEGRAL TRANSPORT EQUAT10N IN PLANE GEOM-
ETRY

\\ h~r~ the ,,~rnh,d F, "tands fur the flrst order exponenti"li integral function (see
Arr~n<Ji\l. h\r ;In Infinite slab of thickness 2a. this becomes

d,(x. L) = ~ ru
q(x'. E)E\[a(E)lx - x'jJdx'.

-. - u

Sll1ldarl~. f,\r spherical gcomeTry. with q a function of rand E only. then from
fl~. 1.12.

RdR. - cI(cos 8) = --, .
rr

I 'if f"T+T' e-o(EIR
,p(r. E) =., I (-r)2q(r',E)dr' 'R dR

-.0 .IT-T'I rr



FIG. 1.12 CALCULATION OF INTEGRAL
TRANSPORT EQUATION IN SPHERICAL
GEOMETRY.

rcjJ(r, E) = ~Joa r'q(r', E){E1[u(E)lr - r'l] - E1[u(E)(r + r')]} dr'. (1.40)

If q( - r, E) is taken to be equal to q(r, E), then the second term in the integral
can be written as

~ J:a r'q(r', E)E1[u(E)lr - r'11 dr'

reP(r, E) = ~J:a r'q(r', E)Edu(E)lr - r'l] dr'.

This equation may be considered to apply for -a ~ r ~ a, with eP( - r, E) =
eP(r, E).

Comparison of equation (1.41) with equation (1.38) shows that for a homo-
geneous sphere of radius a the quantities reP(r, E) and rq(r, E) are related to the
planar quantities eP(x, E) and q(x, E), respectively, for an infinite slab of thickness
la. By using this fact, it is sometimes possible to relate solutions of the transport
equation for slabs to those of spheres (§2.5f). It should be noted that since, by
definition. 4>(r, E) = t/>(- r, E) and q(r, E) = q( - r, E), the functions reP(r, E)
and rq(r, E) of r must be odd, i.e., rt/>(r, E) = - [- rt/>(- r, E)l and rq(r, E) =
- [-rq( - r, E)]. For the symmetric slab, however, the corresponding functions
of x are even, since 1>(x, E) = t/>(- x, £) and q(x, E) = q( - x, E).



In deriving the neutron transport equation, some assumptions were made
which may not always be justified in practice. In order of their appearance in the
preceding text, the most important are: (l) that the neutron is a point particle
characterized completely by its position and velocity; (2) that the medium
contains a large enough number of neutrons so that deviations from the expected
(or probable) number can be ignored but not so large that they change the
medium in times of interest; and (3) the neglect of delayed neutrons. These
assumptions will be discussed in turn.

In considering the neutron as a point particle, i.e., a particle which can be
described completely by its position and velocity, the effect of polarization,
which could influence neutron transport, has been neglected. Polarization effects
can arise because the neutron has a spin and a magnetic moment. In particular,
when a beam of neutrons with energy large enough for I > 0 interactions to be
significant. in practice when E ~ 100 keY (cf. §1.6c), is scattered by an un-
polarized target, the neutrons become polarized due to neutron-nucleus (spin-
orbit) interaction. This polarization affects the subsequent scattering of the
neutron, and a transport theory with appropriate allowance for polarization
has been developed.12 Although in principle there are situations where the effects
on neutron transport could be large, e.g., fast neutrons diffusing in helium, it
does not appear that this is so in practical situations. In any event, allowance
for polarization can be made in the Pl approximation to the transport equation
(see §1.6d) by a suitable small modification of the cross sections.

Neutron polarization can also arise from the scattering of neutrons by nuclei
with oriented spins, e.g., oriented protons, from scattering by magnetic materials,
due to the interaction between the magnetic moment of the neutron and the
atomic magnetic field, and from small-angle scattering arising from the interac-
tion of the magnetic moment of the neutron (for 1 > 0) with the electric field of
the nucleus, None of these effects, however, is important for neutron transport
in a reactor,

At very low neutron energies, the neutron wavelength becomes comparable
with the internuclear spacing. Interference effects could then arise between the
neutron waves scattered from various nuclei. These coherent scattering effects
will depend on both the scattering nuclei and their positions in space, i.e., in the
crystal structure, The scattering is then affected by the orientation of the crystal
axes relative to the direction of the neutrons. The phenomenon is important in
the physics of low-energy neutrons, but it is usually not significant for reactor



theory. Further reference to the subject will be made in Chapter 7 on neutron
thermalization.

1.4c The Expected (or Probable) Value

In deriving the transport equation for the expected (or probable) value of the
neutron density, fluctuations from the mean were not taken into account. As a
general rule, in a power reactor the fluctuations are small in comparison with the
average neutron density and then the transport equation can be used to express
the" expected" behavior. In addition, fluctuations have no effect on the acerage
neutron density and hence the transport equation is valid for the arerage neutron
angular density no matter how large the fluctuations may be.

There are some practical situations, however. tn which the departure from the
/ ;~>,.;average behavior is relatively large and cannot be overlooked. In particular,

I -' deviations from the mean commonly occur in the startup of a reactor in which
the system is brought up to (or through') critical with a weak source. There is
then, for example, a certain probability that the reactor may go beyond prompt
critical before any neutron signal is detected. For dealing with such behavior,
stochastic theories of neutron transport and multiplication have been developed
in which the probabilities of various exceptional events are considered along
with more normal situations.13 The procedures \\'ill not be discussed in detail in
this book. but it is of interest to note that in one approach an equation is derived
for a probability function which is closely related to the Boltzmann equation;
it includes nonlinear fission terms where the probability of two neutrons from
fission leads to a square term. and so on.H

Fluctuations during startup are important in reactors which depend on such
\\'eak sources as spontaneous fission. (0:,11) and (y. /1) reactions, and cosmic-ray
neutrons. In pulsed reactors, it is desirable to use a strong source for startup, so
that departure from the average behavior is small, or a very weak source; there
is t hen a high probability that assembly to the desired state of supercriticality
\\ill be attained before the first persistent (divergent) fission chain is initiated.

Even when a reactor is operating in the steady state, there are minor fluctua-
tions in the neutron flux, usually referred to as reactor noise. This noise is a
direct consequence of the fission process itself. It will be shown in Chapter 9
that information about the lifetimes of delayed neutrons and other matters of
interest can be obtained from a study of reactor noise. The fluctuations in the
steady state do not, however, represent large deviations from the neutron
angular density (or flux) predicted by the transport equation.

The limitation was indicated earlier that the neutron density must not be so
large that the medium changes appreciably in times of importance for neutron
transport. Clearly. in a reactor operating at high power. the composition and
temperature. and hence the macroscopic cross sections. will change gradually
with time. The time scale for these changes. however. is very long compared with



neutron transport times. The problem is therefore treated by a series of static
calculations in which compositions, etc., are changed from one calculation to the
next. The same procedure is generally used for shutdown and startup problems
where the changes are so relatively slow that a series of static calculations is
usually adequate; this question will be examined further in Chapter 9, where it
will be seen that in treating rapid transients, e.g., in power excursions, the
changes of cross section are taken into account in various ways.

The neglect of neutron-neutron collisions in the transport theory can be
readily justified. Even in a thermal reactor operating at the high (thermal)
neutron flux of 1016 neutrons per cm2 per see, the neutron density is less than
1011 neutrons per cm3• This is small compared to nuclear densities which are of
the order of 1022 nuclei per cm3 in solids. Hence, neutron-neutron collisions will
be very much less frequent than neutron-nuclei collisions. As a result of the
neglect of neutron-neutron scattering, the neutron transport equati,on is linear.
In the kinetic theory of gases, where collisions among the particles are important,
the transport (Boltzmann) equation includes nonlinear collision terms.

When necessary, there is no difficulty in allowing for delayed neutrons, provided
that the precursors decay where they are formed, i.e., there is no transport of the
precursors. This is done by introducing into the scattering kernel the possibility
of a time delay between neutron absorption and emission. The subject will be
treated in Chapter 9, but in the meantime it may be regarded as only a formal
complication. It is necessary, however, to keep in m~nd the distinction between
prompt critical. i.e., criticality without delayed neutrons, and delayed critical,
in which the delayed neutrons are included. In the former case, of course, the
delayed neutrons can be neglected completely.

If the delayed neutron precursors can move appreciably while they are
decaying.. the motion must be analyzed and taken into account in both static
and dynamic reactor problems. Transport of delayed neutron precursors occurs
in reactors with circulating fuels and in systems with unclad fuel elements when
the precursors· can diffuse into the coolant.

1.5 GENERAL PROPERTIES OF SOLUTIONS OF THE
TIME-DEPENDENT TRANSPORT eQUATION

1.5a The Criticality Condition: General Considerations

From physical considerations, it is to be expected that systems containing
fissile nuclides can be regarded as being either subcritical, critical, or super-
critical. based on the behavior of the neutron population as a function of time.
Thus, the following intuitive definitions may be adopted to describe the physical



concept of criticality. A system is said to be subcritical if, for any nonzerq
initial neutron population; the expected population at late times: i.e., as
t ~ 00, will die out unless it is sustained by a neutron source; internal or
external. Similarly, a system is described as supercritical when th€- expected
neutron population diverges at late times, starting from any nonzero population
or with a source. Finally, a critical system is defined as one in which a steady,
time-independent expected neutron population can be maintained in the absence
of a source.

The foregoing definitions can be related closely to the properties of the
asymptotic (as t -+ (0) solutions of the neutron transport equation. However, a
formal mathematical analysis of the asymptotic solutions covering all situations
of physical interest has not yet been made. In this section, therefore, a heuristic
approach to the problem will be presented and it will be followed by a brief
review of some results obtained by a formal analysis in certain special cases.

The neutron transport equation with boundary conditions defines an initial
value problem. Thus, if the neutron angular density at 1 = 0, i.e., N(r, n, E,O),
is given, the expected density at any later time can be found, in principle, by
solving the transport equation. It has been shown that such a solution exists and
is· unique, provided certain mathematical conditions are satisfied by cross
sections and sources.15 In practice, these conditions are satisfied for actual
physical situations. The criticality of a system will now be discussed by con-
sidering the asymptotic (as 1-+ (0) behavior of the solution to the initial value
problem.

The homogeneous (source-free) neutron transport equation. i.e .. equation
(1.13) without Q, may be written in the form

(::"1 = -rn.VN - urN + rr aJr'N' tin' dE' = LN,
c1 w.

where L is an operator. together with the boundary condition 01no incoming
neutrons. Some important features of the criticality problem can be appreciated
hy considerinc solutions to the equation. -

(. ~,
-." = LNCl

N = N(r, n. E)~',

There may exist many values (eigcmalues) of a, represented by UJ, with
corresponding solutions (eigenfunctions) N,,' i.e ..

a,N, = LNj•



Suppose that it is possible to expand the solution in the eigenfunctions Nj• If
ao is the value of aj having the largest real part,lthen at late times, when t is
large, it is expected that the solution to the initial value problem would be pro-
portional to No(r-, n, E)eaot• The distinction between subcritical and super-
critical systems could then be based on the sign of the eigenvalue ao. Physically,
the expectati'on is that ao would be real, i.e., no oscillations in the neutron densitY'
since they would lead to negative or imaginary density values; furthermore, No
would be everywhere nonnegative, i.e., no negative values of the neutron density
are allowed: Then, for a subcritical system ao < 0, for a critical system a = 0,
and for a supercritical system ao > O. Thus, the criticality problem becomes that
of determining the sign of ao.

It will be seen in later chapters that the eigenvalues aj, and especially ao, are of
basic importance in reactor theory. They will be referred to, according tocircum-
stances, by such names as "a eigenvalues," "multiplication rate eigenvalues,"
"decay eigenvalues," and, in dynamics problems(§ 10.1d), as "period eigenvalues,"
because they are inversely related to the reactor periods.

The foregoing considerations can be expressed somewhat more precisely,
although still far from rigorously, by taking the Laplace transform of equation
(1.42) with respect to time. Let

Na = Jooo e-atN(r, Q, E, t) df

where F represents the initial condition on N. The quantity Na is a function of
the complex variable (J. and exists if the real part of fl. i.e .. Re (J. is sufficiently
large.16 Hence. for Re (J. large enough,

rxc eN, -..- c-al df = - F + aNa .
• 0 Cl

Since the operator L is independent of f, the Laplace transformation of equation
(1.42) yields the result

If (J. - L were merely a complex valued function, it would be possible to solve
equation (1.43) for

Na = 1 Fa-L



however, it is necessary to consider the inverse operator (a - L)- \ known as
the resolvent operator, and write

Many of the difficulties in the mathematical analysis arise in identifying the
properties of this resolvent operator.17 Nevertheless, by formal application of
the inverse Laplace transform 18 to equation (1.43), the result is

1 ib
+

tco
N(r, Q, E, t) = -2 . (a - L)-IFeatda,

7Tl b-tco

where b is any real constant lying in the complex a plane to the right of all
singularities in the integrand; in other words, b is greater than the real part of a
at any singularity in the integrand. ,

In attempting to invert the transform in equation (1.45), 'the singularities of the
integrand, or of the resolvent operator, are very important. Suppose that the
integrand has only a series of' poles, indicated by crosses in Fig. 1.13, for
a = aj, where j = 0, I, 2, .... Then the contour could be closed by the extended
path, shown by the dashed lines in the figure, picking up a residue contribution
proportional to eaJt from each of the poles. In this event,

fb+iOO fJ b _ ix [ ] da = Jc [ ] do: = 27Ti x sum of residues at poles,

r--·--------
I
I
I
I
I
I

ORIGINAL
PATH

I

EXTENDE~
PATH Ie) I

IL _

~ :f :
, I.



contribution to the integral of the dashed part of the path is zero. A solution
to equation (1.45) of the form

N(r, Q, E, t) = L eajtglr, Q, E) (1.46)
j=O

is then to be expected,19 so that at late times the solution will be dominated by
the term which has aj with the largest real part; this particular eigenvalue aj may

~ ' be called ao, assuming that the values of aj have been ordered s,uch that
Re af ~ Re aj+1'

Consequently, in order to study the asymptotic behavior with time of the
time-dependent neutron transport equation, it is necessary to examine the
singularities of the operator (a - L) -1. Such singularities will be values of aj

for which

so that aj is the eigenvalue corresponding to the eigenfunction Nar The particular
eigenfunction Nao corresponding to the eigenvalue ao would be expected to
determine the solution at late times; thus,

where A is a constant determined by the initial conditions F(r, Q, E). The
distinction between subcritical and supercritical systems could then be based
on the sign of (lo. assuming Cto to be real. In this event. the criticality problem is
that of finding the conditions, i.e .. radius. composition, etc., for which ao = O.

The foregoing expectations have been largely confirmed by rigorous mathe-
matical analysis.20 But apart from the mathematical difficulties, there are a
number of circumstances which may prove to be troublesome. These arise in
considering the possible eigenvalues u) in equation (1.47). called the spectrum of
rht' transport operator l. The following situations may arise: (a) there exist no
discrete elgemaluc~ (t. and hence there is no value of ((0: or (h) the number of
discrete elgcmalues may be infinite so that there are questions concerning the
com ergence of the series in equation (1.46): or (c) there may be a continuous
range of (t. In the left half-plane in Fig. 1.13 where Re u < 0, called the con-
tinuous ~pectrum of L, for which equation (1.47) can be satisfied in a limiting
~nse.

Actually a ,'alue of a in the continuous spectrum is not a proper eigenvalue of
equation (1.47). Rather it is associated with a highly singular eigenfunction which
is defined as the limit of a series of nonsingular functions that are not quite
eigenfunctlon~. It is not possibh:. however. to extend the integration path in
Fig. 1.13 inhl the regillO of the continuous spectrum (see Exercise 16).

In case (c). therefore. the contour of integration does not extend indefinitely
to the left. but ,\ Shlrrcd \\ hen the continuous spectrum is reached. The solution



,
to equation (1.45) will then be the series in equation (1.46) plus an additional
term from the left-hand contour representing the contribution of the continuous
spectrum. The three possibilities described above have all been encountered in
investigations of special cases of the neutron transport equation.

1.5c Results of Rigorous Analysis of the Criticality Condition
In the first rigorous examination of the transport operator, the case considered
was the one-speed problem with isotropic scattering for a bare homogeneous
infinite slab, i.e., of infinite extent in two dimensions.21 Previously, it had been
assumed, by analogy with other problems in mathematical physics, that there
would be an infinite number of discrete eigenvalues for equation (1.47) and that
the corresponding eigenfunctions would form a complete set. The rigorous
solution to equation (1.45), however, gave a finite (nonzero) set of real eigen-
values for which aj > - al', and in addition a continuous spectrum for all
aj < - or, as in case (c) of the preceding section. The contribution from the
continuous spectrum, however, decays at least as rapidly as e-uvt• Since there
are always one or more discrete eigenvalues, the asymptotic solution at late
times will be dominated by the discrete terms and criticality can still be rigorously
determined by ao = o. Similar conclusions have been obtained in a multi group
(see §1.6d) study of a slab.22

A possible physical explanation for the continuous spectrum of the transport
operator in a slab is the following.23 Neutrons traveling parallel to the slab faces
can proceed indefinitely without ever either colliding with nuclei or leaving the
slab. Hence, even at very late times there will remain a contribution which
precisely reflects the original conditions in directions nearly parallel to the slab
surfaces. The neutrons traveling exactly parallel will decay as e-urt, i.e., just
like the contribution from the continuous spectrum. Support for this interpre-
tation is found in the result that for the one-speed problem in a bare sphere,
there is no continuous spectrum but only an infinite number of real discrete
eigenval ues. 24

An analysis has also been made of the energy-dependent transport equation
for finite (bounded) geometry.25 By assuming neutron speeds to be bounded
away from zero and the scattering kernel to be integrable and bounded, it was
found that at late times the solution of the transport equation is dominated by
the contribution from a discrete eigenvalue. Asymptotically, the solution to the .
transport equation varies as eaot• and so, for this quite general case, a critical
system can be defined as one for which ao = O. For certain conditions on the
scattering kernel. which are satisfied in practice for all systems containing fissile
nuclei. there will always be at least one discrete eigenvalue and hence an ao.
Although this result has not been proved in general, it seems reasonable to
suppose that there will always be a real ao and that Nao will be nonnegative.

In the foregoing. it was assumed that the neutron speeds are bounded away
from zero. if zero speed is allowed then. for some simplified energy-dependent
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versions of the scattering kernel that arise in neutron thermalization theory, it
has been found that there is only a finite number of discrete real eigenvalues plus
a continuous spectrum for all a with sufficiently negative real parts.26 In addi-
tion, for sufficiently small systems, there are no discrete eigenvalues.27 But
these conclusions regarding the case for neutrons of zero speed do not appear to
have any great relevance for the criticality problem. As noted in §1.1 b, the
transport equation is not meaningful for neutrons of arbitrarily small velocity
(and long 1\). Furthermore, a system that is so small as to have no discrete
eigenvalue is clearly subcritical; for large: systems, however, an ao will still
exist.

Another assumption made above is that the scattering kernel is bounded. It
was seen earlier, in equation (1.7), however, that for elastic scattering the kernel
is usually written containing a Dirac delta function and is consequently un-
bounded. If the thermal motion of the scattering nuclei is taken into account
(Chapter 7), then this unbounded kernel is not strictly correct. When the nuclei
are in a gas or liquid, they will have a continuous range of possible velocities and
the scattering kernel will not have any singularities. For scattering from nuclei
in crystals, on the other hand, there will be complicated singularities. Hence,
scattering kernels are sometimes bounded and sometimes not. Although details
of the eigenvalue spectrum are affected by a singular kernel,28 it nevertheless
appears that the concept of criticality based on the sign of ao may be accepted
as having general applicability.

The spectrum 1..)1' the transport operator and the criticality condition have been
discussed in some detail because the neutron transport equation is the basis of
the analysis l)f neutron behavior in a reactor and criticality is. of course,
essential in determining the size of a reactor. For the solution of practical
problems somc approximation to the transport equation must be used, and then
the elgemalue l)f the approximate equation can be considered. In some cases,
parllcularl~ for multigrlHlp ditTusion theory, much more can be said regarding
the eigcmalue" and eigenfunctions. This subject will be discussed in Chapter 4.

As a Clllht:quence l)f the linearity of the homogeneous (source-free) neutron
tran"pllrl equation (~I.I fl. it appears that if there are many solutions of the a
cigernalue prllhlem. then an arbitrary solution of the equation might be
expanded III term" of the clgcnfunctions Sl (or (1)1) corresponding to the eigen-
\~due uf• Although nl) ~uch gcnerality. i.e .. completeness of eigenfunctions, has
been dcnwn"trated. the expansions are used in some approximations to the
neutron transpnrt equati.m. e.g .. in one-speed theory in Chapter 2 and in
multlgrpup the,)r~. a, "ill he seen in Chapter 4.

II IS of Interest to consider the circumstances under which a time-independent
(~teady-~tatc) solution of the tran,p")rt equation may be expected to exist and.



if it does, whether or not it is unique. The homogeneous (source-free) transport
equation (1.42) will have a time-independent solution, given by equation (1.47),
when

LNao = 0

with ao = 0 for a critical system. If, as will be assumed, the persisting distribu-
tion or the critical eigenfunction, Nao, is unique, except for a multiplicative
constant, then the time-independent solution is unique.

More generally, consider the inhomogeneous transport equation with a
source, namely,

aN
- = LN+ Qat .

c'N
-, = 0 and LN + Q = 0,ct

and if these solutions will be approached from some initial conditions on N.
~ f~' The stipulation is made that Land Q are time-independent; that is, the cross

sectionsand source are taken to be independent of time.
For a supercritical system, there can be no physical solutions for which

i:N/rt = 0; any population which is established \'v'iILin due time, be increasing
as eaol \\'ith Cia > O. For a subcritical system, the population at late times will be
independent of the initial conditions. since the effect of these conditions will
ultimately decay as £,"01 with (iO < O. It is to be expected that, for any given
source. Q. a time-independent solution will be obtained at late times. Although
this expectation is reasonable, it seems to ha\e been proved rigorously for a few
special cases only29 and for a medium which is non multiplying. Nevertheless,
it will be assumed in this book. partly on physical grounds, that unique time-
independent solutions to the transport equation exist for a critical system
without a source or for a subcritical system with a steady source, regardless of
whether the latter system is a multiplying one or not.

1.5e The Effective Multiplication Factor (or k) Eigenvalue

The I.:riticality problem can often be best approached by introducing auxiliary
eigcf1\alues. In particular ltr; E' ~ E) may be replaced by l{r: E; - E)k, and k
can then be v'aried to obtain the criticality condition (to = 0, with k = k~rr, the
efTccti\ e multiplication factor. This amounts to \ arying the number of neutrons
emitted per fission by the factor Ik"fl' In the following. the subscript will be
dropped fr\l!l1 k"ff for brevity and hence k "ill denote the eigenvalue.

From a ph~sical understanding of criticality (§1.5a). it appears that any system
containing fissile material could be made critical by arbitrarily varying the
number of neutrons emitted in fission. It "ill be a~sumed. therefore. that, for

I



any such system, there will always exist a unique positive eigenvalue, k > O. By
definition, k is an eigenvalue of the equation

vQ·\lNk + avNk = II 2.: a~fxv'N~dQ' dE'
x'!'!

+ ~II 4~ vCr; E' ~ E)a~v'N~ dQ' dE',

where, as in §1.1b, the summation over x #- f refers to collisions Dther than. .
fission in which neutrons are produced, and Nk, N~ are the eigenfunctions

Nk == Nk(r, Q, E),
N~ == Nk(r, Q', E'),

which, it is explicitly noted, are not functions of time.
The existence of the eigenvalue k was assumed above on physical grounds and

the existence of an associated nonnegative eigenfunction was also assumed.
For various simple problems. the k eigenvalue spectrum has been investigated
in detail. For example, in one-speed theory (see Chapter 2) with isotropic scatter-
ing, for a slab or a sphere, it has been proved 30 that there exists an infinite
number of discrete real k eigenvalues and that, in particular, there will be a
smallest one which is of physical interest as the effective multiplication factor.
For multigroup theory there is also considerable information on the k eigenvalues
and eigenfunctions as will be seen in Chapter 4.

It should be noted that the k eigenfunctions are not a complete set offunctions
for expansion of solutions of the transport equation.31 In some cases of one-
speed problems, hov.ever. it has been found 32 that when the k eigenfunctions
are integrated over n, they do form a complete set for expanding functions of
r only.

In elementary reactor theory, k is thought of as the ratio between the numbers
of neutrons in successive generations, with the fission process being regarded as
the birth event which separates generations of neutrons. To see what can be
deri\ed from transport theory, suppose that a pulsed source of neutrons,
Qdr. n, E, t), is introduced into the system starting at t = O. This is regarded
as the source of first-generation neutrons, and these neutrons are lost by
absorption, including fission, and by leakage (streaming). Those neutrons which
are born in fission induced by the first-generation neutrons form the source for
second-generation neutrons, and so on. Hence, the angular density of first-
generation neutrons, Nl> is to be compuled by solving the transport equation
with source Ql and fission treated as an absorption; it is, therefore, a solution
of the transport equation

i:N II ~iJ/ + l·n· V N1 + avN1 = L a'fv' N~ dQ' dE' + Ql(r, Q. E. 1), (1.50)
x~f 1

where the subscript x on a' andfis understood.



Upon integration over time (0 ~ t ~ (0), the first term on the left side of
equation (1.50) gives

falX) aN}(r,~, E, t) dt = N}(r, Q, E~ (0) - N}(r, Q, E,O) = O.

The firs.t term on the right of this expression is zero because the system with
fission regarded as absorption must be subcritical, and since the (pulsed) source
is of finite duration, the neutron density must ultimately decline to zero. The
second term on the right side is zero by the postulate that the source produces
the first generation of neutrons. If the quantities N1(r, Q, E) and Ql(r, Q, E)
are defined by

foOO

N1(r, Q, E, t) dt == N1(r, Q, E)

fooo

QI(r, Q, E, t) dt = Ql(r, Q, E),

then the integration of equation (I.50) gives

eQ· VN1 + arNI = f f .2 a'fr' N{ dQ' dE' + QI(r, Q, E).
x-l"

Thus. Ql serves as the source for N1, and since equation (1.51) refers to a sub-
critical system. i.e .. no neutrons produced in fission, it follows from the results
of the preceding section that the solution N1 exists and is unique.33

From the angular density. N1. of first-generation neutrons. the source, Q2,
of second-generation neutrons can be found by computing the fission neutrons
produced by N1: thus,

Second generation source

- Q2(r. Q. E) = II 4
1
17I,(r; E' ~ E)a,(r, E')c'N{ dQ' dE'. (1.52)

This source may now be used to determine the angular density, N2, of second-
generation neutrons and the source of third-generation neutrons, as in equations
(1.51) and (1.52).

In this manner, a general iterati\e procedure may be defined for finding the
neutron angular density in one generation after another by the recursion
relation

l·n.vNI + fJl'N, = fJ2: o'fi:'Nj'dn'd£' + II 4~V'OfV'Ni-ldQ'dE"
JCtaf

(1.53)

where it is important to note that N'-l appears In the fission term and Nt
elsewhere in this equation.

"'·1:.'
f: /.
Ii:· .
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SOLUTIONS OF THE TIME-DEPENDENT TRANSPORT EQUATION 47

As the foregoing procedure is iterated, it is to be expected that the angular
density of neutrons in successive generations will increase for a supercritical
system, decrease for a subcritical system, and become constant for a critical
system. 1n any event, it is to be expected that the ratio of the densities in succes-
sive generations will approach a constant, independent of r,Q, and E. If this is
so, then a comparison of equations (1.49) and (1.53) shows that the constant
will be equal to k: thus,

I, Ni I.1m -_- = constant = 1\.
i-co Ni-1.

This behavior has been confirmed rigorously for certain approximations to
the transport equation,34 and it is probably true in general. Tn fact, some
approximation to the iterative procedure given in equation (1.53) is used in most
numerical calculations of criticality, and the k is computed from equation (1.54).
The procedure will be examined in detail in Chapter 4 for the multigroup
diffusion approximation to transport theory.

For a critical system, i.e., when Cia = 0, and k = I, the corresponding eigen-
functions satisfy the same equation: for any other system, however. the two

5 eigenfunctions are different. This may be seen by writing the homogeneous
eigenvalue equation (1.47) as (cf. ~1.5a)

In the critical condition. with ({a = 0, this becomes identical in form with equa-
tion (1.49) with J..: = I. For other conditions, the two equations are clearly not
equivalent.

!t will be seen that in equation (1.55) the term Clafv appears as an additional
absorption cross section. and so it is sometimes referred to as '"time absorption."
In particular. it should be noted that for a subcritical system Clall' < 0; hence the
term a + Cia T may be zero or negative. Such behavior may be difficult to handle
in numerical computations. For this and other reasons, it is usually easier to
treat criticality be evaluating k rather than Cla, ,-

Another advantage of using k arises in calculating the neutron spectrum in a
system which is actually critical, but as computed de.Qarts somewhat from
criticality. In a k eigenvalue calculation, the number of neutrons per fission is
varied (by Ijk) to achieve criticality, This procedure has little effect on the
neutron spectrum, and the resulting spectrum would be useful for determining
power distributions, breeding ratios; etc., at least if 11 - kl « I, i.e., if the
computed system is not far from critical.

The calculation of «0, on the other hand, is equivalent to varying the con-
centration of a Ijr-absorber so as to achieve criticality, and this must affect ,the
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N TO METHODS OF SOLVING THE
N'f'TRANSPORT EQUATION

There is no possibility Otfobtaining exact solutions to the energy-dependent
neutron transport equatioJi;!f general reactor problems. A consideration of the

;...../, immense amount of det 'nthe dependence of cross sections on neutron.,. ---
energy for the fissile, e.g.;',Iliranium-235 and plutonium-239, and fertile, e.g ..
thorium-232 and uranium-'V8, nuclei shows immediately that such solutions

:.J""""'~~'"

are impossible. It is necessa.ry,'therefore, to adopt approximate methods for
solving the transport eq~ation.

The most important :of;,'1hese are the multigroup methods in which the
neutron energy interval of interest, usually from roughly 0.01 eV to 10 MeV, is
divided into a finite numI>efofintervals (or groups). It is then assumed that the
cross section in each group i~·'constant. e.g .. an average over energy, independent
of energy. although arbi,tr~i~~l';.dependent on position (lir composition). The
other generally useful techr.r9~~is the Monte Carlo method. For some problems,
the multigroup and Monte,~~r.lo procedures are combined.

Methods for solving then~ytron transport problem have also been based on
<'---'!"i'4~j'----

solution of the 'integral equatlRn Using either numerical or approximate kernels ~35

one of these will be described in Chapter 7. Some other formulations of the
transport problem haveal~(l~ been proposed. e.g., the method of invariant
imbedding.36 but they haven.~~ little application in the study of nuclear reactors.

The two main technique~T~[~rred to above for solving the neutron transport
equation are outlined in §§1.6d, 1.6e. Certain properties of nuclear cross sections
that influence the mode of solution will, however, be considered first.

1.6b Variations of CroSS Sections with Energy
-,: >;--:~~

- '-"'.~t:,:.

Many cross sections vary sO~pldly and widely with energy that it is hopeless
to try to represent the energY dependence with a r~sonable number, e.g., about
20, of neutron groups. This situation is most pronounced for heavy nuclei of
interest in the so-called resonance energy region. lying roughly between 105 eV
and I eV (see Fig. 8.1). The fertile nuclei, for example. have resonance peaks

. spaced some 20 eV apart. and the cross sections in the resonance region vary
by several orders of magnitude. The fissile nuclei have similar resonanr.e peaks
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with a spacing of about 2 eV. In order to obtain useful group cross sections in the
energy regions where the cross section versus energy curves have much fine
structure, it is necessary to perform a careful analysis of the neutron energy
spectrum through these regions. Such an analytical procedure is described in
Chapter 8.

In addition to the resonances exhibited by heavy elements, some light elements
show much detail in their cross sections at higher neutron energies that cannot
be explicitly included in the group cross sections. Examples are provided by
oxygen for neutron energies above 300 keY and by iron at energies in excess of
about 10 keY. Here again detailed calculations of neutron spectra may be
required before reasonably good group cross sections can be defined. It is now
becoming the common practice to .store much of the cross section fine structure
data on magnetic tapes for processing by digital computers in order to generate
approximate neutron spectra and group cross sections.37

In the thermal-neutron energy region. belO\\' approximately I eV. neutron
cross sections may become complicated because they reflect the dynamics of
energy transfer bet\veen the neutrons and nuclei which are bound in molecules
or crystals. This problem will be taken up in Chapter 7. Frequently. detailed
calculations must be made before adequate neutron energy spectra and group
cross sectiuns are obtai ned. It is. of course. not necessary to represent all thermal
neutrons in l)ne energy group. but the number of groups which include these
neutrons is usually kept small. e.g .. generally less than about 20 or so.

A~ \\ ill he seen in later chapters. the basic requirement for obtaining satis-
f~I\,:Il)r~ gruup Cfl)SS sections is a knowledge (or good estimate) of the neutron
energ~ spectrum \\ Ithin each group. If there is much detail in the cross sections.
knglh~ calculallons may be needed to obtain these spectra.

SI)fllC CI)mmenh may be made on the degree of anisotropy l)f neutron emission
e"peclall~ In cla~lic scattering. When a beam of mOlwenergetic neutrons is
~l'atlcred eb"llc:..t1I~. the angular distribution l)f the scattered neutrons may be
l.:\panJeJ In the fnrm

"a(J-Lo) = . aIP1(J-LO)'~
1=0

\\ herl.: 14" I~ the nlsine of the scattering angle in the center-of-mass system and
thl.: Pr'" arl.: the Legendre polynomials (see Appendix). For I = O. i.e .. s-wave
scattering.. P(,{/L) is unity. and the scattering is isotropic in the center-of-mass
,,~\tem. but fl)r I = I (r-\\a\e) or nwre. the scattering is anisotropic. It can be
sh,",n h) the ll'.1.: \)f quantum mechanics that for I > 0, the value of a, is sma}l
for neutrons of Jow energy; hence. for such neutrons the elastic scattering is
e,'Cntlall) isotr\)pic in the center-of-mass system. A simple classical argument,
gl\Cn bel\)". leads to results of the correct order of magnitude.



~HE NEUTRON TRANSPORT EQUATION

Suppose a neutron with velocity v approaches a nucleus with the impact
parameter b (Fig. 1.14). Then unless b is approximately equal to or less than the
sum of the nuclear radius and the range of nuclear forces, i.e.,

b:S (1.2A1/3 + 1.0) x 10-13 em,

where A is the mass number of the nucleus, there will be no appreciable elastic
scattering. If M is the mass of the nucleus and m is the mass of the neutron, the
angular momentum is given by

MmAngular momentum = M vb ~ mvb,+m
if M is large compared to m. Upon equating the angular momentum to hi, it
follows that the quantum number I is given by mz:bjh. Hence, a/ will be appreci-
able only for

I :s mv(1.2A
1
/
3

+nl..O) x 10-13
= (0.26A1/3 + 0.22) X 1O-3V E,

where E is the neutron energy in eV.
For uranium-238, for example, A1/3 is 6.2, and the condition for al to be not

negligible is that I ,:S 1.8 x 10-3,/ E. This would imply that I = 1 will begin to
make a significant (anisotropic) contribution to the angular distribution in elastic
scattering when E exceeds about 300 keY. For lighter nuclei, the I = 1 contri-
bution will commence at higher energies. These conclusions are in qualitative
agreement with experiment. Roughly speaking, the angular distribution of
elastically scattered neutrons is isotropic in the center-or-mass system for
neutron energies below about 100 keY; at energies above 1 MeV, the scattering
is markedly anisotropic.

It should be noted. however, that scattering which is isotropic in the center-
of-mass system will become anisotropic in the laboratory system; in particular,
it will be peaked in the forward direction. The effect is not significant for heavy
nuclei. but for light nuclei it is very important. It may be concluded, therefore,

I
Ib
I

6
NUCLEUS



j !
.1

1.,. ~..'.•.•....
• j

:]

I"

that in the laboratory system, anisotropy will be most pronounced in the scatter-
ing of fast neutrons from nuclei of all mass numbers and of neutrons of all
energies from light nuclei. Thus, anisotropic elastic scattering is important in
fast reactors and in thermal water-moderated systems.

When thermal neutrons are scattered from nuclei bound in crystals, there may
be pronounced anisotropic scattering. An extreme example is provided by
coherent scattering at sharply defined Bragg angles. Some discussion of this
matter is given in Chapter 7.

Neutrons emitted in fission are usually assumed, to a good approximation, to
be isotropic in the laboratory system. In inelastic scattering and (n, 211) reactions,
the neutrons are often fairly isotropic, but angular distributions are becoming
a\ailable from laboratory studies for use in calculations.

1.6d Multigroup Methods

It might appear. at first thought. that a systematic multigroup solution to the
neutron transport equation could be obtained by integrating this equation over a
finite energy range. say Eg ~ £ ~ Eg-1• in each group. But this leads to an
immediate complication. Suppose that for a steady-state prcblem, i.e., ('$/h = 0,
the neutron angular flux in the group g may be defined by

{
~. ,

$g(r. Q) = j'£9-1 $(r, Q, £) dE.
Eg

Then the at!> term on the left side of the transport equation (1. 14) becomes
ag(r. Q)(I>a(r. Q). where

J a(r, £)$(r, Q, E) dE
ag(r. Q) = $ Q .

g(r, )

The group cross section. ag(r. Q) has thus acquired a dependence on Q. In
general. this is a substantial complication but it can be avoided by first assuming
a form for the angular dependence of the neutron flux and then integrating over
energy.

The usual first step in a multigroup approximation. therefore, is to represent
the angular dependence of the. neutron flux by an expansion, most commonly in
spherical harmonics. (This expansion is similar to that used in §1.6c to express
the angular distribution of scattered neutrons.) If there is an axis of symmetry
for the angular distribution of the flux, as may occur in plane or spherical
geometry, the expansion reduces to a sum of Legendre polynomials, Pn(fL),
where fL is the direction cosine. Since the spherical harmonics (or Legendre
polynomials) form a complete set (see Appendix), the expansion involves no
approximation. In practice, however, to make calculations possible, it is neces-
sary to terminate the series after a finite number of terms. It is in this manner
that an approximation is introduced. In general, if the series is truncated after
N + ) terms. the result is referred to as a P", approximation.



The next step in the solution of the neutron transport equation is to integrate
over a finite energy range, i.e., an energy group, thereby defining the group
cross sections and arriving at the multigroup PN equations. When th~ angular
distribution of the neutron flux is represented adequately by the first two
Legendre polynomials, Po(p.) and PI(p.), the multigroup PI equations are obtained.
It will be seen in Chapter 4 that when certain assumptions are made about the
energy dependence of the neutron flux, these are equivalent to multigroup
diffusion theory or to multigroup age-diffusion theory. An alternative (varia-
tional) method for deriving multigroup PI equations will be discussed in
Chapter 6.

The multigroup PI equations and the related diffusion equations are the most
widely used in reactor problems. In some cases, P3 approximations and those of
higher order have proved valuable. The PN approximations with N even have
usually been thought to be less aCCurate than those with N odd and so they have
been seldom employed (see, however, Ref. 38). Other angular expansions are
preferable in certain instances; for plane geometry, in particular, separate
Legendre expansions for 0 ~ p..~ 1 and - I ~ p. ~ 0 are superior to a single
expansion. These matters are treated in Chapters 3 and 5.

In another class of multigroup methods, known as the discrete ordinates or
discrete Ss (or simply Ss) methods, the neutron transport equation is solved in a
discrete set of directions only. Angular integrals are then approximated by sums
over discrete directions and angular derivatives by differences. These methods are
described in detail in Chapter 5 where it will be seen that for plane geometry
some of the S., approximations are equivalent to Ps methods. The virtue of the
S" method is that accuracy can be increased simply by increasi;g the number or
directions without otherwise changTng the~m·ethoa-OfsoIljflori·"-lfli·as-Deen
frequently used for problems where the Pl approximation is not adequate.

The multigroup equations. both P", and S"" are differential equations and they
are converted into a system of algebraic equations for machine computation by
introducing a discrete space mesh. approximating derivatives by differences, and
so on. In this form the multigroup methods are the most useful for determining
0\ erall neutron transport. e.g .. criticality. power distribution, reaction rate, etc.,
for energy-dependent problems in fairly simple geometry. Both in principle and
in practice. with fast digital computers, the multigroup equations are capable of
yielding results of a higher degree of precision than is really justified by the
uncertainties in the cross sections. The accuracy is improved by normalizing the
calculations so as to obtain agreement with accurate critical experiments in
simple geometries (see Chapter 5).

For simple geometries the main uncertainties are concerned with the values of
the group constants (group cross sections) and with the degree of detail (or
accuracy) required in the neutron angular expansion, in the energy spacing, i.e.,
number of groups, and in the space mesh. The group constants are weighted
averages of the energy-dependent cross sections which appear in the complete



form of the neutron transport equation. The choice of appropriate weighting
functions is a central problem. The important energy region where resonances
are most pronounced is treated in Chapter 8, and the problem of determining
the spectra of neutrons as they are coming into thermal equilibrium with the
moderator is discussed in Chapter 7.

When the geometry of the system is more complicated, as a result of (a) fine
structure as in a heterogeneous.Jattice, or (b) gross departure from a geometry
which can be given in terms of one or two coordinates, the general multi group
equations cannot be used directly.

In treating fine structure, the customary procedure is first to make a calcula-
tion on a heterogeneous cell, i.e., a fundamental repeating unit of the lattice.
The results are then used to homogenize the cell, so as to give the same neutron
economy as in the heterogeneous system, for use in calculating the over-all
neutron transport and economy by a multigrotip (PI or other) method.

For the cell calculation, the neutron. transport equation in a PN or SN

approximation, with appropriate boundary conditions, may be used. Alter-
natively, because of the small sizes of most cells, in terms of the neutron mean
free path, together with strong absorption in them, collision probabilities are
frequently used in cell calculations. These probabilities are considered in
Chapters 2 and 8. Integral experiments, especially on lattice multiplication are,
of course, useful for normalizing and guiding calculations.

For the over-all reactor, machine calculations are now easily made for one-
dimensional geometries. such as the sphere, infinite (in two dimensions) slab,
and infinite cylinder. For two space dimensions, multigroup PI or low-order
S., calculations are performed as a matter of routine. The available space and
angle mesh may. however. not be fine enough to give an adequate description
of the situati~)n. Consequently. for complicated two-dimensional or three-
dimensional systems. other treatments must be used. The variational method
provides one \Ioayof approaching the problem in which an attempt may be made
to synthesize a t•.•.o-dimensional flux, for example, by a product of two one-
dimensional tlU\CS (see Chapter 6). If all other methods fail, a Monte Carlo
calculation may he attempted.

The Monte Carlo method. which has proved to be useful in some areas of
reactor physics. is a numerical procedure based on statistical (or probability)
theol)'. In neutron transport calculations, the applicability of the Monte Carlo
techniques arises from the fact that, as seen earlier, the (macroscopic) cross
~tion ma) be interpreted as a probability of interaction per unit distance
tra\e1ed by a neutron. Thus, in the Monte Carlo method, a set of neutron
histories is generated by following individual neutrons through sucCessive
colli~ion~. The locations of actual collisions and the results of such collisions,



e.g., direction and energy of the emerging neutron (or neutrons), are determined
from the range of possibilities by sets of random numbers. The Monte Carlo
technique has proved useful in special cases, such as complex geometries where
other methods encounter difficulties and in some cell calculations. Moreover,
when there is considerable detail in the variation of the neutron cross section
with energy, the Monte Carlo method eliminates the necessity for making

JJsubsidia!)' calculations, e.g., of resonance flux. In fact, the method is useful for
determining the group constants needed in the multigroup approximations.

The random, numbers required for a Monte Carlo calculation are usually
generated by the computer. Thus, the computer selects numbers gh g2, g3, ... ,
at random for the interval 0 ~ gt ~ 1. This means that the proba~ility
pal) dgl for gl to lie between gl and gj + dgt is dgt if 0 ~ gl ~ I, i.e., p(gj) = I.
To see how the random numbers are employed to develop neutron histories, a
simple example will be considered in which neutrons are started from a
monoenergetic, isotropic, point source. '

The first step is to select a neutron direction and for this the first two random
numbers, gl and g2, are used. An azimuthal angle may be chosen 'asepl = 27Tg1
and the cosine of a polar angle as fL = 2g2 - 1; the reason is that the source is
isotropic and all initial values of ep and fL are equally probable in the intervals
o ~ ep ~ 27T and -I ~fL ~ I,respectively.

With the neutron direction chosen, the next step is to find where the first
collision occurs. Let the cross section in this direction and at a distance s from
the source be denoted by u(s). Then the probability pes) ds that a neutron will
undergo a collision between sand s + ds is '

pes) ds = u(s) exp [ - I: u(s') ds"] ds.

In g3 = - I: u{s') ds'.

From this relation it follows that

the quantity s is thereby selected from the correct distribution pes). The minus
sign in equation (1.56) is required because s decreases as '3 increases and it
does not affect the probability of s lying in any particular range.

Once the location of the first collision has been determined, further random
numbers are used to nnd the outcome of the first collision, location of the second

(
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collision, and so on. The procedure is continued until the neutron history is
terminated, for example, by leakage from the system or by absorption.

In solving the neutron transport equation by Monte Carlo methods, there are
uncertainties which are not due to explicit approximations to the flux, such as
arise in multigroup methods, but to the limitation in the (finite) number of
neutrons examined. Such errors are more or less random and procedures have
been developed for reducing the uncertainty associated with a given amount of
numerical work. These are variance reducing techniques; they modify the random
walk problem so as to leave the desired expectation value unchanged but reduce
the variance.

Some of the techniques are indicated by common sense whereas others require
further mathematical analysis. Two examples in the former category will be
indicated. First, it may happen by chance that, in following a certain neutron
history during moderation, the neutron is absorbed in its first collision. Instead
of terminating the history, it is usually fruitful to continue but to give the neutron
less weight, proportional to the probability of scattering (and no absorption)
at the collision point. As a result, the history of the neutron is not terminated
at the first collision, but the generation of information can be continued until
the neutron history is terminated, usually when the weighting becomes negligible
or the neutron escapes from the system.

Another example based on common sense is that arising in connection with
two similar but not identical problems. Since the errors in Monte Carlo tech-
niques are random in character, the solutions to these problems may be quite
different. In comparing such solutions, the differ-ence between them may be
made more accurate by using the same neutron histories in the two problems;
the random errors are then approximately the same in both cases.

Suppose, for example, it is required to compute the resonance escape prob-
ability of neutrons moderated in a lattice in order to find the variation with
temperature arising from Doppler broadening. If two independent Monte Carlo
calculations were made at two temperatures, the random errors might be so
large as to mask any real difference in the solutions. If, however, the same
neutron histories are used in both calculations, the difference might have
significance.

More refined techniques for variance reduction could be used in a situation
such as the following. Suppose it is desired to determine the contribution of
source neutrons to a detector reading. It is apparent that some of these neutrons,
e.g., those emitted in directions toward the detector and those of high energy,
would be more likely than others to actuate the detector. If so, it would seem to
be most efficient in the Monte Carlo calculation to concentrate the computation
on these important neutrons. In Chapter 6, this" importance" is given a mathe-
matical significance in terms of the solution to an adjoint transport problem. In
the technique of importance sampling, neutron histories are started from the
source distribution in proportion to their importance. Furthermore, at each



collision the most important neutrons can be followed preferentially with due
precautions being taken not to bias the results.

Most of what can be said about Monte Carlo methods is concerned with a
detailed discussion of techniques that lies outside the scope of this book. A
number of references on the subject are available to the interested reader.39

There is no doubt that Monte Carlo methods are capable of solving a variety of
problems for which multigroup methods are inaccurate, and some of the results
obtained will be mentioned in due course. Nevertheless, the Monte Carlo
technique has not been widely used for the solution of general criticality
problems because the multigroup methods are simpler to apply and are sufficiently
accurate except in the special situations referred to earlier. Monte Carlo methods
have been utilized extensively in reactor shielding calculations, however, to
determine the leakage of neutrons (and photons) through a shield.

General coordinate systems and the corresponding expreSSIOns for Q. V<1>
(or Q. VN) and for J dO. are given here.
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Rectangular Coordinates

Position vector r: x, y, z,
Neutron direction Q: fL, x,

where fL = Q. z and X is the angle between the planes formed by the Q and z
vectors and by the z and x vectors; z and x are unit vectors in the z and x
directions, respectively (Fig. 1.15).

Position vector r: r, rp, z,
Neutron direction Q: fL, X,

v·,here rp is the polar angle; fL = Q. z and X is the angle betwec:.n the planes
formed by the Q and z vectors and by the :i and r vectors (Fig. 1.16).

Position vector r: r, e, rp,
Neutron direction Q; fL, w,

where e is the polar angle and rp the azimuthalangle: fL = Q·r and w is the angle
between the planes formed by the Q and r vectors and by the rand :i vectors
(Fig. 1.17).
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FIG. 1.17 SPHERICAL COORDINATE SYSTEM.

The values of Q. V<})and ofJ dQ for various geometries are collected in Table
1.2. As mentioned in §1.3a, expressions for Q. VN can be obtained simply by
replacing <}) by N.

Other representations are sometimes used for the direction coordinates and
care must be taken to identify each author's particular choice: see, for example,
Ref. 40 for an alternative choice of directions in cylindrical coordinates.

The following expressions give Q. V~) in CO/lserration form for general
cylindrical and spherical coordinates:

Cylindrical coordinates

viI - 1-L2 cos X 2(r<1» vII - 1-L2 sin X 2<1> 1 c(<t>VI - ,.,.2 sin X) 8<1>------r.- + ------ - - r + ,.,.--.
r cr r ixp r eX OZ

Spherical coordinates

1-L 0(r2<1» VI - ,.,.2 sin w c<1> VI - p.2 cos W 2(<1>sin 8)
r2 or •.. r sin 8 cep + r sin 8 c8

I 0[(1 - 1'2)<1>] cot 8 c(<1>,y1 - fL2 sin w)
+- r -- '~wr 01' r v



Plane: <1>(x; j.L)

(;<1>
j.L ex

Rectangular: <1>(x, y, z; j.L, x)

, (-(1> , 2<1»
". I - j.L2 (cas X -,- + SIO X -,-cx (y

2<1>+ j.L-,-
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r 1 dj.L r 2" dx
• - 1 • 0

Spherical (spherical symmetry): <1>(r; j.L)
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The ad\ antage of the conservation form can be seen by considering the
expres~ilHl fllr n,V<ll in spherical coordinates. Integration over all directions

'1 ':.2"l 'n. i.e .. .1_ 1 dtl .10 dw, reml)\ es the last two terms, whereas the first three terms
repre\ent the components of V· J. If these three terms are now integrated over
\olume ("I' = ,.~sin 0 dO tlg;), bounded by surfaces of constant r, cp, and 8. the
first term I~ seen to be the outward current across the two surfaces of constant r.
Similarly. the second and third terms are the currents across surfaces of constant
fP and O. respectively.

1. ConsuJer a collimated beam of neutrons of intensity 1 neutron/cm2-sec in the
: direction; !lUPposc a sphere of I cm radius is placed in this neutron beam.
Determlnc thc radial and other components of the incident current. as functions
of p()<)ltlOnon ~he spherical surface, in a polar coordinate system with its origin



at the center of the sphere. What is the angular distribution of the incident
neutrons, averaged over the surface of the sphere?

~ 2. A very thin plane source (thickness ~x) of monoenergetic neutrons emits
1/ ~x neutrons/cm2-sec isotropically per unit volume. What is the angular
distribution of the current (and flux) at the surface? Absorption in the source may
be ignored.

C' 3. A purely absorbing half-plane medium in which a = 1, contains a source
emitting I neutron/cm3-sec. Determine the intensity and angular distribution of
the flux and the current at the surface.

4. Consider a combination of two point sources present either (a) in a vacuum,
or (b) in a purely absorbing medium. Compute the magnitude of the current
and flux throughout space and sketch the contours of equal flux and equal
current.

5. Make a detailed derivation of the transport equation by considering the rate of
change of the neutron popuJation in a volume element fixed in space, i.e.,
along the lines indicated on page 15.

6. Consider a bare slab of thickness d and apply one-speed diffusion theory to find
(l and k eigenvalues as given by this model of neutron transport. Use the
diffusion equation in the form

I 21> (121)
--. =D-,,+[(I·-!)a,-a.,]1>
l' c't ex-

and boundary conditions of zero flux on the slab surfaces. (Hint: each mode
cos n77x/d corresponds to one eigenvalue of eal.:h kind.) Dra\\ a sketch showing
how the eigenvalues are related to each other. For I.:omparison of the results
with those of transport theory, see Ref. 41.

7. It is required to describe the transport l)f neutron" In a reactor in one region of
\\hich coolant i" moving \~ith high velol.:lt~. \', in the = direction. Ho\\ will the
transport equation be changed in this region: If. in the region under considera-
tion. the cross sections for cotlisions \\ ith nuclei at rest arc independent of the
neutron energy. \\ hat \\ould be the angular dependcnce of (J in the transport
equation for the moving nuclei'? (It ma) he fl)und hclpful 111 thIS connection 10

read *7.3c.) Consider qualitatively h(.1\~ the angular distribution of the scattered
neutrons \\ ould be affectcd if the scattering from nuclei at rest is isotropic in the
la bora tory system. (Aftcr rc\ icwing this problcm. thc intcrested reader may wish
to consu It Ref. 4~ I

8. Derl\e the integral equation (1,37) fl)r plane geometry and Isotropic scattering
by ~tarting from the transport equation In plane geometry \\llh free-surface
boundary conditions. (H int: start by mulllplYll1g the transport equation by
e' ~ and then integrate from a boundary to x,) Sho\\ also ho\\ an incident flux on
one surface can he handled 1ft this dem.'atlon.

9. Comider a surface source at r, of Intensity Q,(r .• n. E. t). By regarding this
source a" the limit of a thm volume source and u"lng equation (1.22). derive the
dlscontmulty in the neutron angular den\lt). All crms ~ction') are to be regarded
as finite. Give an alternative derivation by consldenng neutron conservation in
a small pillbo,. centered at r. and ha\ing fa,,"CSparallel to the surface.

10. Suppose there is a purely absorbing region of finite thickne\'\. It is desired to
represent this region as an a~orblng surface acrlhS ~ hi~h the neutron angular



density is discontinuous. Derive the discontinuity which is required in the
angular density.

11. Start -with the transport equation for spherical geometry not in conservation
form, i.e., with Q. VN as in equation (1.32), and verify equation (1.34). Then find
the particular form of the conservation relation, equation (1.19), for that
geometry.

12. Derive the integral equation (1.27) using neutron conservation arguments along
the lines suggested on page 26.

C/ 13. Derive the form of Q. VN in cylindrical geometry as it appears in Table 1.2,
assuming that N is independent of rp.

14. An instantaneous point source in an infinite medium of density Po gives a known
neutron angular flux, <1>o(r, fL, E, t). Show how the angular flux from the same
source in a medium of different density p could be found by scaling <1>0. (This
problem arises in considering the explosion of nuclear weapons at various
altitudes in the atmosphere.) Indicate some circumstances in which the scaling
might be invalidated for this application.

15. For students having a knowledge of computer programming: Write a Monte
Carlo program to compute the escape probability for neutrons born untformly
and isotropically in a medium with simple geometry, e.g., a slab or a sphere.
The cross section may be taken to be independent of energy and the scattering
to be isotropic. (Some results are given in Table 2.8.)

16. Consider the space-independent neutron transport equation In a source-free,
infinite medium, i.e.,

a;: + O['N = II o'jv'N'do.'dE',

and eigenvalues (1 for aN/or = aN are sought. It is to be shown that all real
negative values of (L with magnitude greater than the smallest value of at· belong
to the continuous spectrum. Consider a value of a for which -Ial + {ovh = Eo =
O. Construct a strongly peaked function, N 1:;., of width ~ in energy about Eo and
in angle, 11-, such that the integral on the right Side of the eigenvalue equation is
proportional to ~ but If N2 dO. dE is independent of ~. By taking the limit as
U - 0 it is seen that Nt,. plays the role of a highly singular eigenfunction and
hence the corresponding value of ex belongs to the continuous spectrum. For
further examples and discussion of such functions, see Ref. 43.

I. Schiff. L. I.. "Quantum Mechanics." McGraw-Hili Book Co .. Inc .• 1949. pp. 13.54.
2. Osborn. R. K .. and S. Yip. "The Foundations of Neutron Transport Theory," Gordon

and Breach. 1966.
3. Weinberg. A. M .. and E. P. Wigner. "The Physical Theory of Neutron Chain Reactors:'

University of Chicago Press. 1958. p. 281.
4. Lamarsh. J. R .• "Introduction to Nuclear Reactor Theory," Addison-Wesley Publish·

ing Co.. Inc., 1966. Section 6-1.
5. Lamarsh, J. R .• Ref. 4. Section 2-3.
6. Glasstone, S .• and M. C. Edlund, "Elements of Nuclear Reactor Theory," D. Van

Nostrand Co., Inc., 1952, §14.6.



Davison, B., UNeutron Transport Theory," Oxford University Press, 1957, Section 2.3.
Case, K. M., and P. F. Zweifel, ULinear Transport Theory," Addison-Wesley Publish-
ing Co., Inc., 1967, Appendix D.
Courant, R., and D. Hilbert, UMethods of Mathematical Physics," Interscience
Publishers, Inc., 1953, Vol. II, p. 69.
Davison, B., Ref. 7, Chap. XVII; Benoist, P., Nuc/. Sci. Eng., 30, 85 (1967).
Case, K. M., and P. F. Zweifel, Ref. 8, Appendix D; G. M. Wing, UIntroduction to
Transport Theory," Wiley and Sons, Inc., 1962, Chap. 8.
Bell, G. I., and W. B. Goad, Nuc/. Sci. Eng., 23,380 (1965); Yu. N. Kazachenkov, and
V. V. Orlov, Atomn. Energiia, (transl.), 18, 222 (1965).
Bell, G. I., Nuc/. Sci. Eng., 21, 390 (1965); D. R. Harris, in UNaval Reactor Physics
Handbook," Vol. I,A. Radkowsky, ed., U.S. AEC, 1964, Section 5.5.
Bell, G. I., Ref. 13; Proe. Symp. Appl. Math., "Transport Theory," Am. Math. Soc.,
1969. Vol. I, p. 181.
Case, K. M., and P. F. Zweifel, Ref. 8, Appendix D; J. T. Marti. Nukleonik, 8, 159
(1966).
Churchill, R. V.• "Operational Mathematics," McGraw-Hill Book Co., Inc., 2nd ed.,
1958. Sec.tion 3.
Wing, G. M .. Ref. II, Chap. 8. A thorough treatment of the mathematical background
is given in E. Hille and K. S. Phillips, ""Functional Analysis and Semi-Groups," Am.
Math. Soc. Colloq. Publ.. 1957. .
Churchill. R. V.. Ref. 16, Sections 62-64.
Churchill. R. V., Ref. 16. Section 67.
Wing, G. M., Ref. II. Chaps. 8 and I I.
Lehner, J., and G. M. Wing. Comm. Pure. Appl. Math., VIII, 217 (1955); Duke Math.J.,
23. 125 (1956).
Pimbley. G. H., J. Math. Meclt., 8, 837 (1959).
Davison. B.. Ref. 7, Appendix A.
Van Norton. R .. Co 11/111. Pure Appl. Math., XV,·149 (1962). The same conclusion was
reached for arbitrary bounded geometry by S. Ukai, J. Nuel. Sei. Tech., 3, 263 (1966).
Jorgens. K., CVII/II/. Pure Appl. Math .• XI. 219 (1958); 1. Vida\" J. Afarn. AI/al. Appl.,
22, 1~4 (\968).
Kuscer. I.. in .. Neutron Thermalization and Reactor Spectra:' IAEA. 1968. Vol. I,
p. 3: M. Borysiewicz. and J. Mika. ibid .. Vol. I. p. 451; S. Albertoni. and B. Montagnini,
J .. \farh. Anal. Applic .. 13. 19 (1966).
Nclkin. Moo Physica. 29.261 (1963); see also citations in Ref. 26.
Corngold. N .. PWC".SYI//p. Appl .. \tarlt .• "Transport Theory:' Am. Math. Soc., 1969,
\' lli. I. p. 79.
Ca~c. K. M .. and P. F. Z"eifel. Ref. 8. Appendix D: G. M. Wing. Ref. II. Chap. 8.
Cllmcrgcncc ha ....been pro\cd for a multiplying subcritical medium in slab geometry by
P. Nchon ... An In\c tigation of Criticatlty for Encrg) Dependent Transport in Slab
Gcomctr):' Ph.D. Di ertation. Uni\'. of Ne" Mexiw. 1969.

30. G. M. Wing. Ref. II. Chap. 8: R. Van Norton. Ref. 24.
31. Da\t ....t)O. B.. Ref. 7. Appendix A.
32. \'Iadimircl\. V. 5.. TralH. J'. A. StcklOl' Marh. !tnt .. 61 (1961). translated in Atomic

Energy of Canada Repl'rt AECL-1661 (1963).
3J. Case. K. M .. and P. F. Z"eifcl. Ref. 8. Appendix D.
>4. The ~roblem is discussed in §§4.4c. 4.4d. A basic reference is R. S. Varga. Proc. Symp.

Appl .. \Iath .• XI. Am. Math. Soc., 1961. p. 164.
35. Honeck. H. C. Nile/. Sci. £"g .. 8, 193 (1960).
36. Wing. G. M .. R~f. II. Chap. 5.
37. Parker. K .. D. T. Goldman. and L. Wallin in .. Nuclear Data for Nuclear Reactors,"

IAEA. 1967. Vol. II. p_ 293.
38. Rum)·ant~\. G. Ya .. and V. S. Shukpin. Atomn. £nngiia (trans!.). 22, 395 (1967);

J. D. Callen and J. O. Mingle, J. Nllc/. £nt'rgy. 22. 173 (1968).
39. Gocrtzel. Goo and M. H. Kalos .•. Monte Carlo Methods in Transport Problems," in

Prog. Nucl. Energy. Series I, Vol. II. Pergamon Press. 1958, p. 315; E. D. Cashwell and

i

I
I
I

i
I v,
I
I



C. J. Everett, "The Monte Carlo Method for Random Walk Problems," Pergamon
Press, 1959; M. H. Kalos, F. R. Nakache, and J. Celnik, Chap. 5 in ••Computing
Methods in Reactor Physics," H. Greenspan, C. N. Kelber, and D. Okrent, eds.,
Gordon and Breach, 1968. The best reference is J. Spanier and E. M. Gelbard, ••Monte
Carlo Principles and Neutron Transport Problems," Addison-Wesley Publishing Co.,
Inc., 1969.

40. Carlson. ~. G .• and K. D. Lathrop, Section 3.1.1 in ••Computing Methods in Reactor
Physics," Ref. 39.

41. Wing, G. M., Ref. 11, Chap. 8; Proc. Symp. Appl. Math., Xl, Am. Math. Soc., 1961,
p. 140, see figure on p. 146.

42. Perkins, S. T., Nucl. Sci. Eng., 39, 25 (1970).
43. Wing, G. M., Ref. 11, Chap. 8; I. Kuscer, Ref. 26.



2. ONE-SPEED
TRANSPORT THEORY

2.1a Introduction

Although the primary concern in this book is with the energy-dependent neutron
transport equation. there are several different situations in which solutions of the
simpler one-speed problems are very useful. Consider. first. the energy-dependent
transport equation (1.14) for some particular neutron energy. E. If the integral
on the right side is regarded merely as a known source of neutrons, as was done
in connection with the development of the integral equation in §1.2b, then the
transport problem for neutrons of energy E is simply a one-speed problem in a
purely absorbing medium; this is so because in every collision neutrons of energy
E are removed. From this point of view. therefore. it is useful to have accurate
solutions of the transport equation in purely absorbing media, and some are
developed at the end of this chapter (§2.8).

Of greater importance is the fact that in this text emphasis is placed on the
solution of the energy-dependent transport equation by multigroup methods. It
will be seen in Chapters 4 and 5 that in these methods the energy-dependent
equation is replaced by a set of coupled one-sp«d equations which are then
solved by approximate methods. In assessing the accuracy of these approximate
techniques it is desirable to have available for comparison accurate solutions of
the one-speed transport problem. Moreover. from a knowledge of the general
features of such solutions, it is possible to develop insight and intuition con-
cerning the solutions of energy-dependent equations.

Finally, there are situations in which the energy-dependent cross sections may
be treated as being approximately independent of energy; this is often possible,

';I. ~ '. "••

;j".

-



for example, with thermal neutrons. In these circumstances, an equivalent one-
speed problem may be defined by integrating over neutron energies; the solution
may then give information about a problem of physical interest. It is this
approach which will be taken in deriving a one-speed transport equation from
the energy-dependent equation. It will be shown in the succeeding chapters,
however, that the resulting equation is identical with those arising in multigroup
theory.

Even in one-speed theory, only a few simple problems have been solved in
closed form. The simplest situation which reveals the essential features of the
general solutions is that of isotropic scattering in a uniform infinite medium
containing a plane neutron source. Three methods of solving the corresponding
one-speed transport equation are described in this chapter. The cha~ges resulting
from the presence of plane boundaries and from anisotropic scattering will then
be examined. Finally, some reciprocity relations and collision probabilities which
are useful in various reactor problems are developed.

It should be noted that the time-independent (steady-state) form of the
neutron transport equation is emphasized here and in the next few chapters.
Time-dependent problems are taken up in Chapters 9 and 10.

2.1b Derivation of the One-Speed Transport Equation

The general neutron transport equation for the neutron angular flux in the
time-independent case, i.e., when oC!>jotis zero, is given by equation (1.14) as
Q. VC!>(r, Q, E) + a(r, E)C!>(r,Q, £}

= II a(r, E')f(r; Q', E' -+ Q, E)C!>(r, Q', £') dQ' dE' + Q(r, Q, E). (2.1)

It is now postulated that all neutron cross sections are independent of energy. As
will be seen shortly, this leads to a form of the transport equation in which
neutron energies do not appear, and the postulate is in a sense equivalent to
saying that the neutrons all have the same energies (or speeds). The term one-
speed theory is thus commonly employed, although it is also referred to as the
constant cross-section approximation.l

If a is taken to be a function of r only and not of £, it follows that

a(r, E) = a(r, £') = a(r).

Furthermore, the angular distribution of neutrons emerging from a collision,
I.e.,

f fer; n',£' -+ n, E) dE,

must be independent of energy, £'; hence, this quantity may be written as

f fer; n', E' -+ n, E) dE = c(r)f(r; n' -+ n)



I fer; Q' -+ Q) dQ = 1,

and then e(r) is the mean number of neutrons emerging from a collision at r,
as given by equation (1.8).

If the foregoing expressions, based on the constant cross-section postulate, are
inserted into equation (2.1), it is found upon integration over energy that

Q. V <1>(r,Q) + a(r)<1>(r, Q) = a(r)e(r) f fer; Q' -+ Q)<1>(r,Q') dQ' + Q(r, Q),

(2.3)
where the quantities <1>(r,Q), <1>(r,Q'), and Q(r, Q) are defined by

f <1>(r,Q, E) dE = <1>(r,Q),

f <1>(r,Q', E') dE' , <1>(r,Q'),

f Q(r, Q, E) dE == Q(r, Q).

Equation (2.3). in which neutron energy and velocity do not appear, is the general
form of the one-speed. time-independent transport equation. It will be seen in
subsequent chapters that multigroup theory involves essentially a coupled set of
such equations.

It should be noted that equivalence between the one-speed transport equation
and the constant cross-section formulation, integrated over energy, does not
hold for general time-dependent problems. The reason is that the neutron
speed appears in the term (I/l") c<1>jh in equation (1.14), the time-dependent
transport equation for the angular flux.

2.1c Infinite Plane Geometry

In infinite plane geometry. the quantities <1>. a.of, and Q depend on one coordinate
only. For this geometry. it was shown in §t .3a that

c'N
Q. V N = JL -, - orc=

c<I>
Q. V <1> = p.. -, ,
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where z is a unit vector in ~e z direction. Hence, equation (2.3) may be written as

fL a<1>~z,fL) + a(z)<1>(z, fL) = a(z)c f f(Q' -+ Q)<1>(z, fL') dQ' + Q(z, fL), (2.4)
dz

where c and fhave been taken to be independent of position.
It will be seen in the course of this chapter that some important properties of

a system are functions only of the neutron mean free path; hence, it is con-
venient to express distances in terms of the collision mean free path, i.e., let

x = f: a(z') dz'

a a
- = a(z)-,
az ax

Furthermore, suppose that neutrons emerging from collisions have an isotropic
distribution; then, in view of the normalization condition in equation (2.2), it
follows that

f(Q' -+ Q) = _1 .
417

Hence, if dQ' is replaced by 217 dfL' (§ 1.3a) and equation (1.4) is divided through
by a(.:), the result may be written as

«1>(x, fL) C Ji "
fL '. . + <1>(.\", fL) = -2 <1>(x,fL ) dfL + Q(x, fL),

(~ -1

This is a common form of the time-independent one-speed neutron transport
equation in planar geometry.

For an anisotropic unit plane source located at x = Xo emitting one neutron
per second per unit area in a cone having fL = fLo, the source term in equation
(2.5) may be represented, using Dirac delta functions (see Appendix), by

Q(' ) = 8(x - Xo)8(fL - fLo).
~,fL 27T

Q( ) _ 8ex - xo)
x, fL - 417 •



Solutions will be sought for equation (2.5) first in an infinite medium subject
to the condition that the neutron flux vanish as x -* +00 and -00. This problem
has physical significance only if c < 1, i.e., in a medium in which less than one
neutron emerges, on the average, in each collision. If c > 1, the source neutrons
would multiply without limit and no real and positive (physical) solutions of
equation (2.5) can exist. For a finite medium, real solutions are possible for c > 1,
although they are difficult to obtain. Nevertheless, it will be seen that solutions
of the transport equation in an infinite medium can be used to derive conditions
for criticality in a finite medium, when c > 1.

2.1 d Use of Green's Function

In the present context, Green's function (§l.l f) is a solution of equation (2.5)
with a simple, i.e., plane, source. For the one-speed problem, it may be repre-
sented by G(xo, fLo -* x, fL) and it is the neutron angular flux at x, fL arising from
a unit source at xo emitting one neutron per second (per unit area for a plane
source) in the direction fLo. For an infinite medium, the Green's function so
defined, abbreviated to G, is a solution of the equation

fG G - ~ J1 G( -* ')d' _o(_x_-_x_o)_O(_fL_-_fL_o). (2.8)fL, + - 2 Xo, fLo x, fL fL + 2ox -1 17

Thus, except when x = xo and fL = fLo, the function G is a solution of the
homogeneous equation

G -* 0 as x -* ± 00.

At x = Xo and fL = fLo. which corresponds to the source, a discontinuity (or
jump) condition on G may be derived by integrating equation (2.8) over a small
interval 2£ in x about Xo. namely, xo - £ ~ X ~ Xo + E. The result, for an
anisotropic planar source. represented by equation (2.6), is

S(fL - fLo)
G(xo. fLo -,.. Xo + E. fL) - G(xo, fLo ~ Xo - E, fL) = 2 . (2.10)

1TfL

There is thus a discontinuity (or jump) in G as a function of x at x = Xo when
po = p.o. By combining this discontinuity condition with solutions of the homo-
geneous equation (2.9). it is possible to evaluate the infinite medium- Green's
function for the planar source, as will be shown later. Once this Green's function
is known then, in accordance with equation (1.21), the solution to any infinite
medium problem with a general source of the form Q(x, fL)/217 can be expressed
as



Furthermore, the infinite medium Green's function can be used to describe
solutions to problems involving slabs of finite thickness, i.e., where boundary
conditions are imposed at finite values of x. The reason, as will be seen in
§2.5a, is that the solution to the transport equation within any finite homogeneous
region is the same as it wbttld be if this region were extended to infinity and a
suitable source (or sources) were placed at the boundary of the finite region.

2.2 SOLUTION OF THE ONE-SPEED TRANSPORT EQUATION
BY THE SEPARATION OF VARIABLES

2.2a Introduction

The method of solution to be described in this section, although recognized
by others,2 was developed most fully by K. M. Case;3 it is consequently fre-
quently known as Case's method. It is analogous in some respects to the
method of the separation of variables commonly used for the solution of partial
differential equations. In both instances a complete set of elementary solutions
is sought, and then a suitable combination of solutions is found that will satisfy
the boundary conditions or the conditions at the source. The only difference is
that most of the elementary solutions of the transport equation are singular.
Nevertheless. they have meaning when they appear in integrals.

The approach to be used here is to find elementary solutIOns of the one-speed
transport equation in a source-free infinite medium. An attempt will then be
made to find a combination of elementary solutions that satisfies the source
(or jump) condition for the plane Green's function. It will prove relatively
straightforward to obtain such a combination of solutions for the infinite
medium. but for more complicated problems, involving bounded regions. the
task is too lengthy for inclusion in this book.4

2.2b Source-Free Infinite Medium: Asymptotic Solutions

For a source-free infinite medium with isotropic scattering, equation (2.5)
becomes

r<1>(x. J-L) <1>( ) C II th( ') d 'J-L • • + x, J-L = 2- 'V X, Jl. Jl.
(~ -1

in plane geometry. Since the medium contains no source, there is a possibility
that c > I. and this will be allowed for the present. To solve equation (2.12) by
the method of separation"of variables, solutions are sought of the form



(2.12) is divided through by fL<I>(X, fL) and equation (2.13) is substituted for
<I>(x, fL) and <I>(x, fL'), it is found upon rearrangement that

dx(x) _1_ = C f1 &/JCP-') d I _ !.
dx x( x) 2fLt/J(fL) - 1· fL fL

The left side of equation (2.14) is a function of x only, whereas the right side is a
function of fL only; hence, both sides are equal to a constant. If this constant is
represented by - I/v, then

x(x) = constant x e-x/v•

Thus solutions to equation (2.12) are to be sought of the form

<l>v(x, fL) = e-X!v&/JvCfL),

where the v is an eigenvalue corresponding to the eigenfunction t/Jv(fL). Special
care will now be taken to examine the acceptable values of v and the functions
t/JvCfL).

If equation (2.15) is substituted into (2.12), the result is

(I - 1!:.)t/JvCfL) = ~J'1 ,pV(fL') dfL"
V ~ -1

and then, upon multiplication by v, equation (2.16) becomes (for v "# 0)

If. for the moment. it is assumed that II #. p. for all values of fJo between - 1 and
I. i.e .• l' is not both real andin the interval - I ~ II ~ I. then

I ta h - 1 I 0'0 I "0 + 1= 0'0 n - - - n ---.
"'0 2 "'0 - I

When c < I. the roots of equation (2.20) are real, but when c > 1 they are
imaginary. These roots have also heen obtained in another manner.s

This may be substituted into the normalization equation (2.17) to obtain the
conditions on II. namely v = ± vo, where ± "0 are the roots of



It is seen, therefore, that there are two discrete eigenvalues + Vo and - Vo which
satisfy equation (2.16) when v =1= fJ-. The associated eigenfunctions are given by
equation (2.19) as

./. ±( ) _ C Vo
'f'0 fJ- - - -2 Vo + fJ-

and the two solutibns of equation (2.12) are then

It will be seen later that, in general, there are other solutions to equation (2.12),
but those in equation (2.22) dominate far from sources and boundaries; they
are called the asymptotic solutions and <1>0 is the asymptotic flux. Before returning
to equation (2.16). some consideration will be given to the asymptotic (discrete)
eigenvalue 1'0'

Upon expansion of the tanh -1 term, equation (2.20) becomes

I = CVo [J. + ~ + ~ + ... ],
Vo 3vo 5vo

__ 3(1 - c) 3
v~ - --c-- - 5v6 - ...

As a first approximat-ion, I/v~ z 3(1 - c)/c, and this may be substituted in the
second term on the right to yield

J. = 3( 1 - c) [1 _ 2 1 - c _ ... ].
v5 c 5 c

By writing I - (1 - c) for c in the denominator of the factor on the right and
replacing c by unity in the denominator in the second term in the brackets, then
inverting and taking the square root, the result, when c is near unity, is

Vo = I [1 + t(1 - c) + ... ]. (2.23)
V3(1 - c)

It is evident, as stated above, that Vo is real only when c < 1.
Since Vo determines the rate of decrease of the asymptotic flux with distance,

as is apparent from equation (2.22), it is here called the asymptotic relaxation
length.· It is related to the diffusion length, L, of simple diffusion theory; the
latter is given by

.I
L = ,

V3aaa

• The quantity .0 is often referred to as the asymptotic diffusion length, but in this book
the term ••diffusion length" is reserved for diffus~on theory. In general. a relaxation length
is the distance in which the flux decreases by the factor e.
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where u is the total (macroscopic) cross section and Ua is the absorption cross
section. In the present notation, Ua = u(l - c); hence, with the collision mean
free path as the unit of distance,

L = V3(/ _ c) (2.24)

It is seen, therefore, that the asymptotic relaxation length of transport theory
approaches the value for simple diffusion theory only when c is very close to
unity (or II - cl « I), i.e .• in a weakly absorbing medium.

A comparison of the exact asymptotic relaxation length from transport
theory. as obtained from equation (2.20), the value from equation (2.23), and
the ordinary diffusion length. from equation (2.24), is given in Table 2.1.6 For
media with c < I. the data are for Ivai, whereas for media in which c > 1, the
values are those of livol. Although the simple diffusion length, L, is a good
approximation to transport theory only when 11 - cl < 0.01, the one additional
term in the expansion in equation (2.23) gives results that agree with the exact
solutions of equation (2.20) up to about II - c\ = 0.2 (or more).

It is important to note that for 0 < c < J. the values of Ivai are> 1, whereas
for c > I. Vo is purely imaginary. Therefore, in neither case does va lie in the real
interval - I ~ 1'0 ~ 1. It is consequently permissible to divide equation (2.18)
by 1'0 - P. in order to obtain the solution for rP'o(p.) given by equation (2.19).

TABLE 2.1. COMPARISON OF RELAXATION LENGTHS FOR ISOTROPIC SCATIERING6
(IN MEAN FREE PATHS)

Exact
[Eq. (2.20)]

Ivai
Second Approx.

[Eq. (2.23)]
Diffusion Theory

[Eq. (2.24)]

c < 1
0.99
0.98
0.95
0.90
0.80
0.50
o

5.797
4.116
2.635
1.903
1.408
1.044
1.000

5.797
4.115
2.633
1.899
1.394
0.979
0.808

5.774
4.083
2.582
1.826
1.291
0.816
0.577

1.01
1.02
1.05
1.10
1.20
1.50

5.750
4.050
2.532
1.757
1.198
0.689

1;"01
5.751
4.052
2.531
1.756
1.195
0.680

5.774
4.083
2.582
1.826
1.291
0.816



2.2c Infinite Medium Continuum (Singular) Solutions

Two elementary (asymptotic) solutions, namely, <D~ (x, f-L) and (})0 (x, f-L), have
been found to equation (2.12) for the case in which II i= f-L. Additional solutions
will now be developed for the situation in which II = f-L and both of these
quantities lie within the range -1 to 1. It was seen above that equation (2.19)
is a solution of equation (2.18) for all f-L in the interval - 1 ~ f-L ~ I with II not
in the interval - 1 ~ II ~ 1. Equation (2.19) is also an acceptable solution of
eq uation (2.18) when II is real and lies in the interval - 1 ~ II ~ 1 provided
II -=1= f-L. But when II = f-L the solution is divergent (singular) and this feature
requires further examination. Moreover, it would appear that such a solution
cannot satisfy the normalization condition of equation (2.17), since that condi-
tion was used previously to derive acceptable values of II, namely ..± Va, which
have been found not to lie in the interval - I ~ II ~ 1.

In order to determine the normalization integral for the singular (I' = f-L)

solution. however, it is necessary to specify how the integral of such a divergent
function is to be evaluated. Moreover, as long as a solution is being considered
that is divergent at II = f-L. greater generality may be al10wed by trying the
solution

C II

tf;v(f-L) = :::;-- + '\(1I)8(f-L - II),
L. II - f-L

where .\(1') is an arbitrary function. This will still be a solution of equation (2.18)
for all I' =I- f-L and it can also be interpreted as a solution for II = f-L since it is
possible to define the Dirac delta function such that

With this more' general solution, the function .\(11) may be chosen so as to
satisfy the normalization condition of equation (2.17). In performing the
integration o\er f-L', however, it is necessary' to specify how the singular first
term in equation (2.25) should be integrated. The various nossible choices
differ only in delta functions. and the Cauchy principal value prescription -; is
chosen in evaluating the integral; thus

J.1 v (J'V - .; II J 1 v ]p , df-L' = Iim , df-L' + ,df-L' ,
-1 V - I-' 6-0 -1 II - f-L v+6V-1-'

where the symbol P implies the principal value. In order to bear in mind that
this requirement must be met whenever tf;v(f-L) is integrated, the symbol P is
attached to the singular term; equation (2.25) is then written as



The arbitrary function '\(v) can now be chosen so that the normalization condi-
tion is satisfied; in particular, upon evaluating the principal value integral,

It is seen that, in addition to the two discrete eigenvalues which satisfy
equation (2.20), there is a continuum of eigenvalues (and eigenfunctions)
corresponding to all v between -1 and 1. The solution to equation (2.12) for
-1 ~ v ~ 1, may then be represented by

where '\(v) is given by equation (2.27). Such a solution, which contains a delta
function, S(fL - v), and the singular term l/(v - fL), is not defined at v = fL. It
can, nevertheless, be used in integrals because the manner of integrating the
singular terms has been specified. Moreover, the solution may be,interpreted as a
"generalized function" in a formal mathematical sense 8 and constitutes an
acoeptable solution to equation (2.12).

It should be noted that since -1 ~ It ~ 1, the continuous solutions vary
faster with x than do the asymptotic solutions. As will be seen in §2.2e, this

, implies that at a large distance from the source the asymptotic solutions will
dominate. Near the source, however, the continuous solutions are also important
and, in particular, they are necessary for fitting the jump conditions at the
source position.

2.2d Completenessand Orthogonaiity of the Elementary Solutions

The usefulness of the functions <t>v(.\", p.} lies in the fact that they, together with
<t>Hx, p.), are complete and that they satisfy an orthogonality relation. The
completeness means that a general solution of equation (2.12) can be written
as9

where the first two terms on the right are the asymptotic solutions and the third
represents the continuous solutions; the expansion coefficients a + and a _ are
constants and A(a·) is a function of v. Equation (2.29) may also be written in the
form

The orthogonality condition is used for determining the expansion coefficients
in particular problems and it can be derived by considering equation (2.16) for



!fv(p.) and multiplying by ifiv'(p.), to obtain

(1 - ~)!fv(p.)ifiv'(p.) = ~ifiv'(p.) I_1
1 ifivCp.') dp.'.

Similarly, equation (2.16) for !fv'(p.) is multiplied by !fvCp.), i.e.,

(1 - :)!fvCp.)!fv,(p.) = ~ifivCp.) I~1 ifiAp.')dp.'.

Upon subtracting these two equations and integrating over p., it is evident
that

is obtained. The values of v, v' may be chosen from ± va or from the continuum.
In order to evaluate the expansion coefficients a +, a _, and A(v) in equation

(2.29), it is first necessary to determine the normalization integrals. For the
asymptotic terms these are represented by No+ and No; they are obtained by
setting II = I,' (= 110) in the integral in equation (2.31), i.e.,

N l = J~1 p.ifit (p.)!ft (p.) dp..

By using the values of ifi~ (p.) given in equation (2.21), it can be, shown 10 that

The normalization integral Nv for the continuum is more difficult to determine,
but it is found 10 that

These orthogonality conditions will be used in the next section to derive the
plane Green's function.

2.2e Infinite Medium with Plane Source

In the foregoing, the homogeneous equation (2.12), which is analogous to (2.9),
has been solved and the solutioRs for an infinite medium were found to be



represented by equation (2.29). It is now possible to add the discontinuity (or
jump) condition for a planar source at xo, and by including the provision that
the solution of the inhomogeneous equation must vanish as Ixl -+ 00, the Green's
function for the problem can be evaluated.

For x 1=0, the Green's function G(xo, JLo -+ x, JL), i.e., the angular flux at x, JL
due to a unit source at Xo, JLo, can be derived from equation (2.29) as having the
form

and

G = ~a_t/Jo(JL)e(X-xo)Jvo - fO A(v)e-<x-Xo)/vt/Jv(JL) dv for x < Xo,
-1

where, in each half-space, only those exponentials have been retained which
approach zero as Ixl-+ 00. The expansion coefficients a+, a_, and A(v) for a
planar source can now be determined by introducing the discontinuity condition
of equation (2.10). Upon substituting the appropriate values of G from equations
(2.35) and (2.36), respectively, into equation (2.10), with x = Xo + E for the first
term and x = Xo - € for the second term, and letting E -+ 0, the result is

The next stage in the procedure is to use the orthogonality conditions to de-
termine the expansion coefficients~ equation (2.37) is multiplied by JLt/JAJL) and
integrated over J-L. Then, by using the normalization and orthogonality conditions,
it is found that

_. _1 (1 J-Lrfst-(J-L)O(J-L - J-Lo) _ I ./,±( )
a ± - N ± 2 - 2 N ± '/'0 JLoo • - 1 7TJL 7T 0

~here ,\'ot and Nv are the same as before. The values of t/;t-{J-Lo) and t/JvCiLo) are
given by equations (2.21) and (2.26). respectively, with JL = JLo.

By substituting these expressions into equations (2.35) and (2.36), the Green's
function for the infinite medium with an anisotropic planar source can be
obtained. Since G represents the angular flux at x, JL, the result can then be
written as

<1>(x. it) = _I [± rPt(po)4;t(JL~e-IX-Xol'~o + )"1 rPu(JLo)t/;.p(JL)e-IX-Xol/\· dV].
27T No 0 N.,

(2.38)
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where the plus signs apply to x > Xo and the minus signs to x < xo. The func-
tions tP±v(fl-o) and tP±v(p.) are as defined by equation (2.26), for +v or -v. It may
be noted that equation (2.38) contains the products of singular functions and
some care must be exercised in interpreting them properly.ll

For a unit planar isotropic source at .\"0. the angular flux is obtained by averag-
ing <t>(x, fl-) with respect to fl-o, i.e., by integrating equation (2.38) over fl-o and
evaluating 1- (1 [ ]dfl-o· Then by using the normalizing condition

is used. The total flux ¢(x) for an isotropic unit plane source is obtained by
integrating equation (2.39) over all directions. i.e .. by multiplying by 27Tand
integrating over It: thus,

. _ I (e-:X-XoIIVO /'1 e-Ix-xol/v ]
</>(x) - -., N+ + N dv·

- 0 • 0 \'

This is the form of the Green's function for the total flux from an isotropic plane
source in an infinite medium.

Pn)\ ided c < I. 1'0 is rea1 and greater than unity (see Table 2.1). It is then
f'lund that as x - .x'o, increases the integral term in equation (2.40) decreases
mort: rapidly than does the first (asymptotic) term. An exception arises when
c = O. I.l: .. for a purel) absorbing medium with no scattering: in this case the
a~~ mph1t1C solutHln~ \anish since Not -- x as c - O. Consequently. provided
c ~ O. "hen x - Xo is large. that is. at points far from the source. the asymp-
toth." s\llull'ln hl the: neutron transport equation is dominant. As noted in §2.2b.
"hen (' - I « I. simple ditfusion theory provides a good approximation to
the asymptotic solution.

For certain problems the orthogonality condition of equation (2.32) does not
suffice to determine the e\pansion coefficients. This occurs when the boundary
condition is applicable only over half of the fl- range. It is then required to have
orthogonahty conditions over half the range, ~.e., J~[ ]dfl- or f~1 [ ] dp..
These can be found but they involve the theory of singular equations.12

The method of separation of variables has also been applied to time-dependent
problems. in particular to the a eigenvalue problem of §1.5. 13



The flux from an isotropic point source in an infinite medium can be readily
obtained from that for an isotropic plane source, since the latter may be regarded
as a superposition of point sources. Thus, if a unit plane source is treated as if
made up of point sources of unit intensity per unit area, the flux tPP1(X) at a
distance x from the unit infinite plane source (at x = 0) is related to the flux
tPPt(') at a distance' from a unit point source (Fig. 2. I) by

where, in obtaining the final form, the relation ,2 = y2 + x2 has been used.
Upon differentiation with respect to x, the result is

By considering the plane source solution in an infinite medium in equation
(2.40), it is seen that the flux from an isotropic point source is given by

I [e-r,,·o 1.1 e-r1v ]
tPpt{r) = -4 1 N+ + -N dv .

1Tr J 0 0 • 0 V \'

so that it too contains an asymptotic part. decaying as (! - r \'0 Ir. and a tnrnsient
part decaying at least as rapidly as e-rjr. Thus. for an isotropic point source the
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asymptotic solution dominates at a distance from the source; the same conclu-
sion holds, as will be shown later, for an anisotropic source.

Since any distributed (surface or volume) source can be treated as a super-
position of point sources, it can be concluded that both asymptotic and transient
terms will contribute to the flux. At points far from the source in an infinite
medium, the asymptotic solution may be expected to dominate in all cases.

2.3 SOLUTION OF THE ONE-SPEED TRANSPORT EQUATION
BY THE FOURIER TRANSFORM METHOD

2.3a Introduction

The second method for deriving the infinite medium Green's function is by
means of Fourier transform techniques. The method of separation of variables
was actually developed later than the Fourier transform method, but it was
treated first because it exhibits more clearly the general nature of the solutions.
Nevertheless. the solution of the one-speed neutron transport equation by using
the Fourier transform is of interest not only because it is another approach, but
also because it has applications in certain rnultigroup problems. In the discus-
sion presented here. the case of a unit isotropic plane source is first considered,
and the Green's function solution will then be used for an anisotropic source.
For simplicity of representation, the source will be located at x = 0, instead of
at x = Xo as In the preceding treatment.

For a unit Isotropic plane source at x = 0, in an infinite medium, the source
term Q(x. ILl IS gl\cn hy equation (2.7) as <S(x)/4rr; upon insertion into equation
(2.5). the one-~p~~J neutflln transport equation becomes

( (11( x, 14 ) C 1'1 I' 8(x)
II ---.- -t- (Il(x, Id = ::; <1>(x, f-L) df-L + --.

( ..\ - ~ - 1 4rr

I', i (1)( X, f-L) _ ICJ) •

fl •. -IL rx e ll(x dx = f-L<1>(x, f-L)e-1IcX
-CJ) + lkp. F(k, p.)

and the requirement that

..--..--,--~~~ ..••.•..
''t ..••., . ~ '- •.

#.,..••',.!",~ "" , •• ·····_' •.••••·"ItI._,-"·,,,,, .,.\ •.";._:"",.••



2~3c Asymptotic and Transient Solutions

The solution for </>(x) given by equation (2.48) can be put in a form similar to that
in equation (2.40). as the sum of an asymptotic and a transient solution. by use
of contour inte,gration. The original integration path in the complex plane is
deformed. as indicated in Fig. 2.2. The integrand in equation (2.48) has a branch
point at k = i. and so the complex plane is cut along the imaginary axis from '..,;.,.,f.

i to ;00. Moreover, the integrand has a simple pole wher~ the denominator
vanishes, when

. 1
(1 + lkfL)F(k, fL) = cF(k) + 47T'

1 f1F(k) = 2 -1 F(k. fL) dfL·

By assuming that 1 + ikfL =F 0, equation (2.43) can be solved to give

F(k ) = c F (k) + 1/47T.
, fL I + ikfL

This can be integrated over fL and solved for F(k) ~ the result can then be substi-
tuted into equation (2.45) to obtain F(k, J-L). Since

I fl dJ-L 1 1 + ik I . - 1

2 _1 1 + ;kJ-L = 2ik In 1 - ik = k tan k

is a real quantity, it is found in this way that

1 [C 1 + ik] - 1

F (k, J-L)= 47T (I + ik J-L) - 1 I - 2i kin I - ik

The angular flux may now be derived from equation (2.46) by Fourier
inversion; thus,

I fa:> [C I + ik] - I
<1>(x. J-L)= 87T2 -a:; ('11.:.\"(1 + ikJ-L)-1 I - 2ik In I _ ik dk.

The total flux at x is obtained by integrating over all directions. i.e .. by multi-
plying by 27T and integrating over J-L from - I to I. It is then found that

1 I":C [e1kx I + ik] [ c I + ik] - I
</>(x) = 47T" -::c ik In 1 _ ik I - 2ik In I _ ik dk.

~ I + ik
I - 2ik In I - ik·



Upon comparison with equation (2.20), it is seen that the simple pole occurs
where

Ik = ko = _.
Vo

The integral along the original path is equal to that along the deformed path
in Fig. 2.2 plus 2iTi times the residue at ko. The asymptotic part of the solution
to equation (2.48) arises from this residue, whereas the transient part comes
from integration along the cut made by the imaginary axis. The contribution of
the residue to the total flux is given by

q;as(x) = 1i k~~o (k - :JF(k, x),

where F(k. x) is the integrand in equation (2.48). It is then found that

- ~)e -Ixi/"o
1,2o

-(I-C)]

By recalling the value of ,f\:o'" given in equation (2.33). it is readily seen that this
quantity is identical with the asymptotic contribution to the total flux from an
isotn)ric plane Sl)Urce. located at Xo = O. as expressed by equation (2.40).

The Cl)ntour shown in Fig. 2.2 is applicable only for x > O. But for.x < 0, a
similar cllntl)Ur may he taken in the Imver half-plane. the choice being made to
ensure that ell(X = 0 far from the real axis. The contribution from the residue is
found to he c\rressed hy equation (2.49) regardless of the sign of x.

The transient part of the solution to equation (2.48) is equal to the sum of the

DEFORMED
PATH
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contributions from each side of the cut made by the imaginary axis. Thus, the
integral on the left side, represented by Ib is

1 p [efkX 1 + ik] [ C 1 + ik] - 1
II = 41rJfGO ik In I _ ik I - 2ik In I _ ik dk

and on the right side it is 12, where

1 [fGO [e1kX 1 + ik] [ C 1 + ik]-1
12 = 41rJI ik In 1 _ ik 1 - 2ik In I ~ ik dk.

The logarithmic terms In (l + ik)/(l - ik) on the two sides of the cut will
differ by 21Ti, and if the qUclntity 2 is defined by

-2 == 1+ ik,

) 1 + ik _ . 1 2 I
n 1 _ ik - ,- 11T + n 2 + 2 In 1

1 + ik. 2
In 1 _ ik = 11T + In 2 + 2 in 12,

The integrals II and 12 may now be combined to yield

fGO 2(2 + 1)exp [-(2 + 1)\x\]
cPtrans(x) = 0 [2(2 + 1) - c In (1 + 2/2)]2 + (C1T)2 d2.

By converting this to the variable v = lie 1 + 2), the result is the same as that
given by the integral term in equation (2.40). The results of the Fourier trans-
form method are thus identical with those ,obtained by the separation of
variables.

Some properties of the transient solution can be derived from equation (2.50).
When x is small. i.e.~ near the source, the main contribution to the integral comes
from large values of 2; then

rID exp I-(2 + I)lxl]
<Ptr&M(x)-;:::t Jo 2(2 + ) d2 = ';'£I(lxl),

where £1 is the exponential integral function (see Appendix). It will now be
shown that equation (2.51) represents the uncollided flux from the neutron
source.

The integral form of the transport equation (1.37) for an isotropic plane
source in an infinite medium may be written, for constant energy and with
distance expressed in terms of the mean free path (§2.1c), as

1 fGOq,(x) ="2 _ GO q{x')E1(lx - x'\) dx'.
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If </J(x) is to represent the uncollided flux, the source term, q(x'), will not include
neutrons emerging from collisions; then,

This result, which is identical with equation (2.51), is the (uncollided) flux pro-
duced directly at x by a source at x ~ O. Since £1 diverges for x = 0, it is
evident that the uncollided flux present in the transient part of equation (2.48) is
dominant near the source. It may be noted, too, that for c = 0, equation (2.50)
gives

cPtransex) = -t£l(X)

for all x. Since the asymptotic flux is zero in this case (§2.2e), the flux is made up
solely of uncollided neutrons, as is to be expected.

When x is large, the main contribution to equation (2.50) is from small values
of Z, and the transient part of the total flux decreases as e -Ixl as x -+ 00. This
part therefore decreases more rapidly than does the asymptotic part at large
distances from the source; the latter is then dominant. This is the same conclu-
sion as was reached in §2.2e.

The results obtained above suggest a physical interpretation of the asymptotic
and transient parts of the solution of equation (2.48). The asymptotic flux is a
distribution of neutrons governed by the collisions taking place in the medium;
its dependence on space and angle is determined by the properties of the
medium, i.e., by c. and is independent, except for normalization, of the source.
Thus, the asymptotic solution represents a situation in which collisional
equilibrium exists.

The transient part. on the other hand, gives the departure of the flux from the
state of collisional equilibrium caused by the neutron source. Hence, both the
source and the properties of the medium affect the transient flux. Thus, for

TABLE 2.2. VALUES OF ¢aslcP FOR AN ISOTROPIC PLANE SOURCE.1s

(DISTANCES IN MEAN FREE PATHS)
I
I

~ 0 0.2 0,4 0.6 0.8 1.0

0 0 0 0 0 0 1.0
I 0 0.011 0.309 0.667 0.879 1.000
2 0 0.016 0.403 0.780 0.944 1.000
S 0 0.028 0.563 0.908 0.990 1.000

10 0 0.044 0.698 0.968 0.999 1.000
20 0 0.068 0.825 0.994 1.000 1.000



c = 0, i.e., in a purely absorbing medium, the source determines the neutron
flux at all distances; there is never collisional equilibrium and there is no
asymptotic part to the solution of equation (2.48).

For small values of c, the transient flux is larger than the asymptotic flux, i.e.,
ePas/cP « 1, even at many mean free paths from the source, as may be seen from
the data in Table 2.2 for an isotropic plane source.15 On the other hand, for c
near unity, collisional equilibrium can be established near the source; in fact as
c --+ I, the transient part becomes negligible, i.e., cbas/eP --+ I.

2.3d Infinite Medium Anisotropic PlaneSource

With an anisotropic plane source, as in equation (2.6), but with the source at
x = 0, the procedure described above may be followed; instead of equation
(2.48), the expression now obtained for the total flux is

As before, the contour in the first integral may be deformed; again, it has a pole
at k = ilFO and a hranch point at k = i. There is. however. an additional pole at
k = ilflo. In the second integral in equation (2.52). assuming x > 0 and fla > 0,
this pole gives a contrihution to cP(.r) which is equal tll

I-c-X"o.
fla

This is the flux due to uncollided neutrons. as may he seen in the followinl!. ~
manner.

The uncollided angular flux (1)o(Y, 11.) from a plane Sllurce should satisfy
equation (2.5) with the scattering term. i.e .. the Integral. set equal to zero. and
the source term (for a source at .r = 0) n:rre,>cnled h~ h( r) h(/L - ILo) 27T; thus,

( <1>0 (Y, 11.) t b( x) b( 11. - 11.0)
fl . + ()o(;\", fl) = ------

(X 2~

For the case in which x > 0 and fl > O. the nght side of this expressil)n is zero,
and hence the solution is



Hence the solution to equation (2.53), for x > 0 and f1-0 > 0, is

Upon integration over all angles, the total flux isthen found to be

which is identical with the expression given above for the contribution to the
flux made by the pole at k = i!f1-o.

By separating the uncollided flux, the solution <D(x, f1-) to equation (2.5) is
divided into two parts, i.e.,

where <1.>o(x. f1-) satisfies equation (2.53). By substituting this form into equation
(2.5) and subtracting equation (2.53) it is found that the angular flux <D1,due to
coHided neutrons, must satisfy the equation

It is seen. therefore. that the collided angular flux <D1satisfies the inhomogeneous
transport cquation with an isotropic distributed source equal to the second
intcgral in equation (2.55). This source is the distribution of neutrons emerging
from their fir~t collision and is given by

since c is the a\eral!e numher of neutrons emerging from a collision. The corre-•••. I,... •••••

spondlOg tlHal flux l)f clJlhded neutrons may therefore be represented by

where G(x' -- x) is Green's function as given by equation (2.40) with Ix - x'l
replacing Ix - xol. When the first integral in equation (2.52) is now evaluated it
is found to be equivalent to equation (2.56) and is consequently equal to eP1(X),
the total flux of collided neutrons.

Thus it is seen that the solution to a problem with an anisotropic source in a
medium ~ith isotropic scattering can be obtained from the solution for an
isotropic source. The general technique of treating the uncollided neutrons and
the collided ones separately has been found to be useful in solving many neutron
transport problems.



2.4 SOLUTION OF THE ONE-SPEED TRANSPORT EQUATION
BY THE SPHERICAL HARMONICS METHOD

In this section, the problem of a plane isotropic source in an infinite medium will
be formulated using the spherical harmonics method. The general principle of
this method for solving the one-speed transport equation is that the angular (or
directional) dependence of the flux is expanded in a complete set of elementary
functions, such as a series of polynomials. In general geometry, spherical har":
monies are a logical choice, but for plane or spherical geometry these reduce to
the Legendre polynomials.

For plane geometry, in which <1>is a function of x and fL only, the angular
dependence of <1>may be expanded ina series of Legendre polynomials with
coefficients that are functions of x; thus

Ill)

"" 2m + I
<1>(x, p.) = L 417 ef>m(x)P m(fL),

m=O
where the P m(fL) are the Legendre polynomials (see Appendix) and the ef>m(x) are
the expansion coefficients. Because of their orthogonality, the latter are given by

ef>m(x) = f <1>(x, p.)P m(fL) dn = 217 f~1 <1>(x, fL)P m(P.)dfL·

One advantage of the Legendre expansion for the angular flux is that the first
two terms, at least, have a simple physical meaning. For m = 0, for example, the
value of Pm(p.), i.e., Po(p.) is I; hence, it follows from equation (2.58) that rPo(x)
is simply the total flux at x. Furthermore, for m = 1, P1(fL) is p.; hence, equation
(2.58) gives

which is the current J(x) at x in the x direction. Although most other orthogonal
polynomial expansions do not have such an obvious physical significance as do
the Legendre set, they have advantages in some circumstances, particularly in
fitting boundary conditions, as will be seen in Chapter 3.

2.4b Infinite Medium Plane Isotropic Source

The expansion in equation (2.57) is now substituted into the one-speed transport
equation (2.41) for a plane isotropic source at x = 0; upon multiplication by
41f, the result is

~ e

1£ 2 (2m + I) def>;'xX) p.{I£) + 2: (2m + 1)cf>.(x)P.{I£) = Cf/>o(x) + o(x) .
•-0 .-0



The recurrence relation (see Appendix)

(2m + l)J-LPm(J-L) = (m + I)Pm+l(J-L) + mPm-l(J-L)

is then used in the first term on the left, and the resulting expression is multiplied
by -!-(2n + 1)Pn(p.) and integrated over J-L from - 1 to 1. Upon using the orthogo-
nality of the Legendre polynomials, it is found that

(n + 1) d4>nd_~(X) + n d4>n;~(X) + (2n + 1)(1 - C OOn)4>n(x) = oon o(x),

n = 0, 1, 2, ...
where 4> -leX) = 0 and Son is the Kronecker delta, i.e.,

Equation (2.59) represents an infinite set of equations for the un~nown func-
tions 4>n(x}. For practical purposes, this set of equations is truncated in the
following manner (see, however, Ref. 16). Consider the first N + 1 equations of
the set. i.e .. those for which n = 0, 1, ... , N; these involve N + 2 unknowns,
i.e., 4>n for 11 = 0, 1, .... N + 1. The number of unknowns may be made equal
to the number of equations by assuming

and Ps .• l(fL) oscillates rapidly for large N, changing sign N + 1 times in the
inten al - I ~ fL ~ I. it is reasonable to suppose that 4>x + 1 will be very small
for large IV: hence. the P" approximation is expected to be quite accurate if N is
large.

Snme indicatinn of the error involved in the P" approximation may be
obtained h) noting that the p.\. equations would be exact for a problem in which
the ~l)un.:e in equation (2.41) is modified by addition of the term

N + I d4>.v+l(X)p ( )
- NfL'

41T dx

For n = N. this would just cancel the first term on the left of equation (2.59),
which is set equal to zero in the Ps approximation. The error in the scalar flux,
tPo. for example. could thus be estimated as arising from a source of the form
given abo"e.1':' In practice. however. it is preferable to determine the accuracy
of the p.•solutions by comparison with exact results, such as those obtained by
the methods described earlier in .this chapter or by accurate numerical proce-
dures discussed in later chapters. In addition, by examining the dependence of



the results on N, it is possible to obtain an estimate of the accuracy of a par-
ticular PN approximation. The data in Tables 2.6 and 2.7 will serve to illustrate
this point.

The PN equations could be obtained in an alternative manner, namely, by
truncating the angular flux expansion of equation (2.57) after N + 1 terms, i.e.,
by setting 4>N = 0 for n > N. The PN approximation is often simply defined in
this manner, but the method used here provides a better insight concerning what
is involved in the approximation.

When x i= 0, a set of homogeneous first-order differential equations with
constant coefficients is obtained from the equations (2.59), and the general
solution is a sum of exponentials, i.e.,

N

4>n(x) = ~ A~n(Vi)e-X/VI,
i=O

where the values of Vi are given by the vanishing of the determinant of the co-
efficients in equation (2.59).18 These coefficients of the exponentials may be
found by integrating equations (2.59) over a small region including x = 0, as in
the derivation of equation (2.37).

An alternative method is to take the Fourier transform of equations (2.59), by
first defining

The equations (2.59) are then multiplied by e-t/r'x and integrated over x between
- 00 and 00; the result is

(n + l)ikFn.1(k) + nikFn_1(k) + (2n + 1)(1 - c oon)Fn(k) = 00n

n = 0, 1, ... , N (2.61 )

This set of N + 1 algebraic equations can be solved for Fn(k), where n =
0, 1. ... , N.

In the Pi approx.imation, for example, only Fo(k) and F1(k) are nonzero, and
the applicable forms of equation (2.61) are for n = 0, 1, i.e.,

1
Fo(k) = (1 - c) + !k2



1 I<Xl e1kx

~o(x) = ~(x) = 27T _ <Xl (1 _ c) + tk2 dk.

The integral may be evaluated by contour integration or by elementary methods
to give

This result, in the Pi approximation, is a good approximation to the asymptotic
solution for 1 - c « 1 obtained by the methods given earlier in this chapter. It
takes no account, however, of the contribution of the transients which are
important near the source.

2.4c Diffusion Theory and Diffusion Length

It will now be shown that the Pi approximation in the present case, for a plane
isotropic source in an infinite medium, is identical with diffusion theory. The
two forms of equation (2.59) which are applicable are, for n = 0 and n = 1,
respectively: that is,

d~o(."t) 3,).. ( ) = 0
d + 'f'i X .

X

Since 4>dx) is the current l(x) in the x direction and ~o is the total flux, ~, equa-
tion (2.65) is simply a form of Fick's law, i.e.,

d~(x)
~l(X) = lex)= - D-d-'x

and the diffusion coefficient D = t, with lengths expressed in terms of the mean
free path. Upon inserting this value of ~l(X) into equation (2.64), the result is·

d [ d~(X)]- dx D d"X + (1 - c)eP(x) = S(x).

Since I - c is the equivalent of the macroscopic absorption cross section
(§2.2b), this equation may be expressed in the general form

where ,2 is the Laplacian operator. It is then recognized as the familiar equation
of diffusion theory.18



Furthermore 1/V3(l - c) in equation (2.63) may be identified with the dif-
fusion length, L, as in §2.2b, and, as just seen, the diffusion coefficient is equal
to t. Hence, equation (2.63) may be written as

Le-lxi/L

eP(x) = 2D '

which is identical with the expression derived from diffusion theory for the flux
from an isotropic plane source in an infinite medium. It will be shown in
§2.6b that the equivalence of the PI approximation to diffusion theory also
extends to the case of anisotropic scattering. For energy-dependent problems,
diffusion theory and the PI approximation are generally nonequivalent and the
differences will be examined in Chapter 4.

In the odd approximations of higher order, e.g., P3, Ps, etc., more terms appear
in the solution of the transport equation. For example, in the P3 approximation,
the denominator in the integrand of equation (2.62) includes a fourth-order
polynomial in k. The solution for tPo(x) then contains two exponentials, if the
solution is written in terms of Ixl as in equation (2.63), or four exponentials if
separate solutions are written for x > 0 and x < O. In general for a P2N-I

approximation, the solution contains N exponentials. As N is increased, one of
these becomes a better and better approximation to the asymptotic solution
whereas the others approximate transient solutions.20 It may be mentioned that
an even-order (P2N) approximation has only N roots, i.e., the same number as
the next lower odd-order (P2N -1) approximation. For this and other reasons,21
the even-order approximations are not commonly used. There are, however,
some cases in which even-order approximations have been employed.22 The
relaxation lengths (l/vo) corresponding to the asymptotic solutions of the one-
speed neutron transport equation for several approximations are given in
Table 2.3.23 The exact values ~re those derived from equation (2.20), as in
Table 2.1. It will be recalled that the values for the P1 approximation are
identical with those obtained for diffusion theory.

Some values of the transient exponents, ",. for several p."i approximations are
recorded in Table 2.4.23 It is seen that. as expected for transients, the values lie

TABLE 2.3. ASYMPTOTIC RELAXATION LENGTHS FOR PN APPROXIMATIONS.23 (IN
MEAN FREE PATHS)

C PI P'J P, P, Exact

0.9 1.826 1.903 1.903 1.903 1.903
0.8 1.291 1.403 1.408 1.408 1.408
O.S 0.816 1.011 1.037 1.042 1.044
0 O.S77 0.861 0.932 0.960 1.000

:j
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TABLE 2.4. VALUES OF EXPONENTS (Vj) IN THE TRANSIENT TERMS FOR PN
APPROXIMATIONS23

Pa Ps P7

C P1 "1 Vl V2 "1 V2 "a

0.9 None 0.487 0.806 . 0.303 0.902 0.619 0.220
0.8 None 0.466 0.793 0.295 0.895 0.609 0.215
0.5 None 0.409 0.740 0.271 0.861 0.575 0.202
0 None 0.340 0.661 0.239 0.797 0.526 0.183

in the interval 0 ~ Vi ~ I; furthermore, they are more-or-Iess uniformly
spaced in this interval.

2.5 THE ONE-SPEED TRANSPORT EQUATION IN A
FINITE MEDIUM

2.5a Introduction

The treatment in the preceding sections of this chapter has been concerned with
an infinite medium. Suppose, now, that the medium does not fill all of space but
has one or two plane boundaries, i.e., the medium is a half-space or an infinitely
long slab of finite thickness. Exact solutions, in closed form, may still be ob-
tained to the transport equation either by the separation of variables or by the
Fourier transform method. Because the solution must be determined to match
the boundary conditions over half the angular range, namely, <l>(x, J-L) = 0 for
either fL > 0 or fL < 0, whichever range represents incoming neutron directions,
the mathematical problems are more difficult than for an infinite medium. The
required mathematics. such as singular integral equations for the separation of
variables:H and the Wiener-Hopf method for the Fourier transform,25 will not
be given here.· Nevertheless, the general nature of the solutions can be under-
stood by reference to the infinite-medium Green's function.

It might be thought that the results derived earlier for neutron transport in an
infinite medium are of very limited applicability. This, however, is not the case,
at least insofar as the general features of the solution of the neutron transport
equation. such as the division of the solution into asymptotic and transient
parts. are concerned. The reason is that the solution to any transport problem in
a uniform finite medium bounded by a convex surface is equivalent to the
solution for an infinite medium in which a suitable distribution of neutron

• These methods are nOCdescribed because they are not used for the solution of practical
reactor probkms and because their development would be lengthy and require considerable
knowledae of compleJ.-variable theory. Moreover, the interested ~der wiJI find adequate
treatments io the relerenca ai~.



sources is located at the position of the boundary of the finite medium. This can
be seen in the following manner.

Consider a finite uniform medium bounded by the convex surface S. A solu-
tion is being sought for the flux, within S, for some distribution of sources, also
within S, subject to free-surface boundary conditions (§1.1d) on S. The solution
<1>1to this Problem 1 is, within S, equivalent to the solution <1>2of Problem 2 for
an infinite medium with an additional (negative) source (Fig. 2.3) as described
below. Suppose the medium within S is extended to infinity while retaining the
sources in this region; in addition, however, a negative surface source, directed
outward, is imposed on S. The intensity, - Ii· Q<I>1,of this source is of such
magnitude as to cancel exactly the outward angular neutron current in Problem
1. The asymptotic solution to Problem 2 must be chosen to vanish outside S.

Although a more formal proof of this theorem has been given,26 a simple
treatment is adequate. In Problem 1, the outward angular neutron current
through any surface element dA is

This is the number of neutrons crossing dA per unit time and unit direction
about Q. Now suppose an outward surface source is imposed on S so that the
outward angular current is exactly cancelled. Since it is an outward source, it
cannot affect the angular flux <1>1within S. The intensity of this imposed source
must then be - Ii· Q<1>l(r,Q); it is a negative source, i.e., it represents a negative
number of neutrons, in an outward direction. In this new situation, therefore,
there are no neutrons at all leaving S. Hence, the medium may be extended out-
side S, to make it an infinite medium, without affecting the solution inside S.
Thus, the solution <1>2to Problem 2 is seen to be equivalent, within S, to the
required solution <1>1to Problem 1.

PROBLEM'
(FINITE MEDIUM)

PROBLEM 2
(INFINITE MEDIUM)
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For a bounded medium in infinite plane geometry, the information relating to
the infinite me1hum plane Green's function can be used to examine the effects of
the boundary, as will be shown in §2.5b. Since the boundary acts as a source in
an infinite medium, -it is to be expected that it will contribute both asymptotic
and transient parts to the solution for the finite medium. Moreover, this will be
so in any geometry, not just in infinite plane geometry. It was seen earlier th~~
for any point or distributed source, isotropic or anisotropic, the solution con-
sists of asymptotic and transient parts, and the former dominates at points
distant from the source. The general conclusion to be drawn from the foregoing
arguments is that fQr a finite medium with a free-surface boundary regardless
of its geometry, the-asymptotic solutions will dominate at a distance from the
boundary as well as from the source.

Some of the results derived above will now be applied to problems involving
finite media in infin(~e plane geometry. '

The Milne problem _.isa classical problem in astrophysics concerned with the
diffusion of radiation through a stellar atmosphere.27 The general principles are,
however. also applicable to the distribution of neutrons in a (right) half-space
(x > 0) through which they are diffusing from a source at x = +00. For x < 0
(left half-space) there is a vacuum (Fig. 2.4) and a vacuum (or free":surface)
boundary condition. <1>(0,p.) = 0 for p. > 0, is imposed. The objective of the
problem is to determine the angular dependence of the emergent neutrons at the
boundary. i.e .. <1>(Q. J-L) for J-L < O. -

In accordance with the general procedure explained above, the vacuum in the
left half-space may -be replaced by the material medium, i.e., the medium is
ex.tended to x = -x. and a negative source is~imposed at x = 0 directed toward
negati\e x. If (NO. J-L). which is nonzero only for fJ- < 0, represents the angular
flux. in the Milne problem. then the required negative source at x = 0 isp.<1>(O,p.);
it is negati\c because it is applied for fJ- ~ 0 only.

The Milne pwblem. i.e .. the Rfoblem of a half-space with a source at infinity,
IS thus. for x > O. equivalent to -anlnfinite medium with a source at x = 00 and

VACWM
1<0



a negative source at x = O. Althvugh this does not actually solve the problem,
since <1>(0,J.L) for J.L < 0 is not yet known, it does show the character of the
solution.. .•• 'to.

At some distance away, the sotrce at infinity contributes only an asymptotic
term, which may be normalized, so that

The contribution of the source at the surface, i.e., at .\ = 0, can be written in
terms of the infinite medium Green's function as expressed by equation (2.38).
The net angular flux is then given'by

By introducing the explicit value for the Green's function, it is seen that the
surface source contributes an asymptotic term containinge - X'\'o plus transients
which decay more rapidly than e - x with increasing distance from the surface.
As far as the asymptotic solution is concerned, it is necessary only to determine. - ,

the normalization of the surface term.
Analysis 28 shows that the two asymptotic exponential-terms, from the source- -

at infinity and the surface source, lead to the expression -

.J.. ( f' . h x + Xo
'f'asyrnx) =. (c.~'o)Stn ---,

- 1'0

where f(c. 1'0) is a function of c- and 1'0' It follows from this result that the ex-
trapolated asymptotic flux, i.e., -!he flux extended by its natural curvature with

TABLE 2.5. EXTRAPOLATION DISTANCES AT A PLANE
SURFACE FROM MIL~E.PROBLEM.29 (IN MEAN FREE PATHS)

.
c ~-- CXo Xo

..•.
.;.

0.5 -. 0.7207 1.44L:
0.6 0.7155 J.I~
0.7 0.7127 l.ofS-"
0.8 0.7113 0.8891
0.9 0.7106 0.7896
1.0 0.7104 0.7104

- J.J 0.7106 0.6460
1.2 0.7109 0.5924
1.3 0.71 J3 0.5472
1.4 j 0.7118 0.5084
1.5 0.7123 0.4748

"
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distance, will vanish when x = - Xo; the distance Xo is called the extrapolation
distance. For Ic - II « I, it is found that

where O( I - C)3 implies a quantity of the order of (I - C)3 which is small when
Ic - II « 1. Some exact values for cXo as a function of c are quoted in Table
2.529; the first two terms of the expression given above are a good approxima-
tion for Ic - II « 1.

It should be pointed out that the extrapolation distances given here hold only
at a plane surface. Different values are applicable to the asymptotic flux near a
c'urved surface.30

For a slab of finite thickness, having c < I and containing a neutron source, the
foregoing considerations may be readily generalized to indicate the asymptotic
and transient parts of the solution. Moreover, in this geometry it is possible to
obtain physically ~ignificant solutions for c > I, and these will now be con-
sidered.

It will be recalled (~1.5d) that meaningful solutions of the time-independent
transport equation are to be expected only for a subcritical system with a source
or for a critical system. An infinite medium with c > 1 is evidently supercritical
and the asymptotic solutions found in §2.2b had Vo imaginary; they were thus
complex or oscillatory and had no, physical meaning. A slab of finite thickness
with c >1. however, may be subcritical or critical, in which case there will be
physical solutions to the time-independent transport equation. In this section the
critical slab will be examined and it will be seen that a good estimate of the
critical thickness is obtained by requiring that the asymptotic flux go to zero at
the extrapolated boundary.

Consider a slab extending from 0 ~ x ~ a in thickness. Outside the slab
there is a vacuum and so the boundary conditions imposed at 0 and a are

Just as in the Milne problem, an equivalent problem may be obtained by
extending the medium to infinity and adding negative outgoing sources at
x = 0 and x = a. Again the solution will have an asymptotic part plus tran-
sients near x = 0 and x = a. If the critical slab is fairly thick, i.e., a » 1, which
implies c - I « I, then near each boundary the solution will resemble that of
the Milne problem. The asymptotic flux is in general (cf. §2.2b) given by

"' •• (x) = .A sin I~I + B cos I~I·



-
If the flux is to be symmetric about x = a/2, then the asymptotic solution will be

x - (a/2)
¢as(x) oc cos.. Ivol .

In order for the bare slab to be critical, the asymptotic flux should go to zero at
the two extrapolated surfaces at x = -Xo and x = a + Xo (Fig. 2.5). From the
boun~ary condition ¢as( - xo) = 0 and equation (2.69), it is seen that

-xo - (a/2) 'Tr

Ivol - -2'
from which it follows that, for criticality,

a 'Tr
- = - IVo(c)1 - Xo·2 2

The argument (c) is introduced here to emphasize, as seen earlier, that Ivol is a
function of c.

Equation (2.70) gives an estimate of the critical half-thickness of a stab as a
function of c. Since this estimate is based on setting the asymptotic flux equal to
zero at the extrapolated boundaries (or end points), the procedure is often
referred to as the end-point method (or end-point theory),31 although it has also
been called diffusion theory.32 In this book, however, the term diffusion theory
;s. applied to the theory based on Fick's law with the diffusion coefficient
represented by a simple expression (see, e.g., §2.4c).
, It transpires that equation (2.70) is remarkably accurate, even when c - I is
fairly large; this may be seen from the comparison in Table 2.6.33 (The critical
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FIG. 2.5 CRITICAL SLAB PROBLEM.



TABLE 2.6. CRITICAL HALF-THICKNESSES OF AN INFINITE SLAB.33 (IN
FREE PATHS)

End-point
c Method E act PI P3 Ps

1.02 5.665 5. 655 5.839 5.663 5.672
1.05 3.300 3. 002 3.488 3.319 3.307
1.10 2.113 2. 134 2.309 2.135 2.121
1.20 1.290 1. 893 1.485 1.318 1.298
1.40 0.738 O. 366 0.919 0.779 0.750
1.60 0.515 O. 120 0.680 0.559 0.530

half-thickness for various PN a proximations, to which reference will be made
later, are also included in the table.) The" exact" values were obtained by
complete solution of the trans ort equation by numerical methods and varia-
tional theory (~6.4d). The error in the end-point results is only 0.25 percent for
c = 1A. Accurate results may Iso be obtained by the method of separation of
variables.34

2.5d Spherical Harmonic Method with Boundary Conditions

The critical slab problem provi es an interesting test of the accuracy of approxi-
mate solutions of the one-speed transport theory; it will consequently be utilized
in connection with the spherical harmonics method as applied to a finite medium.
The P, equations for a finite edium in plane geometry, such as- the critical
slab. are the same as in equati n (2.59) except that the right-hand side is zero.
The only new feature is that th boundary conditions must be imposed.3s

It is not possible to satisfy the exact boundary conditions, i.e., equation
(2.nSl. in a P, appw"imation aving finite N. The difficulty is, once again, that
the hllUndary conditions are i posed over half the angular range whereas the
e\pan~il'n cllcflicients apply 0\ r the whole range of j-L, i.e., - I ~ j-L ~ t. There
is consequently no unique way of choosing boundary conditions to represent a
free surface in a p.\; approxim tion. In the following treatment. consideration
"Ill Oe gl\cn hI t'\l' reasonah e choices: one is based on setting the odd half-
range moment" l,f the flux c ual to zero. whereas the other is equivalent to
replacing the \a\:uum outside the slab by a purely absorbing medium, i.e., a
medium from \\ hl\:h no neutn ns return.

For a P, apprllximatlOn of odd order, i.e., N is odd, N + I boundary con-
ditions are required on the N + I expansion coefficients cPn' there being
(N + 1) 2 from each boundar. A natural choice is to set
·1 '1

, PI(Jl)$(O.~)J~ = I p.(-, )$(a, -~)dj-L = 0
•0 •6

i = 1, 3, 5, ... , N, with N odd.



These are known as the Marshak boundary conditions:36 which may Iso be
derived from a variational principle.37 They have the virtue of inc1udi g (for
i = I) the condition of zero incoming current, familiar in diffusion theor . Thus
for i = 1, P.(p.) = Pl(}L) = fL, and the appropriate boundary condition is

In accordance with the results given earlier, this implies that the inward c rrents
at x = 0 and x = a are zero. The net current at x = 0

is, of course, not zero. In the Pl approximation the boundary condit ons of
equation (2.71) lead to an extrapolation distance, as in equation (2.67), which
for c - I « I is given by38

Xo = HI - ~(c - 1) + H(c - 1)2 + ... ]. (Marshak Pl)

It should be noted that the extrapolation length derived in this manner from
the Pl approximation represents the distance beyond the boundary at which the
asymptotic solution to the flux, with its natural curvature, extrapolates to zero
(Fig. 2.6). The linear extrapolation distance of diffusion theory is different in the
respect that it is the distance at which the flux becomes zero when it is extrapo-
lated in a linear manner beyond the boundary, and is equal to ef>(O)/Ief>'(O)I, where

~(O)
I~1(0)1



4>'(0) is the derivative of 4>(x) with respect to x at x = O. For the PI approxi-
mation, equation (2.57) gives

and, hence, by equation (2.65),

<I>(x, JL) = 4~ [4>o(x) - JL4>~(x)].

By applying the Marshak boundary condition of equation (2.71), it is readily
found that the linear extrapolation distance, 4>o(O)!I4>~(O)I, is t (in mean free
paths), as in ordinary diffusion theory.

Another possibility for the boundary condition is to set

for a finite number of points fLi' When the chosen points are the positive roots of

PN+I(}J-O) = 0,

the Mark boundary conditions 39 are obtained. A derivation of these conditions
for a particular form of the PN method will be given in §5.2c. It has been shown 40
that the Mark conditions are equivalent to replacing the vacuum by a purely
absorbing medium. In the PI approximation, the extrapolation length, Xo,

based on these boundary conditions is

I
Xo = V3 [1 - ·He - 1) + He - 1)2 + ... ]. (Mark PI)

The values for the critical half-thickness of a slab, as derived from the PN

approximation, using the Mark boundary conditions, were included in Table 2.6.
Experience indicates that the Marshak boundary conditions are somewhat

mere accurate than the Mark conditions,41 at least for small N. In particular,
ecf¥ation (2.73) is a better approximation than equation (2.74) to the exact
extrapolation distance given in §2.5b. The superiority of the Marshak boundary
conditions is probably connected with their being derivable from a variational
principleyl However, both forms of the boundary conditions have been used
widely.

The case of two adjacent, source-free media with a source at infinity (Fig. 2.7)
has been solved exactly.43 Just as a boundary with a vacuum can be treated in
terms of an equivalent surface source in an infinite medium, so also the effect of
one medium on an adjacent one can be described in terms of an equivalent
surface source at the position of the boundary in an infinite medium. This source



will introduce asymptotic and transient solutions to the transport equation in
the adjacent media. An essential feature of the analysis is to show how the
asymptotic solutions in the two media are to be connected at the boundary.

A systematic treatment of source-free, one-speed problems can be developed
by considering only the asymptotic solutions in each region., These are joined
across the interface by using the results mentioned above.

According to equation (2.22), the asymptotic solution of the transport
equation can be written as

<l>u(x, fL) = e~X/Y°!/Jt (p.),

so that by integrating over fL, and using the normalization condition of equation
(2.17), it is found that

epu(x) = e'f xl Yo.

It is evident, therefore, that epu(x) is a solution of the simple diffusion equation

In an infinite medium, there is no special reason for choosing the x direction,
and so the asymptotic flux will satisfy the general equation

By systematically using the known solutions to this equation with exact values
of VOt together with the interface conditions derived in the manner referred to
above, a form of diffusion theory has been developed. U Although accurate, the
theory cannot be generalized readily to multigroup solutio~ and so it will find
limited application in this book.



Many of the problems of slab geometry have their counterparts in spherical
geometry where exact solutions have also been found. It was seen in §1.3c, for
example, that the solution of th~ transport equation for r4> in a sphere of radius
a is related to that for 4> in a slab of half-thickness a. Since r4> for a sphere must
be an odd function of r (§1.3c), the asymptotic flux in a source-free sphere is
given by

According to the arguments for the critical slab in §2.5c, the sphere will be ap-
proximately critical when its radius a is such that 4>&8 is zero at the extrapolated
radius, i.e., 4>(a + xo) = 0; thus,

It will be observed that the same extrapolation length appears here as in plane
geometry; the linear extrapolation distance, however, is different in the two,
cases.

Values of critical radii determined from equation (2.75) are quoted in Table
2.7, together with the" exact " results and those given by the PI' P3' and Po
approximations with Mark boundary conditions.45 The agreement between the
end-point and exact values is again seen to be very good. The development of
the P,.. method for spherical geometry is given in §3.3a.

The method of separation of variables has also been applied to spherical
geometry.46 As in the case of a slab of finite thickness, the procedure involves the
solution of singular integral equations. In this manner, systematic improvements
to equation (2.75) have been obtained.47

In conclusion, it should be remembered that the equivalence between a slab
and a sphere holds only for constant cross sections independent of position (see
§1.3c).

TABLE 2.7. CRITICAL RADII OF A SPHEREY~ (IN MEAN FREE PATHS)

c End Po;nt Exact P1 PJ P5

1.02 12.027 12.0270 12.252 12.045 12.034
LOS 7.277 7.2772 7.543 7.296 7.284
1.10 4.873 4.8727 5.177 4.895 4.880
1.20 3.172 3.1720 3.513 3.204 3.181
1.40 1.985 1.9854 2.353 2.039 1.999
1.60 1.476 1.4761 '1.850 l.550 1.497



In realistic multigroup problems the scattering is invariably anisotropic and the
effect of such scattering on solutions of the transport equation must be ex-
amined. Plane geometry will be considered, as before, although in many respects

i1 spherical geometry is just as simple.
In plane geometry with anisotropic scattering, the one-speed neutron transport

equation (2.5) takes the form

o<I>(x fL) ]21l J1
II- 0' + <I>(x, fL) = c drp' f(n' -+ n)<l>(x,fL') dfL' + Q(x, fL),x 0-1

(2.76)

where the angular flux <l>(x, fL) and the source Q(x, fL) are assumed to be inde-
pendent of the azimuthal angle p. Except for special cases, such as when the
medium is moving or consists of a single crystal, f(n' -+ n) is a function of
n·n' = fLo only (§1.1b), where n' and n are the neutron directions before and
after scattering, respectively. Consequently, f(n' -+ n) may be expanded as the
sum of a series of Legendre polynomials, i.e.,

As seen in §1.6c, the Po term (isotropic scattering) is dominant except for scatter-
ing by light elements and for neutrons of high energy:

According to the addition theorem of Legendre polynomials (see Appendix)
,

Pt<P-o)= P,(p.)P,(p.') + 2 L ~~~=::Pr(p.)Pr'(p.') cos m('P - 'P'),
a-I

where po and po' are the direction cosines and fJ and fJ' are the azimuthal angles
specifying the dir~ons 0 and 0', respectively, and the P;'(p.) are associated
Legendre po~ynomials (see Appendix). Upon insertion of this into equation



(2.77) and the result into equation (2.76), the terms containing cos m(cp - cp')
vanish upon integration over cp'; then

00

fL o<1>(x, fL) + <1>(x,fL) = -2c"", (21 + l)fcp,(fL) II <1>(x,fL')PlJJ.,') dfL' + Q(x, fL).ox L -1
1=0

(2.79)

The angular flux, <1>,and the source, Q, are also expanded In Legendre
polynomials; thus,

00

"'" 2m + 1
Q(x, fL) = L 47r Qm(x)PmCfL),

m=O

cPm(x) = I <1>(x,fL)P mCfL) dQ = 21T J~1 <1>(x,fL)P m(fL) dfL

and similarly,

If Q(x, 11-) is an isotropic source, then for m = 1, it is seen that Ql(X) is zero.
When the expansions of equations (2.80) and (2.81) are inserted into equation

(2.79) and the recurrence relation for Legendre polynomials is used, it is found
that

ao:2 [d4>;~X){em + l)P",.l(}.L) + mPm-1(fL)} + (2m + l)cPm(X)Pm(fL)]
",·0

ao ao

= C L (21 + I )!r</>,(X)P,CfL) + 2 (2m + 1)Q",(x)P ",(p.).

Upon multiplying both sides by!(2n + I)P"CfL), integrating over fL from -I to 1,
and making use of the orthogonality of the Legendre polynomials, the result is

(n + I) ~-:h(x)+ n dt$.~(x) + (2n + 1)(1 - c!,,)4J,,(x) = (2n + I)Q,,(x),

n = 0, 1, 2, . . . (2.82)

with the requirement that '-leX) is zero; As in §2.4b, a PH approximation may
be defined by considering the first N +' 1 of these equations and setting
Dt;1t+l/dx - O.



A result corresponding to equation (2.82) in spherical geometry will be
derived in §3.3a.

2.6b Diffusion Theory and the Transport Cross Section

In the PI approximation, i.e., with n = 0 and 1, equation (2.82) gives

d4>1(X)
dx + (1 - c)4>o(x) = Qo(x)

Furthermore, if Q1(X) is zero, i.e., for an isotropic or zero source, equations
(2.83) and (2.84) are identical with equations (2.64) and (2.65), respectively,
except that 3ePI(X) in equation (2.65) is replaced by 3(1 - cfl)eP1(X) in equation
(2.84). As before, therefore, equations (2.83) and (2.84), for isotropic or zero
source, are equivalent to simple (Fick's law) diffusion theory, except that

It is seen that 1 - cfl is what is usually called the transport cross section and
1/(1 - cf1) is the transport mean free path, with distances in units of the collision
mean free path.

The physical significance of f1 may be seen by writing out the expression for
the average cosine of the scattering angle, {Lo; thus,

{Lo = 21T f~~JLof(JLo) dJLo = fl = f1'
21T f -1 f(JLo) dJLo fo

since fo is normalized to unity. Thus, 11 is equal to the mean eosine of the
scattering angle in a collision. In a medium containing no fissile material, with
c < I, the mean cosine of the scattering angle may be designated p.o,. Further-
more, in such a medium, c = u.!u, where u, is the scattering cross section and
u is the collision (total) cross section; it follows, therefore, that

u(l - C[l) = u - uJlo. - Utr7

where Utr is the transport cross section. Hence7 with distances in units of the
collision mean free path, the diffusion coefficient derived above can be repre-
sented by

. 1 1
D= ---- --73(0' - 0'Jl.o.) 3aU'

as commonly used in a modification of simple diffusion theory.

;

l
!
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For a source-free medium, both Qo and QI are zero; it follows then from
equations (2.83) and (2.84) that

d2c/>o
dx2 - 3(1 - c)(l - C!I)c/>O = 0

The solution to this (diffusion) equation is of the form e±xIL, where the relax-
ation (diffusion) length L is given by

L= I
V3(1 - e)(1 - ell)

For isotropic scattering'!1 is zero, and this reduces to the diffusion theory result
given earlier. A more exact calculation of the relaxation length will be developed
shortly.

It has thus been shown that the PI approximation to the one-speed transport
the;ory is equivalent to ordinary diffusion theory in a source free medium,
regardless of whether the scattering is anisotropic, as considered here, or iso-
tropic, as mentioned earlier.£ multigroup theory, however, scattering from
higher groups constitutes an isotropic source and then diffusion theory and
the PI approximation are no equivalent.

It should be noted that in PI theory, with an isotropic source, the anisotropic
scattering enters only in determining!1 and thus the transport cross section.
Consequently, in the P1 approximation, anisotropic scattering could be treated
as being isotropic but with a cross section reduced by the factor I - p.o. This
result suggests that in more general transport problems, even when P1 theory is
not used, it may be a reasonable approximation to replace anisotropic scattering
by isotropic scattering with a cross section reduced by I - fLo. In one-speed
theory this procedure is known as the transport approximation and it has been
found to be quite accurate in many applications.·s (See also §5.4b.)

2.6e The Asymptotic Relaxation Length

Exact values of the asymptotic' relaxation length can be obtained from equation
(2.79) by trying solutions of the form



so that for II =1= 0 and Q = 0, equation (2.79) becomes

It is assumed here that the scattering expansion may be terminated after L + 1

terms.*
Since asymptotic solutions are being sought, it will be postulated, as in the

method of separation of variables for isotropic scattering (§2.2b), that II is not in
the interval - I ~ II ~ I. If equation (2.87) is now divided by v - fL and multi-
ptied hy J~l' Pm(p.) dfL, a series of equations connecting the tPm(v) values is found
to he

The first L + I of these equations give L + I equations in L + I unknowns;
hence, the determinants of the coefficients must be zero, i.e.,

where lI
tm

is the Kronecker data, i.e., I when I = m, otherwise zero. For c = I,
the 'determinant in equation (2.89) is satisfied by II = ± 00, and for c near to
unit~. I' will he large. The quantity I/( I - fL'lv) may then be expanded in a
pl.mcr "cnc-. and the determinant can be written as

1- ci I +_I + ... )
\ 3v2

!~(l+2-+ ... )
3 I' 5~

") c (6 )- '-5 v2 1+ 7~ + ...

Since solutions are being sought for large values of II, the terms far from the
main diagonal may be ignored. Furthermore, the term in the expansion of the

• Notc that L in equation (2.87) is the limiting value of I, and not thc diffusion length of
the preceding section.



determinant that arises from the product of the diagonal elements IS gIven
approximately by

Product of diagonal elements ~ (1 - e) n(1 - fte).
i = 1

All other terms in the expansion are of the order of l/v2 or smaller, and therefore
the diagonal term must also be of the order of l/v2 or smaller if the determinant
is to vanish. In fact for 1 - e « I, the first factor, namely 1 - e, is small, and
it will be smaller than any other factor, since ft < 1. Hence, the first element of
the determinant must be of order l/v2 and the largest terms in the determinant,
i.e., O( 1,/v2

), are found by m,iPIYing the diagonal elements, except for the first
two, by the subdeterminant

e e
l-e-32 fI-

Va Va
= 0,

('

3va

I
Va = --;:::===== [1 + 0(1 - c)].

V3(1 - e)( 1 - e/I)

When 1 - c« I the quantity in the brackets is close to unity, and the result is
equal to the relaxation length, given by equation (2.85), derived from the PI
approximation.

Better approximations to the asymptotic relaxation length can be obtained
by the use of the full determinant. This treatment also leads to additional roots
of the determinant and thus to additional discrete eigenvalues v.49 Further
discussion of the asymptotic relaxation length is given in Ref. 50.

2.6d General Solution by Separation of Variables

The general nature of the solution of the one-speed transport equation with
anisotwpic scattering may be found by multiplying equation (2.87) by
( 1 P rrt(fl-) "fl-, as before" but not div'iding by ~, - fl-. In this way a recursion
relation between the various values of rPmis obtained,51 namely,

(2m + I)l'(l - cfm)rPm(v) - (m + l)rPm-d(v) - mrPm-I(v) = O. (2,91)

If rPa(l') is normalized so that

rP 1( v) = v( I - e)

.p:z(v) = iv:l(l - cfd(l - c) - 1



and so on. Since the tf;m(v) have been found in this manner, equation (2.87) may
be used to write

L

tf;(v,fL) = _2cp_v
_" (2/ + l)j;Pl(fL)tf;/(v) + A(v)8(fL - v)

v-fL~
i = 1

by analogy with equation (2.26) for isotropic scattering.
The discrete eigenvalues v of equation (2.92) may be found by integrating

over fL and setting the result equal to unity. Solutions have been obtained for
some special cases. The singular eigenfunctions have been examined and the
completeness of the discrete plus singular eigenfunctions has been established.52

In general, it is seen that by expanding the scattering cross sections in Legendre-
polynomials, the solution to the one-speed transport equation for anisotropic
scattering can be obtained by the separation of variables in much the same way
as it is for isotropic scattering.

The flux of neutrons at a point f2 due to a source at f1 can be related to the flux
at f1 due to a source at f2 by means of the one-speed transport equation. Such
reciprociTy relaTions, as they are called, are frequently useful in relating the
solution of a particular problem to that of a simpler problem or to one for
which the solution is known. The only assumption made is the same as that in
§2.6a, namely, that the scattering function fer; n' ~ n) depends only on the
scattering angle, and so is a function of Q.Q' = fLa. Actually, a slightly less
stringent assumption, that fer; Q' -- Q) = fer; -Q ~ - n'), would be ade-
quate here. In energy-dependent or multigroup problems similar reciprocity
relations exist but. except for neutron thermalization (Chapter 7), they involve
solutions of adjoint equations (see Chapter 6).

Consider neutron transport in a region bounded by a convex. surface. In this
section. it will be convenient to allow a boundary condition of a specified in-
coming flux, rather than zero incoming flu" i.e .• free-surface conditions, thereby
departing from the usual procedure of replacing an incoming flux by a surface
source plus a free surface. In Case A. let the source be Qt(r, n) and the angular
flux <I>l(r, Q): the boundary conditions are represented by <I>lDC.l(r, n), where r
represents a position on the boundary, and ii n < 0, where ft is a unit vector in
the direction outward normal to the surface (§l.ld). Similarly, in Case B, the
source, flux, and boundary conditions. for the same surface. are Q2(r, Q),
C1>2(r, n), and <I>lnc.2 for ft· n < 0, respectively. The functions <I>tac are assumed
to be known.

Since the scattering function is assumt'd to depend only on the scattering
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angle,f(r; Q' -+ Q) may be replaced by fer, Q. Q'). Hence, for <1>l(r,Q), the one-
speed, time-independent transport equation (2.3) can be written as

Q. V<1>l(r,Q) + a(r) <1>1(r, Q)

= a(r)c(r) I fer, Q. Q')<1>l(r,Q') dQ' + Q1(r, Q)

with <1>l(r,Q) = <1>ine.l(r,Q) ifr is on the bounding surface and fi·Q < O. Al-
though a, c, and f are functions of r, this dependence will not be included speci-
fically in the subsequent discussion. The corresponding equation for <1>2(r,Q) is

with <1>2(r,Q) = <1>ine.ir,Q) for r on the boundary and fi· Q < O. It has been
shown that the source and boundary conditions in equation (2.93) 'and (2.94)
uniquely determine the solutions 53 when c(r) < I, and this is assumed to be
true for any subcritical system.

Suppose that in equation (2.94) and its boundary condition, the signs of Q and
Q' are changed. This will leave the f term unaffected and integration over all
directions Q' will still be over all directions. Consequently, equation (2.94) may
be written

-Q·V$2(r, -Q) + a<1>2(r, -Q)

= ac J f(Q· Q')<1>2(r,- Q') dQ' + Q2(r, - Q). (2.95)

Equation (2.93) is now multiplied by <1>2(r,- Q) and equation (2.95) by
<1>dr.Q), and the expressions obtained are subtracted. The result is next inte-
grated over all angles and over the whole volume under consideration; the terms
involving a and aC then cancel.

The two gradient terms in the integral, namely,

r," ($:./(r, - Q)Q. V<1>l(r,Q) + <1>1(r,Q)Q. V<1>2(r,- Q)] dV dQ

II V· Q<1>l(r,Q)<1>2(r,- Q) dV dQ.

Then b~ U\tng the divergence theorem, this volume integral may be converted
to a ~urface Integral and the result obtained is

f tin J dJ'V n$l(r. n)$2(r. -.Q.) = J dQ idA it· Q<1>l(r,.Q.)<1>2(r,- Q), .

where dJ' IS a \olul1lC clement and dA is an element of surface on the boundary
represented by A.



If this relationship is used, the integration referred to in the last paragraph
but one can be expressed as

f f-n. Q<1>l(r, Q)<1>2(r, - Q) dQ dA

= f f [Ql(r, Q)<1>2(r, - Q) - Q2(r, -Q)<1\(r, Q)] dQ dV. (2.96)

On the left-hand side, the angular integration may be divided into two parts, one
for which ii· Q < 0 and the other for ii· Q > O. Thus,

Left side of equation (2.96) = f f ii· Q<1>I(r, Q)<1>2(r,- Q) dQ dA
Ji.n< 0

+ f f ii·Q<I>I(r, Q)<1>2(r, -Q) dQ fA.
Ilon> 0

In the first of these integrals, represented by II, it is seen that ii 0 Q < 0 and <1>1is
the boundary value <1>lnc.l;hence,

II = - f J In· QI <1>lnC.l(r,Q)<1>2(r, - Q)dQ dA.
n·n<o

In the second integral, 12, the variable may be changed from Q to - Q, so that
the integral is now over no Q < 0, and <1>2is the boundary value <1>lnC.2;thus,

12 = J f In 0 Q!¢ll(r, - Q)<1>lnc.2(r,Q) dQ dA.
o·n<o

The left side of equation (2.96) is then obtained by summing II and 12; conse-
quently, this equation may be written as

f f In·QI[<1>l(r, - Q)<I>lDC.2(r,Q) - <I>tnC.l(r,Q)<I>2(r, - Q)] dQ dA
i·g < 0

which is the desired reciprocity relation in a general form. A number of special
forms of this equation are of interest.

2.7b Applications of the Reciprocity Relation

(i) Suppose there are no incoming neutrons in either Case A or Case B; then
<1>tnc.l= <1>tnc.2= O. Consequently. it follows from equation (2.97) that

JI Ql(r. n)<1>:.l(!l'.- n) dn dV - f f Q2(r2. - Q)<1>l(r. n) dn dV. (2.98)
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FIG. 2.8 REPRESENTATION OF OPTICAL RECIPROCITY THEOREM; THE TWO
FLUXES ARE EQUAL.

Furthermore, if in Case A the source is a point source at f1 with directionQb

then

If the flux at f, Q due to the point source in Case A is represented by the Green's
function G(f1, Q1 -+ f, Q), with analogous symbols for other cases, it follows
from equation (2.98) that

This equation states that the angular flux at r1 in the direction - Q1, due to a
unit source at r2 in direction Q2 is equal to the flux at f2 in direction - Q2, due
to a unit sour<:e at f1 in direction Q1. Thus, according to equation (2.99), in one-
speed theory the angular flux is the same in the two situations depicted in Fig.
2.~ The relation in the form of equation (2.99) is frequently referred to as the
opTical reciprociTy Theorem. because of its similarity to a theorem in optics. \

If the point sources are isotropic, a similar relation applies to the total flux.
Thus. for isotropic sources

and if G(f1 -- r2) represents the total flux at f2 due to an isotropic unit source at
fl, it follows from equation (2.98) that

G(r1 :..+ f2) = G(f2 -+ 1'1).

(ii) Suppose, again, that there are no incoming neutrons, and that the volume
under consideration is divided into two separate regions (Fig. 2.9) with volumes
VI and V2• A practical situation of this type might be a fuel element and the
moderator of a heterogeneous reactor. For the present, however, a completely
general case will be considered. Let Ql be an isotropic source of intensity



1/477" Vl in Vl and zero in V2, and let Q2 be an isotropic source of intensity
1/477" V2 in V2 and zero in Vl. Thus, Ql is a uniform source emitting I neutron/see
in the volume Vl and Q2 is a uniform source emitting I neutron/see in V2•

Equation (2.98) then reduces to

V
I f ef>2(r) dV = ~ f ef>l(r) dV. (2.100)
1 VI 2 V2

Let the neutron absorption cross section in V1 have the constant value 0'1'

whereas that in V2 has the constant value 0'2' Then the rate of neutron absorption
in Vl due to a uniform unit source in V2 is also the probability that a neutron
produced uniformly in V2 wilI be absorbed in V1• This is represented by P2-1
and is given by

Rate of neutron absorption in V1 due to unit Source in V2

= 0'1 f ef>2(r) dV = P2-1·
V1

The quantity P1-2 may be defined in a similar manner and hence it follows
from equation (2.100) that

In the next section, and also in Chapter 8, it wi1l be seen that this relationship is
useful in treating heterogeneous media. It is important to note that there is no
restriction on the geometrical forms of the regions V1 and V2; some possibilities
are indicated in Fig. 2.10. The regions need not be convex, since they can always
be surrounded by a convex free surface so that equation (2.97) can be applied.

The reciprocity reiation between region t. e.g .• a fuel lump. and region 2, e.g.,
surrounding moderator, may be understood by the following heuristic argu-
ment. Suppose that all space is filled with a uniform and isotropic flux. Then no



net current will flow between the two regions. Such a situation would be realized
by a source which will precisely balance the absorption ,in, each region, i.e.,
ali41T in region 1 and a2'41T in region 2. Then aZVZP2_1 is the flow of neutrons
from 2 to 1 which must be exactly balanced by the flow a1 V1Pl-2 in the opposite
direction from I to 2. The general derivation given above is, of course, more
precise and shows that the result is independent of the geometry of the system.
In practice. J'I is usually a more-or-Iess periodiG array of fuel elements in the
moderator J '2' and the general reciprocity relation is still applicable (§2.8c).

(iii) A third example of interest is that in which in Case A there is an incoming
boundary flux <1>lnc.1 but no source and in Case B there is a uniform source
Q2(r. Q) = I throughout the volume but <t>lnc.2= O. Equation (2.97) then
becomes

II Iii·QI <!>lDC.l(r, Q)<t>2(r, ...,...Q) dQ dA = J ePl(r) dV.
itn<o

Ca~ A is here related to an albedo problem and Case B to a problem in
escape probability. For example, suppose that in Case A there is incident on a
planar surface at x = 0 a unit flux in the direction /La (Fig. 2.11 A); then

In the a·lbedo problem, it is required to determine the probability of neutron
reflectIOn from the surface. Equation (2.102) then becomes
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The right side of equation (2.103) multiplied by the absorption cross section is
clearly the rate at which the neutrons are absorbed. Case B (Fig. 2.11 B) is
equivalent to the half-space problem with a uniform source. If the angular
dependence of the emergent angular distribution from this source, i.e.,
<1>2(r, - Q) = <1>(0, fJ-) at the boundary, is known, then the solution of the albedo
problem is obtained from equation (2.103).

If <!>lnc.l in the situation described by equation (2.102) is isotropic and equal
in magnitude to I/7TA, where A is the total area of the surface under considera-
tion, then I neutron'sec is incident on the surface in Case A. Further, suppose
Q2 is IA7T V, where r is the volume, so that I neutron sec is produced uniformly
and isotropically in Case B. Then, from equation (2.102)

I ., I '
A If it·Q<1>2(r,Q)clQdA =4T·1 cPl(r)dA.

n 'n' > 0 •

The integral on the left side represents the number of neutrons per second
crossing the surface and is, therefore, the escape probability. Puc' i.e., the prob-
ability that neutrons born uniformly and isotropically in a volume will escape
"ithout making. a collision. For constant absorption cross section, the integral
on the right side of equation (2.102) is the neutron absorption rate in Case A
divided by the cross section: this quantity is denoted by Pabsia, where Paba is the
probability that a random incident neutron will be absorbed and a is the con-
stant absorption cross section. Consequently, equation (2.104) leads to

P = 4Vap
abs A' eK'

which will be used later.
The foregoing treatment has been concerned with the one-speed transport

equation. It will be seen in Chapter 6 how the relations obtained here can be



generalized to energy-dependent problems by the use of adjoint functions. It
~ay be noted, however, that if neutrons of a single energy are considered in an'
energy-dependent problem, any process which removes neutrons from that
energy group can be treated as an absorption. The relations derived above then
hold with the energy present as a parameter which determines the cross section
and sources. In this sense, the results obtained will be found useful in connection
with resonance absorption problems (see Chapter 8).

2.8a Introduction

Diffusion theory (or other PN approximation of low order) fails whenever the
angular dependence of the flux is complicated or varies rapidly over angle (J-L)
or distance (x): this is especially the case, as has been seen, near localized
sources and boundaries or in strongly absorbing media (c « I). Instead of
utilizing approximations of higher order in such situations, some special methods
based on the use of collision probabilities in purely absorbing media are fre-
quently useful.54

Consider a common situation in which reactor fuel, loaalized in the form of
lumps. e.g .. rods. is surrounded by moderator. It is then sometimes useful to
formulate the problem in terms of the probability that a neutron which appears
in some region makes its next collision in that region. In a lattice structure, for
example. tissinn neutrons may be born more-or-Iess uniformly in a fuel rod;
then. for the computation of the fast multiplication, it is required to determine
the probability that these neutrons will undergo collisions in the rod before
escaping. The neutrons which escape will be slowed down in the moderator, and
for calculating resonance absorption the probability may be determined that the
ml)derated neutrons will make their next collision in the fuel (see Chapter 8).
C\lllision probabilities have also been incorporated in a widely used diffusion
the\)r~ calculatIOn involving thermal neutrons.55

In the t~plcal one-speed collision probability calculation, the space is con-
Sidered tll be di\ ided into a finite number of regions and it is assumed that
neutr,ln, are pr,)(juced uniformly and isotropically in one of these regions. The
pr\)hlem I~ then to determine the probability that neutrons make their next
colltslon In the source region or in one of the other regions. Frequently, there
an: onl) l\H) regIOns. namely. fuel and moderator. Some general methods are
rre~nted helo" for calculating collision probabilities which are often used in
cllnjunctlOn "nh the reciprocity relations derived above in the treatment of
hetern~enel)us media.

2.8b Escape Probabilities: The Chord Method
Supp..~ neutrons are generated isotropically and uniformly in a convex region
of \olume V conta.ining material of constant (total) cross section a. Now. con-
sider a neutron "hleh is produced at position r with direction n. If R(r, Q) is the



distance from this point to the boundary of the region (Fig. 2.12) in the direction
Q, the probability that the neutron will escape from the region without making
a col1ision is

Probability of escape = e - oR(r.Q).

But with a uniform and isotropic source. the probability that a neutron wil1 be
generated in the direction dQ about Q and pl)sition in the volume element dV
about r is

dQdV
Probability of generation = 4;;- 17'

The escape probability Pesc for neutrons born in the v,'hole volume V is obtained
by integrating the product of the two probabilities derived above over all
directions and volume: thus,

P = _1_ ff e-C1R1r,n) dQ dV
eac 47T V • .

For the evaluation of this expression. the volume V is divided into tubes parallel
to a fixed direction Q (Fig. 2.13); a typical tube then has a length Rs and a cross-
sectional area (n· Q) dA. so that

dV = (fi·n)dA dR,

with D' n > O. Consequently, equation (2.106) may be integrated over R to
yield

If the rli,.11cnsions of the body are large compared with the neutron mean free



path, l/a, the exponential term can be set equal to zero, and the integral IS

simply

.ff n·Q dQ dA = 7TA,
n·Q>o

A
Pesc = 4aV

for bodies with dimensions that are large relative to a mean free path. Numeri-
cally, A4a l" is equal to the fraction of neutrons generated within a quarter of
a mean free path, i.e .. I i4a, of the surface. It is, therefore, as if all neutrons born
within a quarter mean free path of the surface escape.

Equation (2.108) can be derived in a simple manner by assuming that, on the
scale of a mean free path, the surface of a "large" body can be treated as a
plane. Consider. therefore. an infinite half-space and a plane boundary (Fig.
2.14). The half-space contains a uniform source Qo per unit volume, i.e., QO/47T
per unit solid angle per unit volume. A neutron born at 0 at a distance x from
the surface and directed at an angle e to the x coordinate, where fL = cos e, will
have a probability e - ox II of escaping without making a collision. The total
number of neutrons escaping per unit area can be found by integrating over fL

[or 0 ~ fL ~ I and over x from 0 ~ x ~ 00; hence

Number of neutrons Q [ flfoo ]
=47T

O
27T 00 e-ox1lldxdfLescaping per unit area



FIG. 2.14 INFINITE HALF-SPACE WITH UNI-
FORM SOURCE AND PLANE BOUNDARY.

The total number of neutrons escaping from the area A is then QoA /40;
the probability that a neutron will escape is thus A /40 V, as in equation
(2.108).

Since Pcsc given by equation (2.108) applies to large bodies, whereas for small
bodies Pesc must approach unity, a rational approximation proposed by E. P.
Wigner!it> for bodies of all sizes is

IP .....---- (Wigner rational approximation).
esc - I + 40 VI A -

In Table 2.8,57 this approximation is compared with the results of exact calcu-
lations for spheres and slabs and infinitely long cylinders; R, which is defined
below, is the average chord length, so that oR is the average chord length ex-
pressed in mean free paths. It is seen that the Wigner rational approximation is
in general too small, but it is frequently accurate enough to be useful. For
example. it facilitates the treatment of resonance escape in heterogeneous
systems (see Chapter 8).

The evaluation of Pesc from equation (2.107) has been carried out along the
following lines. 58 Let chords be drawn from a surface element dA (Fig. 2.15) such
that their number in direction R is proportional to 1ft· RI. Let p(R) dR be the
probability that the chord is of length between Rand R + dR; then

II 1ft· R\ dR dA
(R)dR _ &_1 _

P - II Ift·RI dR dA
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The denominator, as before, is equal to 1TA. Furthermore, the average chord
length, R. is defined by

_ fJ Rlfi· QI dQ dA
R = -----. (2.111)If Ifi·QI dQ dA

The volume oreach tube of length R (in Fig. 2.13) is equal to Rjfi·QI dA; hence
the total volume V is given by

J Rlfi·QI dA = V.



Consequently, equation (2.111) becomes

- 4VR=-·A

Upon insertion of equations (2.110) and (2.112) into equation (2.107) the
result is

Pese = aiR J p(R)(l - e- C1R) dR,

and the rational approximation equation (2.109) may be written

Pesc ::::: I 1 (rational approximation).+ aR

For simple geometries. the probability peR) can be found and then Pesc can be
derived ~xactly from equation (2.113).59
" Consider. for example. an infinite slab of thickness a; the chords are chosen

so that the number in c/fl is proportional to fl, where fl = cos e = a/ R (Fig.
2.16). From equation (2.110).

- peR) dR = 2fl dp.,

202

peR) = RJ'

Consequently, equation (2.113) can be written as

I reo 202

Pelle = R- R3 (l - e - C1R) dR.
a .4

In this case, it follows from equation (2.1 12) that

R = 20.
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where £3 is the exponential integral function of the third order (see Appendix).
For a sphere of radius a, equation (2.113) takes the form 60

Corresponding expressions have been evaluated for infinite cylinders, spheroids,
and hemispheres.61 and also for finite cylinders and cuboids.62

The region from which the probability of neutron escape has been derived
above may be regarded as a lump of fuel, volume VF, surrounded by a moderator,
volume V"I (Fig. 2.17}. The escape probability is thus equivalent to Pl-2 for
purely absorbing media * in §2.7b, which is represented here by the symbol
PF-M; thus,

It is now possible to find P"I-r in terms of Pesc from equation (2.101), where
P"I-r is the probability that a neutron produced uniformly in the moderator
region 1'.1 makes its first collision in the fuel lump. F.

For this simple geometry. i.e .. a single lump offuel in an extensive moderator,
the reciprocity relation may be developed from the following argument. Suppose
there is a uniform and isotropic source of intensity I 'Arr ~'''1 in a large volume VM

• Since p••r is the probabilily of escape without collision from medium I and. in addition.
the neutron must not return from medium 2. Ppsc is equi"alent to Pl-2 provided that. in
computing the latter. all Collisions are regarded as absoqHllms or. in other ,,"ords. the
media are treated as being purely absorbing.

FIG. 2.17 FUEL AND MODERATOR RE-
GIONS.



of the moderator. The flux incident on VM will appear to be like that from an
infinite medium; thus, writing aM for the moderator cross section,

PM-F = 47f:
M
V

M
.f f 10·QI(I - e-UFR

.) dQ dA.
n.n<o

Upon comparison with Py-M, given by equation (2.107), with VF and Uy, and
noting that the integrals have the same value for o· Q > 0 and for o· Q < 0, it
follows that

which is exactly equivalent to the reciprocity relation of equation (2.10 I).
Equation (2.105) may be derived directly in a similar maRner.

In the practical case in which a number of fuel rods in a periodic array are
separated by moderator which is not very thick. in mean free paths, the foregoing
calculations can still give the probability for a neutron to escape from a fuel rod.
To compute the probability, P~'_"I' that a neutron born in the fuel will make its
next collision in the moderator. the escape probability for a single rod must be
multIplied by the probability that the escaped neutron will make its next
collision in the moderator.

For this purpose. by using equatinns (2.111) and (2.112). equation (2.107)
may be written as

JJ ii·Q(1 - ('-R,ff)tlQclA

Prs, = aR f.f ii·Q clQ ciA

where Pr,.c is represented as an ;Iverage over direction (tlQ) and surface (dA) and
the integrals are to be evaluated over ii· Q > O. For any surface element dA and
direction Q, the chord under consideration may be extended and further fuel
elements may be intercepted. as indicated in Fig. 2.18. Hence. in computing
p.·-w• the contribution of this chord should be reduced by

where t-d is the transmission probability and I - t-·· the collision probability
in the indicated regions. Consequently. this factor must be included in the inte-
grand of equation (2.118) to give P, -w. Because of the resulting complexity,
Monte Carlo methods are often used for computing P.,-w. The integrand is
sampled at random dn dA points and in this manner the integral is approxi-
mated.
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In spite of the complexity of the integrand, useful approximations to PF-M can
be found by simple methods. For this purpose, the following probabilities are
defined for the case in which neutrons are produced uniformly in the fuel:

P~ = probability that a neutron incident on the moderator after i previous
traversals of fuel will collide in the moderator.

P~ = probability that a neutron incident on fuel after i previous traversals
of fuel will collide in fuel.

p •.-w = Purrp~ + (I - P~)(I - P~)P~ + (I - P~)
x (I - P~)(I - P~)(l - P~)P~ + ... ]. (2.119)

In the majority of cases. the first few terms of this expression are the most
important and a good approximation can be obtained by replacing all the
Pi. by P~ and all the p~ by P~. After summation of the series, it is found that

It is customary to set P~ = I - C. where C is caned the DancofJ correction.63

Extensl\e tabulations of this correction factor are available and a selection of
values is gi\ en in Table 2.9.64 Furthermore. from equations (2.105) and (2.112)~
it is possible to write

1- C
C( I - uFR •.Pesc)

The Dancotr correction is often calculated for ••black," i.e., perfectly absorbing,
cylinders.. and considerable work has been done on this subject.65



Pt--" ~ - (fully rational).
I + GFR.-

"' here RF is the effective chord length defined by

- - I + a"R!>IRI-o = R., ----
G,..RlJ,

The accuracy l)f this fully rational approximation is similar to that for Pesc I •
obtained b~ using the Wigner rational approximation. as given in Table 2.8. A j
detailed cl)olpari~on or the results obtained by various methods of computation
is to be found in the litcrature.66

The fully rational approximation to p."-w has desirable limiting properties.
First.,jf the moderator is thick in mean free paths. so that Gw. Rw is large, it
follows from equation (2.124) that Rr ~ Rr. Then Pr-w• as given by equation

124 ONE-SPEED TRANSPORT THEORY

TABLE 2.9. DANCOFF CORRECTIONS64

~d/r 0 0.25 0.50 1.0 1.5 2.0

2.0 0.182 0.170 0.160 0.144 0.132 0.123
2.5 0.136 0.107 0.0849 0.0550 0.0364 0.0245
4.0 0.081 0.040 0.0205 0.0057 0.0016 0.0005
7.0 0.046 0.0094 0.0021 0.0001

10.0 0.032 0.0028 0.0003

r = radius of fuel cylinder
d = spacing between cylinder centers
a = macroscopic cross section of moderator

Correction in table is for one adjacent fuel cylinder. For lattices, a sum is taken
over all adjacent cylinders, i.e., C = 2.j Cj, with Cj taken from the table.

For preliminary survey calculations, it is adequate to use the rational ap-
proximation of equation (2.114) for Pesc• and then equation (2.12\) takes the
form

(I - C)jRF

Pr-M ~ (I C - (2.\22)
aF + - )/RF

By comparison with equation (2.114) it is seen that. in the rational approxi-
mation. the DancolT correction is equivalent to increasing the mean chord
length. R.-. by the factor 1'( I - C) or. what is the same thing. decreasing the
surface area of fuel by I - C.

Fair accuracy is also obtained by using the rational approximation for
P~ = I - C:thus.fromequations(2.I05).(2.112l.and(2.114).

Po - P 'cr" R"
M = a:.1R:.t esc.:.t ~ I -+ a:.,R:.\

Substitutitln t)f thi ...c\pression for I - C in equatil)O (2.122) then gives the so-
callcd full: ratltHlal apprlnimation to p •._:.,.
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(2.123), approximates Pesc as expressed by equation (2.114). Second, if both fuel
and moderator regions are thin in mean free paths, i.e., uFRF « 1 and uMRM « 1,
a neutron will, on the average, cross both regions several times before making a
collision; as far as a neutron is concerned, therefore, the system is essentially
homogeneous. For uMRM « 1, equation (2.124) becomes

- RFRF ::::: ----.

uMRM

If RF and RM are expressed in terms of equation (2.112) and this result for RF is
substituted into equation (2.123), it is found that

as would be expected in the homogeneous limit. It will be noted thatin deriving
equation (2.125), the only assumption made is that uMRM « 1, i.e., that. the
moderator is thin; the result is thus independent of the fuel thickness. The reason
is that the neutron flux is nearly uniform in both fuel and moderator provided
the moderator is thin and the source is in the fuel. In order that both PF-M and
PM-F have the form for a homogeneous system, however, it is necessary that
both fuel and moderator be thin, i.e., uFRF « 1 and uMRM « 1.

Finally, in connection with the fully rational approximation, it can be shown
that the fully rational forms of PM-F and PF-M satisfy the exact reciprocity
relation of equation (2.10 I).

It may be mentioned in conclusion that, as will be seen in Chapter 8, collision
probabilities are useful for computing resonance absorption of neutrons in
reactor lattices, i.e., periodic arrays of fuel elements. For" tight" lattices, in
which the fuel elements are closely spaced, such as are common in water-
moderated reactors, the collision probabilities are determined by using the
Dancoff corrections to the escape probability or equivalent methods, as
described above.

iF- 1. Use the integral equation (1.37) of plane geometry to find the discrete eigen-
values of §2.2b. Suggest other possible ways of finding them (see Ref. 67).

2. Show that equation (2.50) is the same as the transient part of equation (2.40).
~ 3. Verify equation (2.52). Students familiar with complex variable theory should

also attempt to evaluate the solution.
4. Derive equation (2.82) in detail.
5. Obtain an expression for the values of III (§2.4b) in the Pa approximation.
6. Derive the flux from a plane isotropic source in an infinite medium in the four

ways indicated below, and compare and discuss the results for c = 0.5 and 0.9.
(D) Exact transport theory; use Tables 8 and 21 in Ref. 68.
(b) Diffusion theory; use L given by equation (2.24).



(c) Asymptotic diffusion theory; use exact values of Vo in Table 2.1.
(d) An approach in which the uncollided flux is treated separately and used as

the source for a diffusion theory calculation of the collided flux (cf. Ref. 69).
7. Derive equation (2.116) from the integral equation (1.37) for the neutron flux in

plane geometry. Take the source as constant, compute the absorption, and
hence the escape probability for a purely absorbing medium. Determine the
angular distribution of the emerging flux and current, and also obtain the escape
probability from the total emerging current.

8. Show that the fully rational forms of PF-M and PM-F, as defined in §2.8c, satisfy
equation (2.101).

9. Derive PF-M and the Dancoff correction for a periodic array of fuel and modera-
tor slabs having thicknesses dF and dM mean free paths, respectively. Consider the
limits of large and small spacings and examine the validity of equation (2.116)
and of the rational approximation for PF-y• The interested student may review
the corresponding problem for a periodic array of fuel cylinders (cf. Ref. 70).

tIO. Su~that a right half-space (x > 0) is a uniform medium, with a = 1 and
c < I, containing an isotropic uniform source, Qo. The left half-space (x < 0) is
a vacuum and free-surface boundary conditions apply at x = O. Discuss the
exact solution of the one-speed, time-independent transport equation near the
boundary, far from the boundary, etc. Obtain the exact solution for c = 0 and
relate it to the general discussion.71

II. In a medium consisting of uranium-235, the neutrons are essentially all fast
(E ~ 100 keY) and, as a first approximation, all the neutrons may be considered
to have the same energy. Calculate the critical radius and mass of a sphere of
uranium-235 (density 18.8 g/cm:1) by (a) end-point theory and (b) diffusion
theory. assuming isotropic scattering. The following data are to be used:
af = 1.3 barns. 0, = 4.0 barns, a, = 0, and ii = 2.5. (The results may be com-
pared \\ ith the critical radius of the Godiva assembly in Table 5.6.)

12. Consider a reactor lattice consisting of three regions, namely, fuel, cladding, and
a thick moderator "ith volumes VF, Vc, and VM, respectively. Define a consistent
set of colll'lon probabilities PF-C, etc., and derive the reciprocity relations be-
t\\cen them.

13. Derl\e cl.\uation (2.117).
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3. NUMERICAL
METHODS FOR
ONE-SPEED PROBLEMS:
SIMPLE p.\.
APPROXIMATIONS

3.1 EXPANSION OF FLUX IN LEGENDRE POLYNOMIALS
FOR PLANE GEOMETRY

In the prcl.:edtng chapter. sc\eral methods were described for solving the one-
"peed tran..,p~\rt equatll)n. The emphasis was on procedures for obtaining
accurate solutl~)n-. for \cry simple situations and on the general properties of
thc"e soJutlllOS. In the present chapter. consideration will be given to some
methods fM arri\ ing at approximate numerical solutions of problems with more
comp!ll.:aled geometries and source distributions. The one-speed transport
equatH)n v.111be treated here. but it will be seen in Chapter 4 that the techniques
de\c1ilped are dlrectl~ applicable in the multigroup methods used for the solu-
tllln of reailstK (energ)-dependent) physical problems.

The procedures tn be discussed in this chapter are based on the expansion of
the angular distribution of the neutron flux, i.e., the dependence of <1> on the
direction Q. in a complete set of orthogonal functions, namely, the Legendre



polynomials in simple geometries and the spherical harmonics in general. _The
expansions are truncated after a few terms in order to develop practical methods
for solving the resulting form of the neutron transport equation. The spatial
dependence of the angular flux is obtained by imposing a discrete space mesh
and evaluating the flux at discrete space points, rather than as a continuous
function of position. In an alternative general procedure, which will be de-
veloped in Chapter 5, the direction variable, Q, is also treated as discrete.

In Chapter 2, a general form of the time-independent, one-speed neutron
transport equation was derived as equation (2.3). This expression will be pre-
sented here with a slightly different notation which is desirable in order to estab-
lish the connection between the results obtained in this chapter and those in
Chapter 4.

As before, it will be assumed that scattering is a function only of the cosine
of the scattering angle, i.e., 11-0 = Q. Q' ~ where Q' and Q are the neutron
directions before and after scattering, respectively. A quantity as(r, Q. Q') is
then defined by

where the notation as is intended to suggest, although not to be limited to, a
scattering cross section.

It will be assumed in the present chapter that

f as(r, Q. Q') dQ: < a(r),

implying that e(r), the mean number of neutrons emerging from a collision, is
less than unity. There will then exist a unique, time-independent solution to the
transport problem with a given source (§I.5d).

With this change in notation, the one-speed transport equation (2.3) becomes

n· v<I>(r,Q) + a(r)<I>(r, Q) = f O',(r, Sl·Q')<I>(r, Sl') dSl' + Q(r, Q). (3.2)

Methods will first be examined for solving this equation in plane geometry. Then
more general geometries will be considered, with particular emphasis on the P1

and diffusion approximations. Finally, some more specialized treatments for
plane and cylindrical geometries will be described.

3.1b Plane Geometry: Spherical Harmonics Expansion

From the arguments in §2.lc, it follows tha~ in infinite plane geometry, C1> can
be expressed as a function of the spatial coordinate, x, and of the direction
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cosine, fL, relative to the x axis, i.e., fL = Q. X, where x is a unit vector in the x
direction. Hence, with fLo = Q.Q', equation (3.2) becomes

fL a<1>~~ fL) + a(x)<1>(x, fL) = J as(x, fLo)<1>(X, fL') dQ' + Q(x, fL)

12Jt J1= dcp' as(x, fLo)<1>(X, fL') dfL' + Q(x, fL);
, 0 -1

where cp' is the azimuthal angle corresponding to the direction Q'.
These results are equivalent to equations (2.4) and (2.5), except that the total

cross section, a, and the scattering function, as, are here arbitrary functions of
position x, whereas in Chapter 2 it was usual1y assumed that as/a is independent
of position.

The procedure for solving equation (3.3) is similar to that used for anisotropic
scattering in plane geometry in Chapter 2. First, the scattering function is
expanded in Legendre polynomials, by writing

and then p/(fl-o) is expressed in terms of the Legendre polynomials and associ-
ated Legendre functions of the direction cosines fl- and fl-' by using the addition
theorem. Upon carrying out the integration over cp' as described in §2.6a, equa-
tion (3.3) then leads to the result. analogous to equation (2.79),

('<1>
fl- -. - + a(x) <1>

ex

The angular flux. <1>. and source. Q. are now also expanded in Legendre poly-
nomials. and by following the steps described in §2.6a it is found that

(n + l)d4> ••.• \(x) d4>••._\(x) (2 I) (.)..J. ( )
dx + n dx + n + an·\ 'f'n X



The expansion coefficients ~n and Qn (cf. §2.6a) are given by the orthogonality
conditions as

Apart from the treatment here of a and as as space dependent, equation (3.5) is
the same as equation (2.82), in which a was unity.

Since the Legendre polynomials are complete for functions in the range of
- I ~ fL ~ I, the set of equations (3.5) is equivalent to the original one-speed
transport equation in infinite plane geometry. The only assumption made is that
as is a function of Q. Q' and, as noted in Chapter I, this is a good approximation
in most physical situations.

Although Legendre polynomials were used above to represent the angular
dependence of the neutron flux, the set of equations (3.5) is said to result from
the use of the method of spherical harmonics. In plane geometry, however, it was
not necessary to expand the angular dependence of the flux in spherical har-
monics ~because of the symmetry of the angular flux about the x axis, the expan-
sion could be made in those spherical harmonics which are symmetrical about
the rotation axis, namely, the Legendre polynomials (see Appendix). More
general situations, where this is not possible, will be encountered later in this
chapter.

3.1c The p .••Approximation

In order to solve the infinite set of equations (3.5) it is necessary to place a limit
on the number in the set. As explained in §2.4b. this is done by setting

dcjJ,\,. \(x) = 0
dx '

thereby reducing the number of unknowns to l\' + I. The resulting set of N + I
equations in N + I unknowns then represents the p .•.; approximation for the
one-speed neutron transport problem.

3.1d The Pi Approximation

From the considerations in Chapter 2. it would appear that reasonably accurate
solutions might be obtained for small N if the systems under consideration were
large and neutron absorption small. Most reactors are, in fact, large systems and
for computing the gross spatial dependence of the flux the Pi approximation
(N 1m I) has been found to be very useful.
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In this case, the only equations that need to be considered are those. for which
n = 0 and n = I in the set of equation (3.5). Moreover, as seen in §2.4a, the
quantities cj>o(x) and cj>l(X) which appear in these equations are equal to the total
flux, cj>(x), and the current in the x direction, lx, respectively; thus, from equation
(3.6a),

cj>o(x) = 21T J~1 <D(x, p.) dp. = cj>(x)

dJ(x)-;]X + ao(x)cj>(x) = Qo(x)

where, from equation (3.6b),

Qo(x) = 21T J~1 Q(x, p.) dp.

QI(X) = 21T J~1 p.Q(x, p.) dp..

If Q(x, p.) is an isotropic source, then QI(X) = O. It is of interest to note that, in
the terminology of §2.6b, ao is the absorption cross section and ai is the transport
cross section.

If the source is isotropic, so that QI is zero, equation (3.8) becomes a form
of Fick's law, namely,

lex) = - D(x) dcj>(x)
dx

with D = 1/3u1' This result may be combined with equation (3.7) to give a
diffusion equation

d [ dcj>(x)]
- dx D(x) dx + ao(x)cj>(x) = Qo(x).

The procedures for solving these PI and diffusion equations for the spatial
distribution of the neutron flux will be described later in this chapter.

It wilt be seen in Chapter 4 that, in multigroup theory, the source, equivalent
to Q1. in a group is rarely isotropic. The transition from PI theory to diffusion
theory will then involve some physical assumptions (§4.3b).
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3.1e Boundary and Interface Conditions

To obtain solutions to the PN equations, or to spherical harmonics equations in
general, boundary conditions are required. Thus, for a set of N + 1 ordinary,
first-order differential equations for the N + 1 scalar expansion coefficients, it is
necessary to have N + I conditions. Furthermore, the set of equations (3.5) are
not defined at interfaces, where O'n(x) is discontinuous; consequently, interface
conditions are also required.

Suppose that a solution for the PN equations is sought for a region 0 ~ x ~ a
and that free-surface boundary conditions (§l.ld) are to be imposed at the two
surfaces for which x = 0 and x = a. It was seen in §2.5d that the exact boundary
conditions cannot be satisfied in a PN approximation and there is some freedom
in the choice of approximate boundary conditions. For example, either Marshak
or Mark boundary conditions can be used.

For the PI approximation, the Marshak conditions of zero incoming current
(§2.5d) would be [cf. equation (2.72)]

f: :7T [4>(0) + 3flJ(0)] dfl = 0

J: 1 :7T [4>(a) + 3flJ(a)] dfl = 0,

More generally, the requirement of zero incoming current could be represented
by

where n is an outward unit normal vector.
For diffusion theory, Fick's law in plane geometry is

d4>
J = - D dx X.

dq,
q,+2D-fi·x=O.dx



Boundary conditions such as those in equations (3.10) and (3.11) are fre-
quently used to represent a free surface in plane geometry. In diffusion theory,
the flux is often simply set equal to zero on some extrapolated boundary, as
described in ~2.5d.

It is often required to perform a calculation of the neutron flux for a unit cell of
a periodic lattice. As an example, consider a regular array of fuel sheets sepa-
rated by moderator in a critical assembly. In these circumstances, a calculation
can be made for a cell composed of half a single fuel sheet plus half the modera-
tor and then periodic boundary conditions can be imposed (see Fig. 3.1). The
neutron flux is an even function of fJ- at x = 0 and x = Xa, so that odd-order
expansion coefficients would have to vanish at these two points. For example, in
PI theory. J would be zero at x = 0 and x = Xa. Conditions of this type are
sometimes referred to as reflecting boundary conditions, since they would be
obtained if specular reflecting surfaces were placed at the boundaries. An
alternative approach is to make the cell run from x = 0' to x = Xb in Fig. 3. I;
the requirement is then that <Pn(O') = <Pn(xb) for all values of n considered. These
are called periodic hOllndary conditions. Either reflecting or periodic boundary
conditions"" ill give the required N + I conditions in plane geometry.
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General Boundary Condition in Diffusion Theory

In diffusion theory. a variety of situations can be included In the general
boundary condition

where b is a nonnegative function on the boundary. Thus, if b = 2D, the free-
surface Marshak condition of equation (3.11) is obtained. On the other hand, if
b is very large, the condition becomes essentially one of zero current (or reflec-
tion) on the boundary. As indicated. the function b must be nonnegative, other-
wise, since ~ is positive. the neutron flux would exhibit the unphysical behavior
of increasing outward beyond the boundary. The general boundary condition in
equation (3.12) will be used from time to time in this chapter and the next.

At various interfaces bet\\'een different regIOns in a reactor system. the cross
sections change discontinuously. The exransion coeftlcients. however. are con-
tinuous across interfaces. It was seen in~ 1.1d that <!>(r+ sQ. Q. E. r + sIr) is
a continuous function of s. In the rresent context of a time-independent, one-
srecd problem in r1ane geometry. this means that (/1(,· + SjJ .• fl.) must be a con-
tinuous function of s. It ft)llows. therefore. except possibly for f1. = 0, that
<J)(x. fl) is a continuous function of .r. (The special case of fl = ° is treated in
~3.5a.) Since for any It i= 0. the angular flux <II 'is' a ct)ntilluous function of x. so
also \\ ill be the integrals of <JI mer Ii, i.e .. tPn(r). Thus. the exransion coefficients
are continuous functions of x. *

When It)calizcd strong absorbers of neutrt)ns are tt) he treated in a PI calcu-
lation. or hy any other lov.-order arproximation to the angular derendence of
the flux. then the interface conditions are often adju..red to gi\e results v. hich are
in better agreement \\ ith .. exact" solLJtiom. The treatment of such adjustments
is usually called blackness theory.2

3.2a Difference Equations in the PI Approximation

A practical method for sohing the PI equatIOns (3.7) and (3.8) is based on
superimrosing a discrete mesh of space pOInh on the regltlO of interest. Consider
a system composed of a finite number of space rcglOm ~ it is supposed that

• For PIt appro,.matlons of c\'C:n ordcr. the (orC',olOl (",nllnult) conditiOns arc not self-
conslstcnt and m.ust be modified I; they are correct. hl,..~c\cr. for the odd-order approxima-
tions. In reactor calculations. the latter are u~ much m~ (rcq IXnt I)' lhan approximations
or even order.
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within each region the cross sections ao and al exhibit no spatial variation. Most
physical systems can be closely approximated by such a set of discrete regions
and usually each physical region with a uniform chemical composition will be
represented by one of these regions.

In plane (one-dimensional) geometry, a set of points Xk' where k = 0,1, ... , K
is chosen such that the boundaries of the problem are at Xo and XK and there is a
point at each interface between two regions (Fig. 3.2). The distances between
successive points should ordinarily be small compared with a neutron mean
free path: for a typical practical one-dimensional problem, K might be of the
order of 50. Consider the mesh in the vicinity of Xb as indicated in Fig. 3.3. It is
possible to derive difference equations which approximate equations (3.7) and

t---41*-1. --t--41*+.!.-~
I 2 I 2 I
I x* _ !. I x*+.!. I
I I 2 I 2 I
I' I I I
I I I I
I I I I
I I I I I
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(3.8) by integrating over a region of x in this figure. If equation (3.7) is integrated
from Xk-(1/21 to Xk+(1/2h where

Xk-O/2) = ·HXk-l + Xk) and Xk+O/2) = ·Hxk + Xk+l),

it is found that

I"1c+ (1/2) f"lc + (1/2)Jk+O/2) - Jk-O/2) + Go(X)eP(X) dx = Qo(X) dx,· (3.13)
"1c-(1/2) ""-(1/2)

where Jk+O/2) is the value of J at x = Xk+O/2), etc. Since Go is constant between
any two mesh points, the integrals may be approximated by

I"I< +(1/2) Go(X)eP(X) dx ~ GO.k+(1/2)~k+O/2) ~ GO.k-O/2) ~k-O/2) ePk = bOkePk

"I< - 012>

I"k+(112) ~k+O/2) + ~k-(1/2) Q _ A Q
Qo(X) dx ~ 2 Ok - Uk Ok

"1c-()/2)

where ePk and QOk are the values of eP and Qo at x = Xk•

Similarly, equation (3.8) can be integrated over the interval Xk ~ x ~ Xk+1

or Xk-1 ~ x ~ Xk to obtain equations for J"+11/2) and Jk-O/2) in terms of ePk-b

ePk, and ePic+ l' By using the same approximation for the integrals as before, it is
found that

(3.17)

(3.18)

3.2b Approximation Errors in the Difference Equations

In deriving equations (3.16), (3.17), and (3.18), the integrals, sl:lch as those in
equations (3.14) and (3.15), were approximated in a very simple manner. Better
approximations to these integrals could have been used, but the resulting dif-
ference equations would have been more complicated than equation (3.16).
Experience has shown, however, that -in reactor calculations such complications
are not worth the extra effort required for their treatment.3 Nevertheless, it is
of interest to consider the magnitude of the error involved in the approximation
used above.

Suppose, for simplicity, that the point .fir does not lie on an intaface, so that
Go(x) is a constant in the integral in equation (3.14). The approximation in this
equation consequently is equivalent to setting



If c/J(x) is assumed to be continuous and differentiable as many times as required,
it may be expanded in a Taylor series: thus,

where the primes indicate derivatives with respect to x. When this expression for
c/J(x) is used in the integral for c/J(x), it is found that

[
l 3 (l A )3] c/J"(xk)+ b-~k+(1/2») - --ZUk-(1/2) 3! +,. '.

Hence. equation (3.14) is obtained by truncating equation (3.19) after the first
term.

The resulting truncation error can be estimated from the magnitude of the
first neglected term in equation (3.19). In general, for a nonuniform spacing of
the mesh points. this will be the second term on the right of the equation. For
a uniform mesh. however. ~/\+(1/2) = ~k-(1/2) = ~ and then the coefficient of
cP'(k) is zero: the first neglected term is now the third in equation (3.19) and it is
equal tl) (} ~3 3!)<P"(xl,:)' In either case. it is evident that the neglected term can
be made small compared to ~kc/Jk by selection of a sufficiently fine space mesh,
i.e .. small \alues of ~,. The mesh can be relatively coarse, however, where the
flux does not change very rapidly. for then c/Jt and c/J" are small in comparison
with 4;J. Some discussion of the effects of the truncation errors in certain reactor
calculatil)ns ••••ill be found in Ref. 4.

As a practical matter. the truncation effects can be examined by varying, e.g.,
hahin~. the mesh spacing in a problem of interest and determining the magni-
tude l)f the resulting change in the flux or other calculated quantity. In this
manner It I'" fl)und that. as a rule of thumb, the choice of one mesh point per
mean fn:e path IS rea-.onahle. Where the flux is changing rapidly in space, a
~(lmC'••••hat fIner mesh I" desirahle, but where it is varying slowly a coarser mesh
,,111 su tlice .

3.2c Solving the PI Difference Equations

The s)stem l)f equations (3.16), (3.17), and (3.18), plus boundary conditions,
could he sohed directly. For application in multigroup diffusion theory in
Chapler 4, hO'o'C'\er, It IS convenient to solve equations (3.17) and (3.18) for
J~.o ;l' and J. -II Zl and substitute in equation (3.16); the result is
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(3.21) I

1

(3.22)

(3.23)

1
ak.k+l = -3 = ak+1.k

ak + (1/2) ~k + (1/2)

1
ak.k-l = - ------ = ak-1.k

3ak-(1/2) ~k-(1/2)

akk = bOk - ak.k-l - ak.k+l

and Sk represents the source term

A Q Ql.k+(1/2) + QI.k-(1/2).
Sk = Uk Ok - ---- ----

3ak + (1/2) 3ak - 0/2)

Equation (3.20) can be derived for k = 1, 2, ... , K - 1, so that there are
K - 1 equations for the K + 1 unknowns, cPo, cP1> rP2' ... , cPK, the neutron fluxes
at the mesh points. The remaining two equations must be obtained from
boundary conditions. For a vacuum (free-surface) boundary, it is convenient and
sufficiently accurate for most PI calculations simply to set cPo = cPK = 0 and let
Xo and Xl{ be at some extrapolated boundaries. With these boundary conditions,
cPo and cPK can be eliminated from the set of equations (3.20), thereby making the
number of unknowns equal to the number of equations.

If the vectorsep and s, having {cPk} and {Sk} as their components, are defined by

aOO a01 0 0
a10 all a12 0

A= 0 a21 a.) 2 a23

0 0
..

a32" a33,.....•
'aK.K

Act> = s. (3.25)

It wilt be recalled that in this equation A and s are known, and ct>is to be found.
Formally, if an inverse ex.ists of the matri~ A, i.e., A - 1, such that A -1 A = I, the
unit matrix.. then equation (3.25) could be multiplied by A -1 and solved for ct>;
that is.
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The problem of solving for the spatial distribution of the neutron flux is con-
sequently reduced to that of inverting the matri~ A.

For the case under consideration, all values of an m are zero except those for
which m = n - I, n, n + 1; the inversion of the matrix can then be readily
effected. More direct methods for findingep can, however, be used in the present
case. As an example, the Gauss elimination method will be described. By starting
with equation (3.20) with k = I and using the boundary condition ¢o = 0 (or
some other boundary conditions that eliminates ¢o), this equation becomes

all¢l + a12¢2 = S11 (3.27)
and hence

¢1 = -a12¢2 + Sl

all

Upon substituting the value for ¢1 given in equation (3.27), it is possible to
solve for ¢2 in terms of ¢3'

By repeating this process, the equation (3.20) for k = K - 1 is finally reached
and since cPl\" = 0, this is

But an expression for chK _ 2 in terms of cPK -1 has been obtained from the preced-
ing \/\ = K - 2) equation. and so equation (3.29) can be solved to obtain aR
explicit value for cPK _ l' The chain of equations can now be reversed to find the
other values of cb~. It can be shown that, because the diagonal elements of the
matrix A are larger than the off-diagonal elements, this scheme is stable for
numerical work.~) The procedure just described is often called the method of
sweeps!>: the name derives from the fact that two sweeps through the mesh, one
in the direction of increasing x and the other in the direction of decreasing x.
are requIred to determine the solutions.

The essential point about the method of sweeps is that, in each step, an equa-
tion like (3.27) is solved for the particular component ¢k which has the largest
coeffiCIent and then that 4>,. is eliminated from the fol1owing equation. If the
reverse procedure had been adopted, namely, if equation (3.27) had beensolved
for 4>2 In terms of 4>1' and cPl had been carried through the chain of equations.
the coefficient of 4>1 would increase exponentially. It would then become so
large that the method would be unstable against numerical round-off errors .•..

The solution in the case given above was simple because the matrix A is
tndlagonal: that is to say, only the elements on the main diagonal and the two
adjacent dIagonals are nonzero. When the geometry is not one-dimensional,
however. the matrix is more complex. as will be seen shortly, and other methods,
itemtive rather than direct, of matrix inversion are used. These methods take



advantage of some general properties of the matrix A, which are evident in the
simple case already considered. In particular it is apparent from their definitions
in equations (3.21), (3.22), and (3.23), and (3.14) where bOk is defined, that the
elements of A have the following properties:

(i) an•n > 0; an•m < 0 if m t= n; an•m = am•n

(ii) an n + 1 t= 0

(iii) lan.nl > L lan.ml·
m*n

In technical terms, the property (ii) makes sure that the matrix is irreducible;
physically, this means that a neutron can get from anyone point to any other
point in the mesh. Property (iii) implies strict diagonal dominance. i.e .. that the
cross section 0"0, defined by equation (3.6) and in accordance with the assumption
stated after equation (3.1), is positive. The matrix A is then said to be irreducibly
diagonally dominant. This property guarantees that the matrix is nonsingular and
has an inverse; a solution forep given by equation (3.26) then surely exists.?

No mention has been made thus far about conditions at the interfaces between
the regions in Fig. 3.2. They are, in fact, automatically satisfied by the difference
equations. Consider a very fine mesh such that all the ~ values approach zero in
the vicinity of an interface at Xk; then it follows from equations (3.16), (3.17),
and (3.18) that both 4> and J are continuous across the interface.

The difference equations for the P1 method have been derived by making
particular approximations to the integrals in equations (3.14) and (3.15). Other
simple approximations would lead to difference equations like equation (3.20),
except that the coefficients an•m would be slightly different, but they would still
have the properties (i), (ii), and (iii) enumerated above. Diffusion theory also
gives rise to the same difference equations although with different coefficients.
Since diffusion theory is used extensively. it is of interest to develop the appro-
priate difference equations.

3.2d Difference Equations in Diffusion Theory

Diffusion theory can be regarded as being equivalent to the first PI equation,
i.e .. equation (3.7),

dJ(X)-;IX + C70(x~(X) =' Qo(x)

lex) == - D(x) J4,(X).
dx

The difference equation corresponding to equation (3.30) is the same as for
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If I

equation (3.7), namely, equation (3.16). For currents at XkHl/2) and Xk-O/2h

equation (3.31) may be approximated by

J D ePk+ 1 - cPk
k+(1/2) ::: - k+(1/2) ~

k +0/2)

J '" D ePk - cPk-l
k-(l/2) - - k-(l/2) ~ •

k-(1/2)

Upon substituting equations (3.32) and (3.33) in equation (3.16), a difference
equation of the form of equation (3.20) is obtained with the coefficients

Dk+(l/2)
ak•k+1 = - A = ak+l.k

Uk +0/2)

Dk-0/2)
A = ak-l k
Uk-0/2)

Once more it can be shown that the elements of the matrix A have the properties
referred to earlier.

In deriving the difference equations, a space region extending from xk -(1/2) to
X" +(1/21 was considered, and the various terms in the equation correspond to
accountings of the neutron economy. This will be seen more clearly below in
connection with spherical geometry. Thus, the difference equation may be
regarded as a neutron balance (or conservation) equation for a small region in
the system. It is important to have this conservation property in the difference
equations. so that track can be kept of the fate of all fission neutrons in a
numerical solution. In a criticality calculation, the balance between the produc-
tion and loss of neutrons is, of course. decisive; it is essential, therefore, that
neutrons are ntH created or destroyed in an artificial or uncertain manner.

In the preceding sections a numerical method was described for solving the P1
and diffusion theory equations in plane geometry. The PN equations for higher
values of N can be converted into a system of difference equations in a similar
manner. Several methods are available for solving these equations,8 and one
versatile technique will be described in Chapter 5. Moreover, it will be seen in
§3.5b that the "double p...•., method is superior to the p.v method in plane
geometry. Some results obtained by both of these two procedures will be given
in Chapter 5.



3.3 FLUX EXPANSION IN SPHERICAL AND
GENERAL GEOMETRIES

3.3a Expansions in Spherical Geometry

The discussion so far has been concerned with plane geometry and consideration
will now be given to the application of the spherical harmonics method to other
geometries. For a system which is symmetrical about a point, spherical co-
ordinates may be used, and it will be shown that the spherical harmonics equa-
tions are then very similar to those for plane geometry. Such systems will be
treated in the present section, and more general geometries, for which expansion
of the neutron flux distribution in terms of Legendre polynomials is not ade-
quate, will be described in §3.3c for the PI approximation. The use of spherical
harmonics in cylindrical geometry will be taken up in §3.6b.

For a system which is symmetric about a point, the neutron angular flux is a
function only of the distance, r, from the point and of ,.,.= Q. i (§1.3a); the
expression for no· V<1>is then given by equation (1.32) with <1>replacing N.
Hence, the time-independent, one-speed transport equation in spherical
coordinates takes the form

8<1>(r, ,.,.) 1 - ,.,.2 8<1>,.,. ~ + --- -,- + 0<1>or r c,.,.
ex:>

= 2: 2/ ; ~ os,(r)P;(,.,.) f~1 <1>(r, ,.,.')P,(,.,.') d,.,.' + Q(r. ,.,.). (3.34)
,= 0

where, as in the derivation of equation (3.4). the scattering funcrion, os' has been
expanded in Legendre polynomials, and the addition theorem for these poly-
nomials and the azimuthal symmetry of the flux have been used.

If, now, <1>and Q are expanded in Legendre polynomials. a's in equations
(2.80) and (2.81), and the same procedure followed as in §3.1b for plane geom-
etry, it is found that all the terms in equation (3.34) except [(1 - ,.,.2)Ir] i I.!>/i,.,.
give terms corresponding to those in equation (3.5). To evaluate this exceptional
term, the relation

:2 dPm(,.,.) m(m + I)
(l - ,.,.) d,.,. = 2m + I [p ••-1Ut) - Pili + 1("")]

may be used. The expression satisfied by the expansion coefficients 4>7I(r) in
spherical geometry, equivalent to equation (3.5), is then

(n + 1)(~ + n ; 2)4>lI+l(r) + n(:, - n ~ 1)<p"_I(r) + (2n + l)oll(r)4>Il(r)

= (2n + I )Q,,(r) n = O. I, 2. 3 . . .. (3.35)

This infinite set of equations is similar to that for plane geometry. and Pl

approximations and the same numerical techniques can be used here. just as for
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plane geometry. The boundary conditions, however, are somewhat different, as
will be seen below.

The two equations for the PI approximation in spherical geometry are

(~ + ~)J(r) + ao(r )cP(r) = Qo(r)

where. as before, cP and J(r) are written for cPo and cP1>respectively. These equa-
tions differ from the corresponding equations (3.7) and (3.8) in plane geometry
by the presence of the term 2J(r )/r in equation (3.36). The reason for this will be
apparent in due course.

It is sometimes convenient to write equation (3.36) in the form

1 d
2 d- [r2J(r)] + ao(r )cP(r) = Qo(r).r r

If the source is isotropic. so that QI(r) = 0, equation (3:37) may be used to
eliminate J(r) from equation (3.38): by writing D for Ij3al, as in §3.ld, the result
IS

I d [" d4>( r )]- r2 dr ,- D ~ + ao(r )4>(r) = Qo(r).

This equation is in conservation form in the sense defined in §1.3b, since upon
multiplying by a volume element 41Tr2 dr, the derivative term in equation (3.39)
contains no functions of r outside. Use will be made of this fact shortly.

j!
j, 3.3b Boundary Conditions in Spherical Geometry

I; hlr a ~phen(al region. free-surface boundary conditions can be imposed. as in
pl.lnt: ~el)metr~. ~i\ 109 !(S + I) conditions for a PN approximation. The re-
m~.IInlngconJltlons mu~t be determined at the origin, i.e .. at the center of the
sphere. It I~ required that the angular flux, <1>, be finite at the origin; hence, the
coefliclents ¢.•(() must be finite for n = 0, I. 2, ... , N in a P", approximation. It

.~ can he sho\\ n that for analytical work this provides the additional t(N + 1)
CondltlOns.1i

An alternatlH' condition that is useful for numerical calculations is to require
thaI .1> be an e\en function of f-L at the origin, i.e., cPn(O) = 0 for n odd. This will
be used In Chapter 5. In fact, the neutron flux should be isotropic at the origin
In sphencal gCllmetry and this condition can also be imposed.lo In the PI
appro\lmation. the current would be set to zero at the origin, i.e., l(O) = O.



3.3c Difference Equations in Spherical Geometry

Difference equations may be derived for spherical geometry, in much the same
way as for plane geometry. Consider, for example, equation (3.39) for diffusion
theory; the fact that this equation is in conservation form is more important
than in plane geometry, as indicated at the end of §3.2d. If equation (3.39) is
multiplied by 47T,2and integrated from 'k-(1/2) to 'k+O/2" the result is

By assuming, for simplicity, that the cross sections are the same on both sides of
'k> equation (3.40) may be approximated to

47TOo 3 3)J. _ 47T( 3 3)Q+ -3- ('k+O/2) - 'k-O/2) 'f'k - 3"" 'k+O/2) - 'k-O/2) Ok,

where ~k ~(112)= 'k + 1 - 'k' etc. In order. from left to right, the terms represent
the following quantities: Aetflow of neutrons across the outer surface of the
region. net flow across the inner surface. absorption. and source. The difference
equations (3.41) are again of the form of equation (3.20), and the same methods
of solution may be used.

In spherical geometry. the conditions at the origin must be imposed in place
of one of the boundary conditions of plane geometry. For spherical geometry,
the required conditions can be derived from equation (3.40) by integrating from
, = 0 to , = '12' In this way a two-term relation is obtained involving only cPo
and chi' It could be written in the form of equation (3.41) by setting cPk _ 1 = 0
and ' •. -;1 ;I, = O.

The plane and spherical geometries considered so far are unique in the respect
that there I~ e\ery" here a preferred direction in space, i.e .. x or i. and the neutron
flux IS Independent of rotations about this direction. In other words, the flux
distrihution is azimuthally symmetrical. Thus. for these two geometries, the
directln~al (Q) dependence of the neutron flux can be specified with only one
variable. fL. In any other geometry. the angular distribution of the flux will not
ha ••e aZImuthal symmetry and so an additional variable is necessary to represent
direcllon. Examples of the choice of variables for different geometries were given
in the appendix to Chapter I. It is always possible, however, to expand the angu-
lar dependence of the neutron flux in a set of spherical harmonics.



If the unit vector Q is specified by two angular coordinates, i.e., a polar angle
8 and an azimuthal angle cp, then the expansion for the angular flux in one-speed
theory< may be written as

co I

<1>(r, Q) = 2: 2: ePlm(r) Y1m(8, cp),
1,=0 m = -I

where the functions Y1m are the spherical harmonics (see Appendix). The latter
are expressed in terms of associated Legendre functions Pt of f1-( = cos 8) and
trigonometric functions as

2/ + 1 (/ - m)! pm( ) imrp

41T (/ + m)! I f1- e .

The usefulness of the spherical harmonics depends on the following properties:
(a) they are a complete set of functions in the sense that any continuous function
of 8 and cp may be expanded in spherical harmonics. (b) they are orthonormal,
and (c) when the scattering function, as, is expanded in Legendre polynomials, as
before. the orthogonality of the spherical harmonics leads to simplifications, as
will be seen in §3.3e,

When the angular dependence of the neutron flux is expanded in a set of
spherical harmonics. the resulting equations are relatively complicated. because
of the streaming term (Q. V<!») in the transport equation. and they will not be
gl\cn here. I I The special case of cylindrical geometry will. however, be ex-
amined in ~J.6h.

Fllr the present purpose. it is sufficient to consider the PI approximation only in
general gel1metry. This can he derived by systematically truncating the spherical
h:.Hm(lnl(~ C\pam.il1n. hut an alternative derivation may provide better physical
inSight Inlll the Situation.

It fllllll\\s frllm equatil1n (2.57) that. in both plane and spherical geometries,
the P,apprO\lmatIl1n IS equivalent to assuming that

•••.here r ••••ill replace x in spherical geometry. As seen in §3.ld, ePo(x) is the total
flu\ and <Pl(x) is the neutron current in the x direction: hence, in the PI ap-
prl)\1 matll1n.

Thl\ relatilln cannot apply in general since J is usually a vector instead of the
scalar appearing in equation (3.43). but the latter can be extended to general



geometry. In particular, p.J(x) is equal to Q. J (x), so that equation (3.43) may
be wri tten as

1
<D(r, Q) = 47T [eP(r) + 3Q· J(r)J.

This result is correct for plane and spherical geometries and it can be proved to
be the PI approximation to the angular flux, independent of geometry, by carry-
ing out the expansion in spherical harmonics.

It will now be shown that the PI approximation to <D,as given by equation
(3.44), is consistent with the definitions of eP and J. For this purpose, certain
mathematical identities are required and these are collected for convenience in
Table 3.1 : the coordinate system used in the derivation is given in the appendix
to this chapter.

If equation (3.44) is integrated over Q, the result is

J <D(r,Q) dQ = 4~ [eP(r) J dQ + 3J(r)· J Q dQ],

where eP(r) and J(r) have been placed outside the integrals because they do not
depend on Q. The left side of this equation is simply the total flux eP(r) and the
values of the integrals on the right side are obtained from Table 3.1. It is then
seen that equation (3.45) reduces to the identity

The left side is. by definition. J(r); by usinc the second and third identities in. . ~
Table 3.1, the first term on the right side of equation (3.46) is found to be zero

I ndn - 0
• 4I Q{n·Aldn - ~ A• 3
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whereas the second term is J(r). Hence, both sides of the equation are equal to
J(r), again indicating consistency of equation (3.44). This equation will conse-
quently be taken to represent the PI approximation for the neutron angular flux
distribution in general geometry.

The time-independent form of the one-speed transport equation was given
in equation (3.2), and it will be repeated here for convenience; thus,

Q. V<D(r,Q) + u(r)<D(r, Q) = I user, Q. Q')<D(r, Q') dQ' + Q(r, Q).

It will be recalled that in obtaining this equation the reasonable assumption was
made that the scattering function, as, depends only on Q. Q'. Hence, as can be
expanded in Legendre polynomials, p/(f-Lo). By use of the addition theorem of
spherical harmonics (see Appendix), equation (3.47) then becomes

J
~ 21 + 1Q. V<t>(r,Q) + a(r)<D(r, Q) =. L 417 aSl(r)
1=0

I

X [p/(f-L)PI(f-L') + 2 2 i~~:~;pr(f-L)pr(f-L') cos m(cp - cp')]
m=1

X <D(r,Q') dQ' + Q(r, Q). (3.48)

As before. f-L' and cp' are the coordinates specifying Q', whereas f-L and cp specify
Q. (The coordinates might be given in any of the systems in §1.7a, where, how-
ever. the azimuthal direction coordinate has the symbol X or w, rather than cp.)

If the PI approximation for <:D(r,Q), i.e., equation (3.44), is introduced into
equation (3.48). all the integrals over Q' on the right side are zero, except those
for which I = 0 or 1 = I (see Appendix). For I = 0, the quantity in the square
bracket in equation (3.48) reduces to unity and the integral over Q' gives
aso(rlJ>tr): fl)r I = I, the square bracketiscos 8 cas 8' + sin 8 sin 8' cos (cp - !p'),
where ~ = cos - 1 fl and 8' = cos - 1 fl', and the integral over Q' is equal to
3aSI Q. J. Hence equation (3.48) becomes

Q. V[J>{r) + 3Q· J(r)] + a[4>(r).+ 3Q· J(r)]
= aso(r)4>(r) + 3aSI(r)Q· J(r) + 417Q(r, Q). (3.49)

1ntegration of equation (3.49) and use of the last identity in Table 3.1, with
A equivalent to V and B to J, gives

uo(r) == a(r) - u.o(r) and Qo(r) = I Q(r, Q) dQ.



Next, equation (3.49) is multiplied by n and integrated over Q; the result,
based on the identities in Table 3.1, is found to be

Equations (3.50) and (3.51) are the PI approximations to the neutron transport
equation in general geometry. It should be observed -that equation (3.50) is
exact, since it is precisely equivalent to the time-independent con~ervation
equation (1.17). On the other hand, equation (3.51) represents a PI approxima-
tion; in an exact spherical harmonics equation additional terms, arising from
the streaming term in the transport equation, would be included on the left side
of equation (3.51).

If the source is isotropic, Ql(r) is zero and then equation (3.51) may be written
in the form of Fick's law of diffusion, i.e.,

where D = 1/30"1' As in §3.ld, this may be used to eliminate J(r) from equation
(3.50) to yield the familiar diffusion equation

The preceding development has shown the kind of assumptions involved in a
systematic derivation of Fick's law from the one-speed neutron transport
equation. Their significance in multigroup theory will be examined in the next
chapter.

3.3f The PI Approximation in One-Dimensional Geometries

The PI equations for general geometry involve exactly the same cross sections,
i.e., O"o(r) and O"l(r), as do the PI equations in plane geometry. The geometry
enters only through the explicit forms of the gradient and divergence operators,
apart from the boundary conditions.

ln spherical coordinates. the radial component of the divergence is

2... d(,2J,) = (!!. + 3)1,2 d, d" N

and this is just the form in the PI equation (3.36). For an infinitely long cylinder,
\ the current is also radial, so that

V.J == !de,J,) _ (d + !)J.
r drdr r '

Thus, in three geometries, namely, plane, sphere, and infinite cylinder, where the
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spatial distribution of the flux depends on only one coordinate, the first PI
equation can be written in the general form

(~ + ~)J(r) + aoeP(r) = Qo(r), (3.53)

n = 0 for plane
n = 1 for cylinder
n = 2 for sphere.

An alternative form of the first term is

(~ + ~)J(r) = ~ ~ [rnJ(r)].
,dr r rn dr

It may be noted. too. that in equation (3.51) the current has a component in only
one direction and that for spherical or cylindrical geometry 'VeP = dePldr. Hence,
equation (3.51) for these geometries in the PI approximation may be written

£11>(r) .
-,- + 3al(r)J(r) = 3Ql(r).( r

Furthernwre. a similar equation would apply in plane geometry with x re-
placing r.

The dilru"ipn equation (3.52) for the three one-dimensional geometries may
si milarl) he \Hiltcn a~

- ~ ~ [r •..D £1d>(r)] + ao(r)A..1r) = Q ( )r'" £1r dr 'fTl. 0 r ,

where fI ha" the signiflGlnce gi\ en above.
It i... seen that equatil)nS pf the same form, namely, equations (3.53) and

().5~1 f,'r the P~ appro\lmatlon and equation (3.55) for diffusion theory, are
appll.:ahk 1\) pLtne. infinite C) lindrical. and spherical geometries. Similarly.
dilreren~:e e4Uall,)n ... nla) he de\t~loped for these three one-dimensional geome-
triC ... and. C\L:Cpl fllr nlInnr \ariations in the boundary conditions, they can all
he sllhcd In Ihe manner llutltned in ~3.2c. Problems in two-dimensional geom-
etry arl" mprc cllmplc\ and Ihe"e v. ill he considered for diffusion theory in the
nc\t sectlPn.

3.4a Difference Equations in Two Dimensions

Difference equalll)nS that appro\lmate the PI and diffusion equations can be
defl\'ed for ~}\tem~ requIflng geometrical representation in two (or three)
dlmen~lOn\. A\ In §.l:!c. a set of difference equations can be written as a matrix



equation which must be inverted to obtain the neutron flux at points in a two-
dimensional space mesh. The matrix is, however, more complicated than that
for a one-dimensional geometry, so that it is not practical to invert it directly;
instead iterative methods must be used. Furthermore, the matrix is usually of
much higher order since many more space points (typically of the order of 103)

are required to approximate a two-dimensional system. For three-dimensional
geometry, the number is, of course, even larger.

For simplicity, the difference equations will be examined for diffusion theory
for a system in rectangular geometry in two dimensions. If the space coordinates
are x and y, the diffusion equation (3.52) for e/>(x, y) becomes

-~ (D oe/» - ~ (D ~e/» + CJ e/> = Q '
ax ax oy oy 0 0

A rectangular mesh is constructed consisting of points whose coordinates are, in
general,

Let e/>(xk, Ym) be represented by cPk,m' As before. it is convenient to have space
points located on the interfaces between regions. For simplicity, however, in the
following treatment a single region will be considered in which D, CJo, and mesh
spacing are constant. A portion of the mesh is shown in Fig. 3.4.



Equation (3.56) is now integrated over the small shaded rectangle which IS

bounded by the lines x = Xk ± -!~x and Y = Ym ± -!~y; the result is

Ix/,; +(1/2)LJ.x fYm + (1/2)LJ.y f f+ 00 dx eP dy = dx dyQo.
x,-(1/2)LJ.x ym-(1/2My

~eP IX/,; + (1/2)~x ::::: ePk + I,m - cPk,m
ex x" - (1!2)LJ.x ~x _

ePk,m - ePk-l.m
~x

ePk + l,m - 2ePk,m + ePk -l,m
-

~x

and similarly for y. and each integral is approximated by the value of the inte-
grand at the midpoint multiplied by the range of integration; equation (3.57)
then t.5Ccomes

~r ~
-D .l·x[ePkq,m - 2ePk m + ePk:-l m] - D ~y [ePk.m+l - 2ePk,m + ePk.m-d

+ 00 ~X~yePk.m = ~x~yQk,m (3.58)

~I'
- D ~x [eP, • I.m

[ {
~X ~ \''l]+ cPk,m oo~x~y + 2D ~y + ~:y)

Although more complicated and somewhat more accurate approximations
could be written for the integrals in equation (3.57), the simple approximations
given above are usually adequate for diffusion theory calculations.12 To some
e'tent. It IS possible to choose between a fine mesh with simple cl)ctllcients in the
difference equations. and a coarser mesh with more complicated coefficients.

3.4b Two-Dimensjonal Difference Equations in Matrix Form

The set of equations (3.59) can be written in matrix form. To do this, it is neces-
sary only to Introduce a consistent ordering of the eP terms, so that a rectangular
array of l4> •.• } can be represented by a vector.cp. An obvious choice is to start in
the lower lefl corner and number a row at a time. All boundary points are
eliminated by' the use of boundary conditions, e.g .. for free surfaces. by setting

t!>1< •• = 0 if k ! 0 or K



is used to identify the vector components, !pj.
With this ordering to define the components of a vectorep, the set of difference

equations (3.59) can be written in matrix form [cf. equation (3.25)] as

The diagonal components of the matrix A, represented by 0'0 t1x t1y +
2D[(t1xj ~y) + (~yj ~x)], are once more positive, whereas those off the diagonal,
e.g .. - D(t:..yj ~x), are negative or zero; the sum of the off-diagonal elements in
anyone row is less than the diagonal element. Thus, the matrix A has diagonal
dominance and satisfies properties (i) and (iii) of §3.2c. It is, however, no longer
tridiagonal, for in every row there are four nonzero off-diagonal elements,
except tor the rows corresponding to points adjacent to the boundaries, which
have only three such elements. The matrix is still irreducible, but now au+ 1 = 0
for points adjacent to the right and left boundaries, i.e., when the pointj is next
to the right boundary. pointj + I is next to the left boundary and hence there is
no term coupling these two points. In any event, the matrix A is again irre-
ducibly diagonally dominant; therefore, it has an inverse 13 and equation (3.60)
can be solved for ep in terms of s, by writing ep = A - 1S, as before.

Since it is now not practical to invert the whole matrix A directly, iterative
methods are used. To understand the principle involved, let the matrix A be
written as the sum of three matrices, i.e.,

where 0 is a diagonal (nonzero entries only on main diagonal), U is an upper
triangular (nonzero entries only above main diagonal), and L is a lower tri-
angular (nonzero entries only below main diagonal) matrix.

Because of the diagonal dominance of A. the elements of 0 are, generally
speaking. larger than those of U and L. This suggests the possibility of moving
the smaller. Qff-diagonal terms to the right side of ,equation (3.60) to give

for which a solution may be sought by iteratron. First, it is convenient to mul-
tiply both sides of equation (3.62) by 0-1, the inverse of 0, such that 0-1D = I,
the unit matrix.. Since D is a diagonal matrix.. every element in D -1 is the recip-
rocal of the corresponding element in D. i.e .• (D -1)1J = 1/(O)Jj; hence, D -1 is



· readily derived from D. As a result of the multiplication by D -1 it is found that
equation (3.62) becomes

A guess is now made for cp, namely cp(O),on the right side of this equation,
which is then solved forcp, indicated bycp(1) on the left. An iterative process can
then be defined by

where cpco is the vector which has been found after i iterations. This procedure
converges to a correct solution, as may be seen from the following considera-
tions. Let the error vector Em represent the difference between cp(Oand the true
solution cp. i.e.,

E(O= cp(il _ cp.

Then E(l)satisfies the homogeneous equation

E(i+l) = D-l[U + L]£m.

If the error vector £(0) is expanded as a sum of the eigenvectors of D -l[U + L]
time~ arbitrary coefficients,* each iteration multiplies an eigenvector by its cor-
resp~)nJing eigenvalue. It will be shown below that all· eigenvalues of the matrix
D - 1 [U + L] have absolute values less than unity; hence, it follows that

To shnw that the eigenvalues of C = D -l[U + L] are less than unity, it
should be noted that the matrix C has positive or zero elements and that the
sum of the elements in any row is less than unity, i.e.,

If the element XI is as large in magnitude as any element of x, then

~ C1jXj = "-"I
j

,\ = ~ C1j(xj!xt).

J

• Such an ellpan~lon is always possible since the eigenvectors of a real symmetric matrix
form an acceptable baSIS for this expansion and D - 1[U + L] is a real symmetric matrix. It



By taking absolute values and noting that ICijl = Cij, it follows that

IA\ ~ 2: Cij(lxj/xi.l).
j

But since (/xilxd) ~ 1, by choice of i,

IAI ~ 2: Cij < 1.

Thus it has been shown that the largest eigenvalue is less than unity; conse-
quently, all the eigenvalues of the matrix D-1[U + L] must be less than unity.
The eigenvalue having the largest absolute magnitude is called the spectral
radius of the matrix. Hence, the foregoing result is that the spectral radius of
D-1[U + L] is less than unity.

The iteration procedure described above is sometimes known as the point
Jacobi or Richardson method.15 Although it is workable, it is not nearly as
rapidly convergent as several other iterative techniques. Basically, the reason is
that the spectral radius ofD-1[U + L] is usually quite close to unity, and so the
error dies away slowly.

3.4d Improved Iteration Procedures

More powerful iterative methods are available.16 but their detailed treatment
lies outside the scope of this text. Brief mention may be made, however, of some
iterative procedures of interest. The first is motivated by the following physical
consideration. Suppose that equation (3.64) is being used to obtain the flux
vector 4>/i--11. In computing any component of4>Q + 11. for example q;~t+ 1\ only
values of the flux from the last iteration, i.e.,4>'o. will be used on the right-hand
side of the equation. It would seem. therefore. that once a new component,
C/>~i+ 11, has been computed. it would be advantageous to use it. instead of C/>~O, for
determining the subsequent components of <pl!' 1 '. I.e .. th~ components C/>~I+ 1)

with k > j. Thus. a new flux component \H)uld affect the flux calculation bel Ire
the iteration is completed.

The iterative scheme

is just such a procedure; it is referred to as the Lichmann or Gauss-Seidel method.
Since the matrix [D - L] is triangular, including the maIO diagonal, its inverse
can be found readily or. what amounts to the same thing. equation 0.65) can be
solved for epli+11. Thus. consider equatIOn (3.65) as a ~t of equations for the
components of cplt + 11. The first contains only one comtxment, i.e .. t/>~I" 11, which
can be solved for directly; the second contams two components, i.e .. c/>I: •. II and
4>~"II, one being known and the other can ~ solved for. etc. In this way all
of the c/>~'"1) can be evaluated succeSSI\e1y for j "'"1. 2..... Hence, in deter-
mining tPJt •. 1) each of the components of +" · 11 is used as it is computed.



A further generalization of the foregoing method is suggested by the following
considerations. If epjl+ 1)differs significantly from ep)o,it is reasonable to suppose
that a better estimate could be obtained by extrapolating somewhat beyond
epjl+ 1)given by equation (3.65). In order to do this, equation (3.65) is rearranged
in the form

where the flux vector has been given the subscript L to indicate that the Lieb-
mann iterative procedure is being considered. To obtain an extrapolated estimate
of ep(l+ 1) no longer equal to ep~+ 1>,the quantity (w - 1)(ep(1+ 1) - ep(O),where w

is a constant larger than unity, could be added to the right side of equation
(3.66). If in this added term epo+ 1) is replaced by D -1(Uep(0 + Lep(i+ 1) + s), the
iterative scheme

is obtained. If equation (3.67) is now multiplied through by D and rearranged,
the result is

This is known as the accelerated Liebmann method or the point successive over-
relaxation method. The quantity w is the acceleration parameter and if properly
chosen gives a very effective iteration scheme. It is readily verified that for any
w this equation is satisfied byep(i) = ep(i+ 1) = ep, the exact solution.

The optimum value of w may be estimated by recalling (§3.4c) that the rate of
decay of an error in the initial estimate of ep, i.e., ep(O\is dependent upon the
spectral radius of a matrix. This spectral radius thus determines the rate of
convergence of the iterative scheme. If, in the present case, the ith flux iterate
is again written as

ep(i)= ep + €(!),

where ep is the true solution and €(i) is the error vector, then it is found from
equatIon (3.68) that €It•.1) satisfies

where this equation defines the matrix C*(w). From the arguments in §3.4c, it
follows that the optimum value of w will be that which leads to the~mallest
(absolute) value of the' spectral radius of C*(w). Methods for estimating the
eigenvalues of matrices may thus be used for finding the optimum acceleration
parameter.17

By uSIng the iterative procedures described above, or even better ones,18 a
~tlsfactory solution for the vector epcan readily be obtained with a fast computer
even when the space mesh contains thousands of points. It will be seen in the
ne'lt chapter that. in multigroup theory, the iterations for determining the
spatial distribution of the neutron flux (within a single energy group) are called



"inner" iterations. This distinguishes them from the" outer" iterations used in
criticality and related calculations (§4.4d).

3.4e Difference Equations for More General Cases

The results in the preceding sections have referred in particular to difference
equations derived for rectangular geometry. Similar equations may also be
developed for other two-dimensional geometries,19 although the geometrical
factors in the coefficients are more complicated. The same methods of solving
difference equations can be used in both cases.

For three-dimensional geometry, the difference equations at a point would
involve coupling with six other points, rather than with four points as in equa-
tion (3.59). Nevertheless, the same kinds of iterative methods can be employed
to solve the equations. In three dimensions, however, the number of mesh points
required to represent a reactor is often so large that the computations become
impractical. Other approaches will be referred to in Chapters 6 and 10.

Although the difference equations have been derived here for diffusion theory,
analogous equations may be readily obtained for the PI approximation. When
the PI or diffusion theories do not represent the angular flux adequately, more
general expansions in spherical harmonics may be used. Their application to
plane and spherical geometries has already been considered and will be de-
scribed for cylindrical geometry in §3.6b. For more complex geometries, the
spherical harmonics methods are so complicated that alternative procedures,
especially the method of discrete ordinates (Chapter 5) and Monte Carlo
techniques. have generally been used.
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3.5a Discontinuity of Angular Flux at an Interface

The Legendre expansion of the flux has an important deficiency in plane geom-
etry. At a plane interface. the neutron angular flux distribution. as a function
of fL, will generally be discontinuous at fL = O. But any finite sum of Legendre
polynomials over the range - 1 ~ fL ~ 1 will be continuous at fL = 0, and so
will be a poor representation of the angular flux near interfaces. This difficulty
is also responsible for the uncertainty in the free-surface boundary conditions;
as stated in §2.5d. the boundary cbnditions cannot be satisfied exactly and
various approximations have been proposed. These considerations have led
to the suggestion that separate expansions be used for the angular ranges
- 1 ~ fL ~ 0 and 0 ~ fL ~ I.

Before proceeding further, it is necessary to clarify the situation concerning
the behavior of the neutron angular flux across an interface. The angular flux,
ct>(x, fl), is a function of both x and fL. It has been seen (cf. §3.1e) that, if fL is



fixed (and ::;f0), i.e., for a given direction, the angular density (or flux) must be
continuous as a function of x across an interface. But, when considered as a func-
tion of fL, with x fixed at an interface, the angular flux is discontinuous at fL = O.
That such is the case may be shown in the following manner.

Suppose there is a plane interface between two media at x = Xo and consider
the neutrons at Xo having direction cosines +Eand - E,as represented in Fig. 3.5.
All the neutrons at the interface having JL = +E will have come from the
medium at the left of the interface, whereas those with fL = - Ewill have come
from the medium at the right. Since the two media are different,

for any finite value oLE. Hence, the angular flux must be discontinuous at fL = O.
The magnitude of the discontinuity can be found from the integral form of the

transport equation for plane geometry or by starting with the transport equation
(3.3) in plane geometry and deriving the required integral equation from it.
The latter procedure will be used here, with equation (3.3) written as

8<1>(x, fL) ()"'() )
fL r + a X '!' x, fL = q(x, fLox

where q stands for the whole right-hand side of equation (3.3) and is, therefore,
discontinuous at the interface between two media. The values of a and q in the
medium at the left of the interface are represented by a - and q -, respectively,
and by a' and q + for the medium at the right. If equation (3.70) is divided by fL



and multiplied throughout by the integrating factor exp [f" (a/p.) dx'], it is seen
that

:x {<1>(X, p.) exp ~fx a{x') dX']} = q(X~ 1-') exp Ufx a(x') dX'],

For p. = + E, equation (3.71) is integrated from x = - 00 to x = xo; the result is

<1>(xo,+E) = ~f:°aJ {q-(X', +E)exp [-~I:'oa-(XW)dxW]}dX',

noting that the neutrons to the right of the interface originate from the medium
on the left.

When + E is small, the only contribution to the integral comes from x' very
close to xo; hence q- and a- may be set equal to their values at x = xo; the
integral can then be evaluated to yield

On the other hand, when p. = -E, equation (3.71) is integrated from x = co to
x = Xo, and when - E is numerically small, it is found in the manner described
above that

Thus, the discontinuity in <1>at I-' = 0 is given by

Discontinuity in <1>at I-' = 0 = lim [<1>(x, + E) - <1>(xo,- E)J
e-O

q-(xo,O)
- a - (.\'"0)

q+(xo.O)
aT (xo)

The quantities q ± (xo, 0) can be calculated from the right-hand side of equation
(3.3).

A simple and obvious example of discontinuity in the angular flux for I-' = 0 at
an interface arises for the case of a free (planar) surface. If. in Fig. 3.5, there is a
medium at the left of the boundary at xo. from which neutrons can emerge, but
there are no incoming neutrons, it follows that <1>(xo,1-') is finite for all values of
I-' > 0, but is zero for aliI-' < 0. Clearly. therefore. there must be a discontinuity
in the angular flux for p. = ° at a free surface.

By applying the arguments developed above it can be shown that at a cun'ed
interface, the angular flux will not be discontinuous as a function of direction, fL.

Consider a curved interface with a local radius of curvature R. as indicated in
Fig. 3.6. In this case, neutrons moving wilh the direction cosine p. = cos 8, as
shown, can come from the source q - over a distance s ••••2Rp. in the left medium,
and from the source q+ over the remainder of the reversed extrapola~ed path.
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Thus. as fl - O. so 5 - O. and the contribution to the angular flux from the
neutron source q - (and cross section a -) in the left medium approaches zero
continuously. Hence. the angular flux will be continuous as a function of the
direction fL. and there is no discontinuity for fJ. = O. *

When separate Leg.endre expansions are used for the two half-ranges in fJ. at a
plane interface. the treatment is known as the double-P" approximation or
J. J. 'Y\fln's meth,)d.21 In this approximation it is possible to satisfy the free-
surface hl)undar~ conditions exactly and also to allow for discontinuities at
Interface'>. A" ;) re"ult. the method is remarkably accurate in plane geometry
(~5 .,s ._g).

In order to e,amlne the double-P., equations. a time-independent. one-speed
transport problem Yo111he considered in plane geometry with no source. i.e.
equatIOn (3A) Yolth Q = 0: thus.

rct>(x. ~) ,t.
fL ---- + ai·\" )w(.(. ,u)

(.\

• Althoulh the anlulu nu, IS not discontinuous at f4 = O. its derivative with respect to f4

-111 be dl~ontlnuous and the nu, may change rapidly with f4 near f4 = O. Moreover. such
d''COnllnUllln In the anlular <kn\'all~ are present at points outside the interface of Fig. 3.6
and for dlrecttom ha",n, ",.> 0.:"
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In the double PN approximation, it is assumed that

N

<1>(x,JL) = 'L (2n + 1)[tP:(x)P:(2JL - 1) + tP;;(x)P;;(2JL + 1)]
n=O

with the following definitions:
P:(2JL - 1) = Pn(2JL - 1) JL ~ 0

=0 JL<O
P;(2JL + 1) = Pn(2JL + 1) JL < 0

= 0 p. ~ O.
It will be noted that over a half-range the argument (2JL =+= 1) of the appropriate.
P: varies between - I and + 1.

Equation (3.73) may now be substituted into equation (3.72) and the result
multiplied by P~(2JL - 1)or P;(2JL + 1); integration over JLfrom -1 to 1 then
gives equations satisfied by tP~(x). The left side can be treated in essentially the
same way as the full PN expansion and is no more complicated. The right-hand
side, however, contains terms involving products of the full-range and half-
range polynomials. If the constants Pl~ and pi'~are defined by

Pl~ = f~1PICJL)P~ (2JL - 1) dJL

pi; = f~1 P1CJL)P;(2,.,. + 1) d,.,.,

equation (3.72) becomes

m d4>~ _l(x)m + 1 d4>;' +l(X) + d4>;'(x) 2 ( \.J.*( )
2m + 1 dx + 2m + I dx - dx + a X I'f'm X

110 N

= 2: (2/ + 1) Pl~(]I(X) 2: (2n + 1)[pj~.p:(x) + pj;.p;(x)]. (3.74)

In the particular case of isotropic scattering, the sum over I has but one term,
for 1= 0; it then follows that pt" is equal to the Kronecker delta SO" (§2.4b) and
the right-hand side of equation (3.74) is simply

ao(x)[4>6(x) + .p;(x)].

More generally, if the cross-section expansion is terminated at I = L, then the
sum over n contains only terms with n , L. It is seen, however, that, as noted in
§3.3d, the anisotropic scattering terms are more complicated than in PN theory.22

With the double-PH approximation, free-surface boundary conditions can be
satisfied exactly. If the problem is over the domain 0 ~ x •• a, the free-surface
conditions are simply



In the one-speed problem, and assuming 0'1 = 0 for I > 2, the double-PH
equations can be cast into the same form as the few-group diffusion equations
(cf. §4.3b) and may be solved in the same way.23 Another method for solving
very similar equations is given in §5.2d. In some examples in Chapter 5 it will be
seen that for plane geometry the double-PI approximation is remarkably good;
it is consistently better than the P3 approximation and much better than PI
theory. Double-PH methods have been found to be useful for treating lattice
problems which are often well approximated by plane geometry. The double-PH
approximation has also been applied in spherical geometry,24 but here it seems
to have no particular advantages (§5.3b).

3.6a The Wigner-Seitz Approximation

In many reactors the fuel elements are arranged in a periodic manner, so that the
system, at least in th~ central part of the core, can be regarded as being made up
of a number of identical unit cells (Fig. 3.7). In these circumstances, spatial
distribution of the neutron flux in the reactor will have a periodic fine structure
which can be found by computing the flux within a unit cell. Such cell calcula-
tions have often been made by the method of spherical harmonics, particularly
when the fuel element has a simple geometry, e.g., a cylinder as in Fig. 3.7.
When the fuel elements have a more complicated shape, however, Monte Carlo
calculations must be used.

Even when the fuel elements are cylindrical, geometrical problems arise be-
cause the cell boundary is not cylindrical, but more commonly has a square or
hexagonal cross section. The flux in such a cell will actually be a function of
three space variables. To simplify the problem, it is first assumed that the celt is

i----~UNIT CELL
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FIG. 3.7 PERIODIC ARRANGEMENT OF @>..
IDENTICAL UNIT CELlS. ~



infinitely long; this is usually a good approximation since the ratio of the length
to the diameter of a unit cell in a reactor is invariably large. The flux thus
becomes a function of two space coordinates. Next, it is usually assumed that
the actual cell boundary can be replaced by a cylindrical boundary such that the
volume of the cell remains unchanged (Fig. 3.8). This assumption is often called
the Wigner-Seitz approximation, because of its similarity to that approximation
in solid-state theory.

The validity of the Wigner-Seitz cell approximation has been examined, with
particular reference to the transport of thermal neutrons according to diffusion
theory.25 Of considerable importance is the choice of boundary conditions to be
imposed on the cylindrical cell. In the actual cell, either periodic or reflecting
boundary conditions (§3.1e) could be used, but with the equivalent cylindrical
cell the situation is less clear. At first thought, reflecting boundary conditions on
the cylindrical surface might seem to be reasonable. If the angular flux is given
in the system of cylindrical coordinates described in §1.7a, then the reflecting
boundary conditions would require that

Such boundary conditions have been found to be satisfactory when the modera-
tor region is several neutron mean free paths in thickness. But when the modera-
tor is thin, the results can be misleading. A possible reason for this can be seen
from Fig. 3.9.26 In the cylindrical cell with reflecting boundary conditions, a
neutron incident on the boundary would generally be reflected in such a manner
that its path could not intersect the fuel element (Fig. J.9A) unless the neutron
were scattered in the moderator. In the actual cell, on the other hand, as indi-
cated in Fig. 3.9B, neutrons "reflected" at the boundary could enter the fuel
even without scattering. The use of reflection boundary conditions would thus be
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FIG. 3.9 TYPICAL PATHS FOR UNSCATIERED NEUTRON IN (A) EQUIVALENT
CYLINDRICAL CELL, (B) ACTUAL UNIT CELL.

expected to make the flux too high in·the moderator and calculations show that
such is the case.

For thin moderator regions, the Wigner-Seitz approximation gives better
agreement with accurate (Monte Carlo) calculations when other boundary con-
ditions are imposed. The general sense of these conditions is to give a more
diffuse reflection of the neutrons from the boundary of a cylindrical cell, as
opposed to the specular reflection in Fig. 3.9. They are often referred to as
•.white" boundary conditions and the precise method by which they are im-
posed depends on the method being used to solve the transport problem under
consideration. Some examples are given in the next paragraph.

The cell may be regarded as being surrounded by a purely scattering region at
the outside of which reflecting boundary conditions are imposed.27 A condition
of zero flux gradient can be used at the boundary.28 In the discrete ordinates
method (Chapter 5). an isotropic incident current can be imposed to balance ihe
outgoing current.2lil These procedures have all been used successfully in cell
calculations. Ne\ertheless. in novel situations it is advisable to check the results
for the cylindrical cell approximation and given boundary conditions with those
obtained by Monte Carlo calculations for the actual geometry.

3.6b The Spherical Harmonics Method for Cylindrical Cells

The method of spherical harmonics is often used to compute the neutron flux
distribution in cylindrical geometry. For the whole reactor, the Pl approxima-
tion or diffusion theory. as described in preceding sections of this chapter, is
usually adequate. In an individual cell, however, there are often thin or strongly-
absorbing regions fqr which p. theory is not satisfactory. Expansions of the



angular flux in spherical harmonics are then sometimes used to obtain better
solutions of the transport equation. The resulting system of equations is more
complicated than for plane or spherical geometry (§§3.lb, 3.3c) because of the
dependence of the angular flux on two neutron direction coordinates.

The angular flux (in one-speed theory) may be expanded in spherical harmonics
by writing

00 /

(1)(r,fL,X) . L 2/; 1 [P/(fL)4>P + 2 2: ~~~ :j:pr(p.) cos mx 4>r(r)], (3.75)
1=0 m=1

where, because of the orthogonality of the associated Legendre functions pr
(see Appendix), the expansion coefficients are given by

fl f2714>r<r) = <1>(r,fL, x)prCfL) cos mx dX dfL.
-1 0

It will be noted that equation (3.75) contains no terms in sin mx, as would the
more general expression in §3.3d, since by symmetry <1> must here be an even
function of x.

The transport equation may be written in the form of equation (3.48), with
Q·V<1> as given for an infinite cylinder in Table 1.2 (§1.7a); thus,

VI - fL2 [cos X 0<1>_ sin X 0<1>] + a<1>
or r oX

00 r

Jl f271 '"" 2/' + 1 [ , '"" (I' - m')!
= -1 0 ~ 47T a,dr)PI'(fL)PI'(fL)+2~(I'+m')!

r z 0 m' z 1

x pr~'(fL)pr?'(fL') cos m'(x - X')<1>(r, fL', X')] dx' dfL' + Q(r, fL, X), (3.77)

.\
1 ~

Upon inserting equation (3.75) into equation (3.77), the integrals can be evalu-
ated and the result can be written as

[
8<1> sin X 0<1>]V I - fL2 COs X -~- - -- -~- + a<1>
cr r OX

r

x [PI.(p.)c/>?-(r) + 2 2: ~~:~~~;!Pj!'(p.) COS m'X <p~'(r)] •
• '-1

GO

'"" 2/' + 1= Q(r, fL, X) + ~ 41r all,(r)
,. - 0

To arrive at the set of equations satisfied by the expansion coefficients <Pi,
equation (3.78) is multiplied by PjCfL) cos mx and integrated over all neutron
directions. When the term o<1>/oX is integrated by parts and use is made of the



recursion equations satisfied by the associated Legendre functions, the deriva-
tive terms on the left side can be expressed in terms of 4>i±"Vand their radial
derivatives. The resulting equations can be represented by

Fj+l(r) + Fj-l(r) + [u(r) - uS,(r)]4>i = Q'm(r),

where Fj + 1, Fj -1, and Q/m are defined by

~m+1 = I + Smo {[d4>i+? + (m + 1) 4>i/l] _ [d4>i-\1 + (m + 1) 4>i_\1]
/ 2( 2/ + 1) dr r dr r

It' { [J.J.m - 1 .J.m- 1]-1 _ - °mO Utp/-1 'fJ/-1
Fi = 2(2/ + 1) (/ + m - 1)(/ + m) _ dr - (m - 1) -r-

[
d,J.m - 1 .J.m -1]

- (/ - m + 1)(/ - m + 2) ~; 1 - (m _ 1) 'fJ/; 1 .

These equations which are satisfied by the expansion coefficients 4>i are evi-
dently quite complicated; for a detailed discussion of their use the literature
should be consulted.30 An alternative way of treating the problem of cylindrical
geometry, by the method of discrete ordinates, is mentioned in Chapter 5.

Once the neutron flux has been computed within a cell, the results may be in-
corporated into the gross neutron diffusion calculation for the whole reactor.
The usual procedure is to homogenize the cells, giving the materials" effective"
cross sections in the following manner. The cell calculations would yield the
reaction and scattering rates for all the materials in the cell for neutrons of a
given energy (or speed). When the cells are homogenized, the effective cross
sections are defined In such a way that the reaction rates are preserved when
integrated over a cell.

Suppose. for ex.ample, that uAr) represents the cross section for a given reac-
tion, x, for neutrons of a given energy at position r within the cell. If 4>(r) is the
computed flux. in the cell calculation, then the effective cross section, fix, may be
defined as

fcell ux(r)4>(r) dV" - ------,
x - fcell 4>(r) dV

so that the over-all reaction rate for the homogenized system will be equal to
that within the cell. Other definitions of an effective cross section are possible,
but the one given here is both simple and convenient.



Shielding (or disadvantage) factors can also be defined for any kind of
neutron reaction as the ratio between the actual reaction rate and that which
would be found for the same material exposed to the volume averaged flux.
Thus, the shielding factor, Sx, for a reaction of type x can be represented by

S = !cell (Jxc/> d V
x - f c/> dV

cell r (J x dV
VCell Jcell

where the numerator is the actual reaction rate, i.e., reactions of type x per sec
per cell of volume VCeib and the denominator is the reaction rate which would
exist if all the material were exposed to the average flux given by J c/> dV/ Vcell'

In terms of Sx, therefore, ax may be written as

J (J dVa = S cell x .
x x V

cell

If the reactions were taking place in a fuel element of uniform composition
having a volume VCuel. then J (Jx dV would be equal to (JxVCuel' Under these
conditions,

where both sides represent the reaction rate per cell and per unit flux.
By using such effective cross sections or shielding factors. all reaction rates in

the homogenized cell wilI be equal to those in the actual heterogeneous cell.
The treatment of leakage (or streaming) effects in homogenized lattices is more
difficult. In some systems. neutrons can diffuse more freely paralIel to the fuel
rods. e.g .. in coolant channels. than perpendicular to them. Hence. in a homog-
enized core the diffusion coefficient wilI depend to some extent on the direction·
of the flux gradient. This complicated problem wilI not be treated here. but the
interested reader may be referred to the literature.31

3.7a Other Methods for Solving the Transport Equation

All the methods for solving the neutron transport equation in this chapter have
been based on the ~xpansion of the directional dependence of the neutron
angular flux in spherical harmonics (or Legendre polynomials) and then deriving
equatio'ls for the expansion coefficients by using the orthogonality of the
polynomials.

Expansions in other sets of orthogonal polynomials are possible and for ·the
one-speed problem in plane geometry the Chebeyshev. Gegenbauer. and Jacobi
polynomials have been tried. among others.32 But there has been relatively little
use of such expansions. partly because the Legendre polynomials have certain



advantages. For ex.ample, it has been seen that, in plane geometry, the first 1wo
terms of the expansion represent the total ft.ux and the current, respectively, and
so have clear physical significance; more generally, the first four terms of the
spherical harmonics expansion will be the flux and three components of the
current vector. Furthermore, it is easy to treat anisotropic scattering and, as
seen in §3.1 band §3.3e, this does not introduce any coupling between the
equations for the various Legendre components.

Another general method, in which Q is treated as a discrete rather than as a
continuous variable, will be developed in Chapter 5. In addition, numerical
methods based on the solution of the integral form of the transport equation are
sometimes useful and one will be described in Chapter 7 in connection with the
problem of neutron thermalization.

When the geometry is too complicated for explicit treatment by any of the
procedures mentioned above. various combinations of solutions in simple
geometry are often employed. An example was just given, in ~3.6c: where the
neutron flux was first computed in a cell and the cell was then homogenized for
representation of the gross flux throughout the reactor in a PI (or similar)
calculation. An approach of a quite different type is the synthesis of two-dimen-
sional fluxes from the solutions to one-dimensional problems (~6.4j). Finally.
Monte Carlo methods are useful for treating complex geometries.

Other numencal techniques have been used for the solution of certain neutron
transport problems. Among these. mention may be made of the method of
moments)\ v.hleh has been applied to compute neutron penetration through
hor,logeneous media. e.g .. in shielding calculations. Studies have also been
made of the method of invariant imbedding.34 a technique whereby a linear
transport problem with boundary conditions at two ends of an interval is re-
placed by a nl)nlinear problem with conditions at a single boundary. It is not yet
clear. hov.e .•er. if this method will prove useful in practical reactor problems.

In order tl) den .•e the identities given in Table 3.1. the direction Q IS first
e\pr~scd In cartt.~lan coordinates. i.e.,

n = .u,x + US + il.i.

In polar coordinates (see Fig. J. ~)

11., = sin 8 cos <p
!l~= sin 8 sin <p
!!.: = cos 8,

J dn = Io2

'"l f~1 sin 8 d8 ,/fl'.



I Qx dQ = I QlI dQ = f Qz dQ = 0

I Q2 dQ = I Q2 dQ = I Q2 dQ = 47Tx II z 3

1.

~ 2.

3.

f 4.

5.

Develop a detailed derivation of equation (3.5).
Make the expansion in spherical harmonics as given in §3.3d and show that this
can be reduced to equation (3.44) for the PI approximation.
Carry out in detail the derivation of equation (3.49) from equation (3.48).
Derive difference equations for PI (or diffusion) theory in two-dimensional
(r, z) geometry.35 Express them in matrix form and verify that the matrix has the
desired properties.
Consider a hypothetical problem in which c:I> and s are vectors with two com-
ponents and the matrix A in equation (3.60) is given by

A = (a -1)
-1 a

\\ here a > I. It is desired to solve equation (3.60) by the point successive over-
relaxation method, i.e., by using equation (3.68). Determine the optimum acceler-
ation parameter, w, for a = t.36 For what range of w will this method be superior
to the Liebmann method, i.e., w = I?

6. In solving a system of diffusion theory difference equations in two dimensions,
e.g., equation (3.60). it is possible to regard the flux components in a given line of
the t\\o-dlmenslonal array as the unknowns at any instant and to use one-dimen-
s\(.lnal methods to obtain them. This is known as the "line relaxation" method.
Suggest an iterative scheme for solving the two-dimensional equation using this
method. The merit of the procedure may be evaluated by reference to the
literature.J7

(' 7. Consider a spherical region of radius R in which there is a uniform and isotropic
source of neutrons; the neutron cross section in the region is assumed to be
negligible. Compute the angular flux (in vacuum) at a point r outside the sphere.
Discuss the relevance of the result to the considerations at the end of §3.5a
(especially the footnote).

8. Consider a reactor lattice in which a cell has a hexagonal cross section. It is
desired to make a t~o-dimensional diffusion-theory calculation of the flux in
such· a cell. B)' symmetry, only one-sixth of the hexagon, i.e., an equilateral
triangle. needs to be considered and suppose that an equilateral space mesh is
imposed. Start from the diffusion equation in (x, y) geometry and devise an



approximating 7-point difference equation to apply at any interior point, i.e., not
on an interface. Does the difference equation derived depend on the choice of the
x direction? Devise a consistent ordering to write the difference equations in a
matrix form and suggest some boundary conditions to eliminate the boundary
points. Discuss the properties of the matrix.38

9. Derive equation (3.74).
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4. SOLUTION OF THE
TRANSPORT EQUATION
BY MULTIGROUP
METHODS

4.1a Outline of the Multigroup Method

In this chapter. the energy-dependent neutron transport equation will be con-
sidered and some practical and widely used methods for its solution will be
developed. These methods are based on the expansion of the directional de-
pendence of the neutron angular flux in spherical harmonics (or Legendre poly-
nomials), as in Chapter 3. Furthermore, the energy variable is not treated as
being continuous. but the range of interest is divided into a finite number of
discrete energy groups. Division of the neutron energy into a number of groups
has led to the use of the term mu/tigroup method or mu/tigroup theory.

It will be seen that for each energy group there is a one-speed problem which
may be solved by the methods of the preceding chapter. For simplicity and
because they are commonly used in reactor calculations, emphasis will be
placed on the P1 and diffusion approximations.

4.1b Comments on Other Methods of Solution

It is of interest to consider. fin~ some other approaches which h,we been taken,
in particular the extension to encrgy-dependent problems of some of the methods



used for one-speed theory in Chapter 2. In §2.2, the method of separation of
variables was developed to obtain exact (or very accurate) solutions in simple
cases. This method has been extended to treat energy-dependent problems in
plane geometry,1 the energy dependenc,~ being included either by allowing
discrete energy groups or by expanding the energy dependence in modes. Such
procedures could be used to obtain accurate solutions to a few test problems.
Since a computer is usually required for the calculations, however, it has proved
more convenient in practice to obtain the desired accurate solutions to test
problems in other ways, e.g., by the discrete ordinates method (Chapter 5) or by
Monte Carlo techniques.

Fourier transform methods have been applied to energy-dependent problems
both for infinite media 2 and the so-called bare homogeneous reactor. In the
latter case, this somewhat heuristic approach has led to "asymptotic reactor
theory."3 These methods will be discussed only briefly here and primarily as a
means for finding group cross sections in §4.5.

The time-independent neutron transport equation involves three independent
variables, namely, neutron direction n, energy E, and position r. There are
several possible ways for tr.eating these variables. In the approach to be adopted
here, the dependence of the neutron angular flux on n is expanded as a series of
orthogonal polynomials, whereas the other two variables appear in discrete
form. It is of interest to consider if other approaches, in which, for example,
energy or space dependence is expanded in a few modes, might be equally
fruitful. In practice, however, this has been found not to be so, and the treatment
described in this chapter has proved to be more versatile than these alternatives.

In the first place, the range of angular variables is clearly fixed, and the kinds
of angular dependence the neutron flux will have within that range are much the
same in different problems. On the other hand, the dependence of the flux on
energy and position will be completely different in, for example, a small fast
reactor and a large thermal reactor. Nevertheless, for a limited number of
reactor types, it may be possible to approximate the energy dependence of the
flux by a few, perhaps one or two, terms (modes) of an expansion.4, In addition,
for systems with large (in mean paths) simple regions, such as the bare homo-
geneous reactor, the spatial distribution of neutrons can also be approximated
by one or two moees. It is for such systems that asymptotic reactor theory is
useful. Although expansions of the neutron flux in simple energy or space
modes may be useful in special cases, they are not capable of treating the great
variety of systems for which solutions can be obtained by the multigroup spherical
harmonics method.

Another approach is to abandon the use of modes altogether and to take all
variables, including Q, to be discrete rather than continuous. This procedure
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will be described in Chapter 5 in which the method of discrete ordinates and the
discrete SN method are developed. These "altogether discrete" methods can
also be used to treat a variety of problems of practical significance.

4.2 SPHERICAL HARMONICS EQUATIONS IN
PLANE GEOMETRY

4.2a Introduction

Consideration will now be given to the development of the multi group spherical
harmonics method for energy-dependent- problems. Since all the geometrical
considerations are the same as for one-speed theory, as described in Chapter 3,
most of the discussion in the present chapter will be concerned with plane
geometry. Occasionally, however, results from Chapter 3 will be used to obtain
eq-uations in more general geometry.

4.2b Expansion of the Scattering Function

The time-independent neutron transport equation in plane geometry may be
written

c$(x.!J..E) Err,
fL ---- ; a(x. )'V(x, fL, E)ex

== r r a(,\. E' )f(x; Q', E' ---?- Q, E)<1>(x, fL', E') dQ' dE' + Q(x, fL, E). (4.1)

It \\ ill be a~::.umed. as in §3.1b. that the angular variation of the scattering func-
tion. f. derend~ only on the scattering angle, fLo = Q. Q'. Then af may be ex-
panded In a set t)f Legendre polynomials of fLo; thus.

a( \'. E')f{r; Q'. E' --- Q. E) = a(x, E')f(.\; E' ---?- E. fLo)

~l

o,Cr; E',· E) = 21T I a(x. E')f(x; E' -- E, fLo)P,(fLo} dfLo .
• - 1

If the e'panswn of equatillll (4.3) is inserted into equation (4.1). use of the addi-
tIOn thellrcm fl)r Legendre polynomials and integration over azimuthal angles
(§1.6a) gl\~



Before proceeding, it is of interest to examine the expansion coefficients for
some special cases. If the neutron scattering is isotropic in the laboratory system,
as it is approximately for fission and for inelastic scattering from heavy nuclei,
then only 0'0 is nonzero. For the more interesting case of elastic scattering (cross
section as), from a stationary nucleus of atomic number A, that is isotropic in
the center-of-mass coordinate system then (§l.l b)

a(x, E')/(x; E' -+ E, fLo) = 2~sl(x~~'lE' S(ILo - S) if aE' ~ E ~ E'

= 0 if E > E' or E < aE'

where, as in §l.l b, S is defined by

S= ~ [(A + 1)):' - (A - I)) ~]
a = [(A - I)j(A + 1)]2.

Upon insertion of this result into equation (4.3), the expansion coefficients can
be written as

( E' E) as(x, E') P (5) l·f ,..E' ~ E ~ E'a/ x; --;.. = (1 _ a)E' I u. ~ ~ (4.6)

= 0 if E > E' or E < aE'.

It follows, therefore,' that within the energy range which can be reached by
elastic scattering from energy E' there are an infinite number of at values.

More generally, an elastic scattering cross section, isotropic or anisotropic,
may be expressed as a Legendre polynomial series in the center-of-mass scatter-
ing angle w. Instead of equation (4.5), the cross section may now be represented
by
a(x, E')/(x; £' -- E, fLo) dE

<C

_ ~2n+l ,- L 47T a,n(.~,£)Pn(cosw)dCOSwS(fLo - S). (4.7)

Since, for elastic scattering 5

cos w = 1_ (A + I )2 (I _ ~),
2A £'

it is possible to eliminate cos w from equation (4.7) to give

a(x. £')/(x: £' -- £, fLo) d£
..,I "" 2n + 1 ,[ (A + 1)2 ( E)]

, == (l - alE' L 27T ai,,(x. £ )P. I - 2A I - £'
••0

x S<JLo - S) dE. (4.8)

I I ~
""

I~
i'f
'Ii
.o~

J

,1
':~

..~
J
.'"!

"

!

i
.)

,

i
:1
ci!

'"



ex>

al(X; E' -+ E) = (1 _la)E1.L (2n + l)asn(x, E1)Pn[I - (A ~ 1)2 (1 - i;)]
n=O

X P1(A; IJi, - A ~ I/i), (4.9)

with the expression for S being written out in full.
Equation (4.9), or even equation (4.6), is complicated enough to be formidable

for hand calculation. With the availabil_ity of digital computers, however, the
task is relatively simple. Microscopic scattering cross section data are usually
stored on tape and are processed before any multigroup cross sections are
derived for use in a transport calculation (see §4.5a).

4.2c The Spherical Harmonics Equations

The angular distributions of the neutron flux and the source may now be
expanded in a set of Legendre polynomials (§2.6a); thus,

ex::

(. _ ~ 2m + I1>(.\. Ii, E) - ~ 47T ePm(x, E)Pm(Ii)
m=O

ThC'~ e\r.ln~lllns are no" inserted into equation (4.4) and the result is multi-
plied by P•.(}l); Ur~)fi antegration over J1. from - I to I, and using the orthogo-
nalit) of the Legendre polynomials, the energy-dependent spherical harmonics
equatlOns are obtaaned as

(n + I)ftb •.• \(x. £) + nitb •.-1 + (2n + t)a(x,E)ePn
fX fX

~
=: (:!.n + )) J «7 •• ( c E' --.• Eyp,,(x, E') dE' + (2n + I)Q,,(x, E).

n=O,I,2,3, .... (4.14)



This infinite set of differential equations, for n = 0, 1,2,3, ... , is equivalent to
the original neutron transport equation (4.1). As in §3.1c, the P N approximation
is obtained by considering the first N + 1 of this set and letting OCPN + Ilox = 0;
this is equivalent to truncating the expansion in equation (4.10) after N + 1
terms.

So far, the procedure has been the same as in Chapter 3, except that energy
appears here as a variable. Similarly, the usual boundary conditions given in
Chapter 3 may be imposed, again with energy included as a parameter. It
should be noted, however, that the scattering integrals in equation (4.14) contain
contributions from energy E'. These terms act as an anisotropic source as far as
the neutrons of energy E are concerned.

4.2d The PI Approximation and Diffusion Theory

As in Chapter 3, CPo is identical with the total flux, cP, and epl with the neutron
current, J, in the x direction; from equation (4.14), the PI equations (n = 0 and
n = 1) can consequently be written as

cJ(:\, E) + o(.~, E)ep(x, E) = J oo(x; E' -+ E)ep(x, E') dE' + Qo(x, E) (4.15)
ex

hMx, E). + 30(x, E)J(x, E)ex

= 3 J °l(X; E' --+ E)J(x, E') dE' + 3Ql(X, E). (4.16)

For a wide variety of reactor problems, the Pl approximation has been found
to be very useful. Briefly, these problems may be described as either involving
survey calculations. for which high accuracy is not required, or calculations on
larg.e systems. in which the important regions are several neutron mean free
paths in thickness. For such large systems. the angular flux can, for the most
part. be represented by the first two Legendre polynomials.

Furthermore. an experienced reactor analyst can frequently obtain accurate
results from the PI approximation even in situations where it is not strictly
applicable. In particular, cross sections can be adjusted to give agreement with
experimental data, e.g .. by the use of synthetic kernels, 6 or accurate transport
theory results can be incorporated into the weaker portions of the P1 analysis.7

With the development of faster digital computers and the availability of better
cross section data. many of these techniques are now lapsing into disuse,
whereas others are too specialized for discussion in this book. Nevertheless, the
PI approximation (and the related diffusion theory) are used extensively in
reactor analysis and so they will be considered in detail here.

Before casti~g the PI equations into multigroup form. the relat!onship
between the Pl approximation and diffusion theory will be examined. It will be
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observed that, in the PI equations (4.15) and (4.16), coupling between the
various neutron energies is present through the integrals over energy on the
right-hand sides. Such integrals can be incorporated into the muttigroup
formulations (§§4.3a, 4.3b), but the scattering integral in equation (4.16) has
often been approximated in a form leading to an energy-depen<ient diffusion
theory. The reasons for this are, to some extent, historical, since the first multi-
group methods 8 were developed starting from age-diffusion theory, rather than
from transport theory. Furthermore, the methods for solving Qiffusion theory
equations have a particularly firm mathematical basis (§4.4f).

In any event, the essential postulate of diffusion theory is that the neutron
current, which is J(x, E) in the present case, is given by a diffusion coefficient
multiplied by the gradient of the flux; thus,

J(x, E) = - D(x, E) 04>(:, E).
ox

Equation (4.17), which is a form of Fick's law, is now used, instead of equation
(4.16), to eliminate J from equation (4.15) to give the diffusion equation

a [ o4>(x, E)]
- ax D(x, E) ex + a (x, E)4>(x, E)

= f ao(x; E' ~ E)4>(x, E') dE' + Qo(x, E). (4.18)

This equation has been used extensively as the basis for multigroup calculations.
It is of interest. therefore, to examine the diffusion theory equation (4.18), and
to consider in what sense it is an approximation to the PI equations (4.15) and
(4.16), and what might be a reasonable choice for D(x, E).

It will be recalled (§§2.6b, 3.ld) that, for the one-speed problem, diffusion
theory is equivalent to the PI approximation provided the source is isotropic. In
the energy-dependent situation, however, as in equation (4.16), both QI and the
integral (scattering) term act as anisotropic sources of neutrons at energy E; the
equivalence between Pl and diffusion theories is consequently destroyed. If the
source and scattering were isotropic, al and Ql would both be zero and then
equation (4.16) would be equivalent to Fick's law with the diffusion coefficient
being equal to I i3a(x. E). Although it is frequently a good approximation to
regard the source as isotropic, so that QI = 0, it is seldom possible, however, to
take the scattering to be isotropic. Hence, it is necessary to app"roximate the
integral in equation (4.16) in order to arrive at a simple and reasonable ex-
pression for the diffusion coefficient.

Suppose that the source is isotropic, i.e., Ql = 0; then equations (4.16) and
(4.17) would be the same provided the diffusion coefficient

_ 1 [. f a1(X;E'-+E)J(X,E')dE']-1
D(x, E) -"3 a(x, E) - Jex, E) .'



A simple approximation to the integral can be obtained by expanding it in a
Taylor series in the lethargy (see §4.7d) and retaining only the first term. An
equivalent result follows from the heuristic argument that the integral represents
a contribution from the slowing down of neutrons having energies E' > E; this
is almost the same as the slowing down from E to lower energies, i.e.,

f Ul(X; E' -+ E)J(x, E') dE' ~ I Ul(X; E -+ E')J(x, E) dE'.

I ~l(X; E' -+ E)J(x, E') dE' ~ uo(x, E)p-o(x, E)J(x, E),

Uo(x, E) = I Uo(X; E -+ E') dE'

_ _ f Ul(X; E -+ E') dE'
Il-o(x, E) = . .

j uo(x; E -+ E') dE'

That P-o(:'<,E) represents an average scattering angle, as the symbol implies,
follows from the definitions of Uoand U1given by equation (4.3). When the values
are inserted into equation (4.22), it is found that

_ If ll-o/(x; E -+ E', Il-o) dll-o dE'
Il-o(x, E) = JJ I(x; E -+ E',ll-o) dll-o dE'

and so (Lo is the average of the scattering angle Il-o.
If the integral in equation (4.19) is approximated by equation (4.20), the

result is

This expression for the diffusion coefficient is commonly used; it is, in fact, a
natural generalization of the equation for D(x) in one-speed theory (§2.6b).

It is thus seen that diffusion theory represents a form of the PI approximation
in which the contribution of the anisotropic scattering to the energy transfer has
been approximated. In many instances this approximation is a good one, as will
be seen in §4.7, where the relationship of Pl theory to age-diffusion and other
theori~ will be examined. For situations involving large energy transfer and

-./

anisotropic scattering of neutrons. e.g .• with hydrogen, the approximation lead-
ing to diffusion theory would not be expected to be satisfactory. c><
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4.3a Energy Groups 'and Group Constants

The energy-dependent' PN equations (4.14) will now be put into multigroup
form. M ultigroup theory does not imply any restrictions on the energy-depen-
dent cross sections; hence. these cross sections may be very complicated func-
tions of energy. as they often are in reality.

The first step in the development of multigroup theory is to divide the neutron
energy range of interest. i.e .. Emin ~ E ~ Emax, into a finite number, G, of
intervals separated by the energies Eg, where g = I, 2, 3..... G, as shown in
Fig. 4.1. Each energy interval is called a group and the number of the group is
the g \alue for the lower energy limit. The order of numbering is such that as
g increases. the energy decreases. i.e., Eg > Ea.-I' Consequently, if a neutron is
gener3ted in nssil)n in group I. it may then pass during moderation from group 1
tl) 2. frl)m 2 ll) 3. and Sl) on: or. in general. from g' to g with g > g'. The usual
strateg~ adopted in soh'ing the mllitigroup equations proceeds by first solving
the eq uation~ fl)r group I. then fl)r grou p 2. and so on.

For an accurate multigroup calculation. the neutron energy interval would be
Ji\ iJed. t] plcall]. into 20 (or more) groups. Whenever possible, the energy range
fl)r a group 1', d1l1sen so that the variation of important cross sections within the
grl)Up I" I\ept re~\o,\lnahl! small. That is to say. the group boundaries are selected,
If PI1~"lhk. tll cllrre"pond to neutron energies where cross sections undergo a
marl\ed chJn~;:, ·\p~\rt frllm ~uch special circumstances. however. the groups are
llftr.:n chlhr.:n "11 th~lt F~ L:. 1 I~ flHlghly constant. i.e .. at equal lethargy intervals
(~·t7a L

The nnt ..,tc:p ,., h) Integrate the energy-dependent P" equations (4.14) over
thr.: ~rl'Up C:1le:rg~Illte:f\al. i.e .. E~ :( E:( EO-I' If the integral over E' is ex-
rre:".,l:d ;\' the: "Ufl1 .,1' Inte:gr:d., ll\e:r all the energy groups. i.c ..

. J>~( Y. E') dE' == 14>"(x. E') dE'
~ Q
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and the group cross sections, or group constants, as they are commonly called,
are defined by

The quantities defined by equation (4.27) are sometimes known as the transfer
cross sections, since they refer to the transfer of neutrons from group g' to group
g, including g = g'. It should be noted that if the total cross section were
independent of E, i.e., a(x, E) = a(x). then an.o(x) would be equal to a(x) for
all values of n. Thus, an•o is found to be largely independent of n. On the other
hand, an.o,-o usually depends strongly on n, because it is defined in equation
(4.27) in terms of the cross section, an'

It is important to observe that the set of multigroup equations (4.24) are still
exact and equivalent to the transport equation. But they involve the group
constants and hence, according to equations (4.26) and (4.27), the functions
cPn(:'(, E) within the various groups, and these functions are not known. This
point may be understood better by supposing that a group structure be set up
with only a single group to span the whole energy range of interest. The result
would then be simply a one-group (or one-speed) problem, which could be
used for the exact determination of eigenvalues (§4.4). reaction rates, etc. Such a
representation is, of course, not likely to be useful because the appropriate
one-group cross sections would .not be known. These require a knowledge of the
weighting functions, cPn(.\:, E), as stated above. For a satisfactory one-group
calculation, the energy dependence of the neutron flux, i.e., of the weighting
functions, over the whole range of interest would have to be known accurately.
Consequently, the one-group method is not useful for solving the transport
equation.

In a simple system or one in which the energy dependence is well understood,
acceptable accuracy may be achieved by the use of a few groups. In most cases,
however. a considerable number, e.g .• about 20. of energy groups is used. The
energy variation of the flux must then be known reasonably accurately' in the

f ,cPn(x, E') f an(x; E' ~ E) dE dE'
an.g'-+g(x) = .g g c/> (') .

n.g' .\



groups where there is fine structure, caused by resonances or thermalization, for
example; for the other groups, a less accurate estimate of the energy dependence
is usually adequate.

The purpose of the foregoing discussion is to emphasize the importance in
multigroup theory of an accurate knowledge of the group constants, and this
depends on the evaluation of the energy dependence of the flux within each
group, i.e., on the values of q;n(x, E). Some ways of estimating their dependences
will be described in §4.5, and a variational method for deriving them in a self-
consistent manner will be discussed in Chapter 6.

Examination of equations (4.26) and (4.27) shows that the group cross
sections are functions of position; in fact, if the quantities q;n(x, E) depend on
position and energy in a nonseparable way, the group cross sections will be
space-dependent even if a and an are not. In practice, a reactor is usually divided
into anum ber of regions of uniform chemical composition, for calculational
purposes. and within each region the group cross sections are taken to be in-
dependent of position. It is possible. however, to divide up a region of uniform
composition into several parts with different q;n and, hence. different group cross
sections. In some situations, e.g., in burnup problems (Chapter 10), the group
cross sections may be different at each spatial mesh point in the reactor.

If the variation of neutron flux and cross sections with energy were known
accurately within each group. then the set of multigroup equations (4.24)
would be just as exact as the transport equation. In practice. however, this is not
so. particularly because estimated values of the energy dependence of the flux
are used in determining the group constants. In order to proceed with the
development of the multigroup treatment. it will be assumed that the group
constants are known.

The P, multign1up approximation is obtained by a procedure similar to that
used in~.2c for the P" approximation. by setting

d
-, (cbs + l,Q) = O.ex

As a result. equation (4.24) yields a set of coupled one-speed equations, one for
each group. "here the coupling arises through the an.Q, _g terms. For a fixed g,
the corresponding equation is exactly equivalent to that for a one-speed problem,
as in §3.1 b. for example. with the terms involving an•g· _q for g =f:. g' representing
an anisotropic source of neutrons into group g. The methods used for solving
the one-speed equations arc then similar to those described in Chapter 3. In this
section. the PI multigroup equations will be considered.I, In general geometry, the multigroup PI approximation may be derived by

"



starting from the energy-dependent PI equations analogous to the one-speed
equations (3.50) and (3.51), namely,

V. J(r, E) + G(r, E)cP(r, E) = f Go(r; E' ~ E)cP(r, E') dE' + Qo(r, E) (4.28)

and

VcP(r, E) + 30:(r, E)J(r, E) = 3 f Gl(r, E' ~ E)J(r, E') dE' + 3Ql(r, E).

(4.29)

When these equations are integrated over an energy group Eg ~ E ~ Eg-1, the

result is
G

V . Jg(r) + Go.g(r)cPg(r) = L Go.g'_g(r)cPg,(r) + Qo.g(r)
g' = 1

G

VcPg(r) + 3Gl.9(r)Jg(r) = 3 ') G1.l7'_Q(r)Jg,{r) + 3Ql.,,(r),
~

g' = 1

g = 1, 2, ... , G

where the following definitions have been used:

cPg== f cP(r, E) dE = r r (!-l(r. n, E) dn dE
.g .0.

JQ - r J(r, E) dE = r r n(t>(r, n, E) £In £IE
.0 .0.

Qo.O == r Qo(r. E) dE = r r Q(r, n, E) c/n £IE
• 0 • g.

Ql.O == JII Ql(r. E) dE = {J nQ(r, n, E) cln clE.

The group constants are defined in the same way as in equations (4.26) and
(4.27) but \\ ith cb replacing cPo' J replacing cPl. and r replacing x. 11 is assumed that
all the components of J have the same energy dependence within a group. If.
more generally, these components had difTerent energy dependences, then the
terms Gl,gJq and Gl.Il'-9J

9
• would not necessarily have the same directions as Jo

and J
Il
,. In these. circumstances, the quantities G1 would be interpreted as

tensors. Such complexity does not seem warranted. however, in view of the
approximate nature of Pl theory and the uncertainty concerning the neutron
energy dependences within the groups.

If an energy-dependent form of Fick's law in general geometry is postulated,
I.e.,

J(r. £) = - D(r, £)VcP<r. E).



then the group current can be expressed by integrating this equation over group
g; the result is

I D(r, E)'Vcp(r, E) dE
Dg{r) = .g 'Vcpg{r) .

With this definition, the multigroup diffusion equation is obtained by inserting
equation (4.33) into (4.30); thus,

G

- \!. Dg(r)\!cpo(r) + uo.q(r)cpo(r) = "> uo.g'~g(r)d>g.(r) + Qo,g(r).
--'

g' = 1

A number of potentially uncertain approximations have been introduced in
deriving the multigroup diffusion theory equation (4.35) from PI theory. Usually,
therefore, a multigroup PI solution to the transport equation would be preferable
to one obtained from multigroup diffusion theory.

The multign,up Pl equations (4.30) and (4.31) and the multigrollp difTusion
theory equatil)n (4.35) are approximations to a time-independent neutron
transport eq uation: hence they might he used in an effort to sohe any ti me-
independent transport problem. Two cases are of special interest: lHle is that of
a suhcritical sy~tem with an independent source, and the other is that of a
critical s] ~tel1l.

For a sllhcritical system with a source. the equatilHls mentioned ahlHe.
together \\Ith houndary conditions for each group as descrihed in Chapter J. are
sufliclent tll detine the prohlem.* They should. therefore, determine a solutil)n
uniquel], Thl~ ha" heen proved rigorously for multigroup difTusion thel)ry and
for a hare hl)mogeneous reactor (see ~1.5d ).9

In order to understand what is imohed in obtaining such a solution. a par-
ticularly simple problem \\ill be considered in which an isotropic source. Qo,
is gi\en and III \\hich the neutruns cannot gain (but only lose) energy in cl)lIi-
sions, i.e .. Ug _g = 0 if g' > g. Physically, the latter postulate would he applic-
ahle if there were no fissile material in the system and all thermal neutrons were

• In practice. the boundary condItions are. for simplicity. often taken to be independent
of the group: for e,ample. for a free surface. the flux may be set to zero at the same ex-
trapolated boundary for each group.



in a single energy group. Suppose that a solution of the PI equations were
sought for such a problem. Equations '(4.30) and (4.31) would take the form

V· Jg{r) + O"O,g{r)«pg(r) = 2: O"O,g·_g(r)«pg.(r) + QO,g(r)
g'So g

Vepg{r) + 30"I,g(r)Jg(r) = 3 2: O"l,g._g(r)Jg.(r)
g' 50 g

This system of G equations can be solved two equations at a time, starting
with the lowest value of g. Thus, consider the equations for g = 1. The source
Qo,~ is known and the equations contain only the unknowns «PI and JI; to obtain
the latter, it is necessary to solve a one-speed problem. Once ePl and J1 have been
determined, the equations for g = 2 can be considered: now the only unknowns
are «P2 and J2 and these may, once again. be found by solving a one-speed
problem. Hence, in this simple ,ase, the solution of the multigroup problem
may be found by solving in succession a set of G one-speed problems, with
K = I, 2, ... , G, using the methods of Chapter 3.

The foregoing procedure is not restricted to Pl theory and multigroup PN

equations could be solved in the same manner for this simple source problem.
In fact. any of the methods used for the solution of one-speed problems could
be applied in multigroup form.

The consideration l,f Ci"iticality is generally referred 1l) as an eigenvalue problem
because such problems are concerned \\ ith the determination of the reactivity
eigenvalue. i.e .. the effective multiplicatil)n factor. k. in the time-independent
equatwn (1.49), and of other eigemalues of interest. It will be recalled from
~1.5e that k is uefined in such a manner that criticality is achieved by dividing
the number of neutrons per fission hy k.

If fission neutrons are emitted isotropically in the laboratory coordinate
system. then the energy spectrum of these neutrons can be described as part of
the term 0"0.0'-0' In particular, it is p0ssible to write

where VO",.o'-oc/Jo is the rate at which fission neutrons appear in group g as a
result of fissions brought about by neutrons In group ~'. The cross section
a.o .• '_. accounts for all other transfers fr0m group X· to group g: the subscript
s suggests scattering, as before, but it no\\ include~ cl\ntrihutilms from (n, 2n)
reactions. Thus, s is equivalent to the symbol x r;: fused in §l.lb: the latter is

I

I
~j,
! '

,/
.:



not employed here, however, because it makes the subscripts too cumbersome.
With the notation of equation (4.38), the rrmltigroup PI equations for the

reactivity eigenvalue k, related to equations (4.30) and (4.31) are *

V· Jir) + Go.ir)4>g(r) = L Gso.g'_g(r)4>g{r) + ~L VGt.g,_g{r)4>g,(r) (4.39)
g' g'

V4>ir) + 3~1.g{r)Jg{r) = 3 L GI.g,_ir)Jg.(r).
g'

These differ from the general PI equations (4.30) and (4.31) in the respect that
the extraneous source terms are set equal to zero, and the fission neutrons have
been separated from the others. In addition, the eigenvalue k has been intro-
duced so that exact criticality can be achieved.

For multigroup diffusion theory, the expression for the eigenvalue k corre-
sponding to equation (4.35) is

- V, Dg(r)V4>g{r) + Go.g(r)¢fg(r)

= L Gso.g·_g(r)4>g.(r) + ~.2VGr.g·_g(r)4>g.(r). (4.41)
g' g'

It will be seen in §4.4c that the existence of the eigenvalue k has been proved
rigorously for multigroup diffusion theory, and that much is known, in general,
"about the corres'ponding eigenfunction 4>g(r).

The eigenvalue (or criticality) problem can also be considered in terms of the
multiplication rate (or period) eigenvalues a. It will be recalled from §1.5c that
the eigenfunctions (or modes) corresponding to the values of a are defined as
solutions of the source-free, time-dependent transport equation for which

I C" a
- -;- <D(r, n, E, t) = - <D(r, n, E, t).
z' ct l'

• A slightly different method for representing the summation over g' is used here for
simplicity.



where the group velocities, which now enter explicitly for the first time, are
defined by

1 J !c/>(r, E) dE
v9-

c/>g(r)VO,g

1 L ~J(r, E) dE
- Jg(r)V1,g

In practice, it is generally assumed that t'O,g = t'l,g and that both are independent
of position,

For multigroup diffusion theory, a Fick's law relationship between Jg and
Vc/>g may be postulated to obtain the ex eigenvalue equation

It should be observed that, in trying to derive Fick's law from equation (4.43), it
would be necessary to neglect the term 3 (ex/l'l,Q )Jg in order to obtain a diffusion
coefficient, Dg, independent of u.. This neglect is quite conventional in time-
dependent diffusion theory.lo

As in the general criticality equation (1.55). the term (a l'o.r;)c/>r;appears in the
multigrt111p PI equation (4.42) for u. and in the multigroup diffusion theory
eq1l311ll!1 (4.44). It is thus equivalent to a"l /," ahsorher and. for positive u.. it is
l,ften ~aid tll represent" time ahsorption" as stated 111* I.Sf.

4.4c Eigenvalues and Eigenfunctions for Multigroup
Diffusion Theory

The C411;1til'n~ gl\en 111the preceding ~ectJ()n for the k and Ct eigenvalues in
ll1ulllgrpup Pj and diiTusilln theories are appllcahk Il) eigenfunctit)ns which
"~lll"r~ arrr1lrrt3te hl1undary condition:-..It \\assecn 111~r.5c, 1.5e 111v.hat sense
thc,e cIgCI1\ ~t1uc~ e\l~t ftlr the complete tr ••mport equation. and consideration
mU';'f nl'" he gl\cn tll their prl'rert1es 111multlgr,'up e4uatllln~. It I' 111connec-
tll 'n \\ It h m\Jltl~fllup din usion theory. 111particular. that Information has been
"l1t •.IIncJ c"ncernln~ the e\lstence of the elgcl1\alucs and the nature of the
Cl)rre ..•pl)ndlng clgenfunctlons.

In (lne apprl);1ch.1: the k and (1 cigen\alue equatil)m (-t.4I) and (4.44), re-
"Pl·l:tl\e!). are clln"ldercd to apply h) ~,lme finite reglt)n In space. For houndary
C{)nJllll'l1 ..•.a bnear relationship. similar to the t"ne in equation (3.1 :!). is assumed
h' h,"d hctv.een the group flu., and It\ normal den\atl\e of the form c/>g +
hi' V¢g = O. v. here n is an outward normal and h, IS any nonneg.atlve piecewise
-eontlnuOU51 functIOn defined on the boundary. ThIS condition is general enough



to include any of the diffusion theory boundary conditions mentioned in
§3.1e. In addition, the assumptions are made that there is continuity of the flux
and of the current at interfaces, and that the flux has bounded and continuous
second derivatives. Some very minor conditions are also imposed on the group
constants, but they are satisfied by any potentially critical system.

On the basis of the for~going postulates, it has been shown 12 that there will
always exist a reactivity eigenvalue, ko, for equation (4.41) such that ko is real,
positive, and larger in magnitude than any other eigenvalue. The ko is called a
positil'e dominant eigenralue and it is clearly of physical interest since the situa-
tion with the largest k = ko will be that which is critical with the least number
of neutrons per fission. Moreover, corresponding to ko, there is an eigenfunction
(and also an adjoint eigenfunction) which is unique, except for normalization,
and is nonnegative everywhere within the bounded region of space. Of course, a
physi€~ total flux must be everywhere positive or zero. and so this nonnegativity
of the eigenfunction is a satisfactory feature.

There are presumably other eigenvalues, smaller in magnitude than ko,for
which the corresponding eigenfunctions are sometimes negative or even com-
plex. but no single one of these higher modes can be realized physically. Although
these higher modes can be found explicitly for simple cases, such as the one-
group approximation in simple geometry. little is known about such modes in
general. .

The existence and properties of the positive dominant reactivity eigenvalue,
/';'0' and its associated eigenfunction provide a firm mathematical basis to the k
eigem :.tlue prob1em. Consider. now. the Cf. eigenvalue problem, defined by
equation (4.44'. \\4th the same boundary conditions. It has been shown 13 that
in this case there will exist a dominant eigenvalue, Cf.o. which is real and larger
(more positive) than the real part of any other eigenvalue. and that the associ-
ated eigenfunction (and its adjoint) is everywhere nonnegative. Thus, the a

eigenvalue pron'em is also on a firm basis.
In addition. f",U" either a homogeneous system. which means here that all the

gwup constants are independent of position within the system. or for one-
dimension:.tl Feometry. i.e .. plane. infinite cylinder. or sphere. the set of a

eigenfunctions is complete in the sense that a solution to the time-dependent
initial value prob1em can be written as a sum of the eigenfunctions, each multi-
plied hy c"t witb U1 the corresponding a eigenvalue. The expansion coefficients
can be found by using Cf. modes for the adjoint solution (see Chapter 6). Expan-
sions in the (( mlldes. as a means for solving time- aud space-dependent problems
in reactor dynamics. will be employed in .Chapter 10.

The mathematical methods used to derive the properties of the eigenvalues
and elgenfunctions of the multigroup diffusion theory given above are beyond
the scope of thi<jtext. The interested reader can refer to the original report of the
v.ork. H It is worth making some generalizations, however. concerning the
approaches used. In particular, it should be-noted that the operators involved in



transport theory are positive operators in the sense that, if the neutron distribu-
tion is initially positive, it will remain positive, or at least nonnegative, at all
subsequent times. This positivity of operators is an essential aspect of the
derivations of the dominant eigenvalues and nonnegative eigenfunctions de-
scribed above. The importance of positivity in the operators has been empha-
sized in various connections 15 and reference to it will be made in §4.4g.

4.4d Solving the Eigenvalue Problem

The multi group eigenvalue problem involves a set of coupled one-speed equa-
tions, such as equations (4.39) and (4.40), one for each group. In this section a
systematic way of solving such equations will be described. It will be assumed
throughout that anyone-speed problem with a known source and a non-
multiplying medium can be solved by the methods of Chapter 3, as indicated in
§4.3c.

Suppose it is required to solve the set of multigroup PI equations (4.39) and
(4.40) for the eigenvalue k and the associated eigenfunction. The procedure
adopted is based on that described in §l.Se of treating the neutrons one genera-
tion at a time, with fission being regarded as the birth event which separates
successive generations. To start the calculations a guess is made concerning the
spatial distribution of fissions, and this forms the source for the first generation
of neutrons. Although the guess can be completely arbitrary, the closer it is, on
the basis of previous experience. to the actual distribution of fissions the faster
does the calculation converge.

By treating fission as absorption (cf. §1.Se). the flux, cPl' of the first generation
of neutrons is computed with the arbitrary fission distribution. The procedure
used is similar to that described in §4.3c for a known source. The fission distri-
bution corresponding to this flux, cPl' is next computeq and this forms the source
for a new flux. cP2' of neutrons of the second generation, and so on for subse-
quent generations. In this manner a convergent iterative procedure is defined;
the ratio of the fluxes in successive generations approaches a constant, and this
is k; thus, in accordance with equation (1.54)

lim .J.cPt = constant = k.
t - xc 'fI1 - 1

In practice, this iterative scheme can be used to solve the PI equations (4.39)
and (4.40) in the following manner. Let ef>~7\I(r) be a flux obtained from an n-fold
application of the iterative scheme represented by
V· J(7\)(r) + (1 (r\.J.1")(r)

, . 0" Ng

_ ~ ( \..L(")( ) + t ~ ( U(7\ -1)() (4 AS)- L (1,o,,'_g rNg' r kl,,-llL..-lIOf,"-fI rrt'fI' r ...•.
fI' g'

V4>~"I(r) + 3(11.,(r)J~·)(r) - 3 ') (1'l.g,_,(r)J~~I(r).
otI....oI

g'



Th~se equations are identical with equations (4.39) and (4.40), respectively, with
each Jg and cPg bearing the superscript (n), except that the fission terms have the
superscript (n - 1). The iterative scheme is thus similar to that in equation
(1.53) except that the fission term explicitly contains the factor Ijk<n -1). The
quantity kcn -1) is the estimate of k obtained after n - 1 iterations and may be
defined by the ratio

Thus, kcn> is the ratio of the total number of fission neutrons produced by cP(n!,

i.e., ~I(n), to the total number of fission neutrons that form the source for cPlnl,

i.e .. ~.F,n-l)jk(n-l).

This iterative scheme is essentially equivalent to that described above and in
§1.5e. The only difference is that now the fission term is. each time. divided by
a current estimate of k. As a consequence of equation (4.47), the integral of the
fission source. i.e., vpnljkcn), is independent of n. Since the fission source is rhus
normalized to be independent of n, the flux cP(n, \vill converge to a value a150
independent of n. Hence, assuming that the iteration converges, it follows fhat

lim ken) = k

where cP is a solution of equations (4.39) and (4.40).
The convergence of this procedure has been established for the difference

fl)rm l,f the multigrl)Up difTusion theory (§4.4f) and experience has shown fhat
the Cl)O\ ergenceis actually much more general (~.4g I. The fact that cP"ll becomes
independent of /l is a great convenience in some numerical work. For example.
it is advantageous to use cP'" - I, as a first guess for cPcn, when performing iterations
for the space distrihution of the neutron flux (cf. ~3.4c. 3.4d I.

In order to put the iterative scheme described above into operation, a guess is
made of the fiSSIOn source, i.e .•

Guessed fission source - I "\ ( )..LCO)( )-kCO) ~ V(1r.g' _g r 'fig' r.
g'

This quantity is then regarded as a known source in equations (4.45) and (4.46)
for n = I, and the equations are solved for cP~ll and J~l).If there is no scattering,
of neutrons to higher energies. i.e .. (1.0.1/' _41 = (1.1. 9 , -f = 0 if g' > g. then the
solutions may be found by solving successively a series of one-speed problems



for each of the G groups, as in §4.3c. Thus, the equations for g = 1 involve only
4>11)and J~1)as unknowns and these can be found by solving a one-speed problem
with a known source. With these quantities known, the equations for g = 2 are
considered; they involve the unknowns ep~1) and J~1)which may again be obtained
by solving a one-speed problem.

Once the flux ep~1) has been found for all the G groups, a new estimate of k is
made from equation (4.47). As desired, this equation gives k(1) as the ratio
between the number of fission neutrons emitted in successive iterations; thus,
vF(O)/kCO) is the (guessed) source of fission neutrons for the computation of ep(1},

and vF(1} is the number of fission neutrons obtained from the flux 4>(1}. Hence,
equation (4.47) may be written for n = I as

k(1) = Fission neutrons produced by ep(1}.

Fission neutron source for efP>

A new source of fission neutrons, namely,

k~l) 2: vaf,g'_g(r)<p~~)(r)
g'

! .J
I .

may now be derived and equations (4.45) and (4.46) solved for eP~2) and J~2>, and
the iterative procedure may be carried on for successive values of n. The calcu-
lation will be assumed to have converged when k1nl is sufficiently close to kIn - ll,

that is, when

I
kIn) I

kIn-I) - I < E.

where E is some predetermined small number. '" hich might be of the order of
10- 4 or so.

In practice. since k"" as computed in this manner l.)ftcn Cl)O\crges more rapidly
than the spatial flux distribution. a separate critcrlon I':)S('Imellmes impl)sed on
the flux, Fl'lr example. it might bc requIred that

I ~"" Imax ~,•._1, - 1 < (1'

'" here (1 IS another small number and the ma\lmum IS h'l he determmed 0\ er a
selected set of space points and energy groups. Hi

It IS ~en that the general strategy u~ IOsl)h ing the reactivity eig.envalue
equations in\olves two different kinds of computatH)nal prohlems. One is that
of solving for the spatial distribution of one-group flu\es In prohkms .•••ith
known sources ~ for two- and three-dimenSional prl)bkms thiS I~ done by the
so-<:alled Inner Iteration procedure described In ~3Ae. 3.4d. The other prohlem
involves iteration of the fission source untt! co", ergenec: ~s attained: such
.iterations are usually called outer (or $()ura or POtH") itC'WI;OftJ to dIstinguish
them from the inner iterations for the WIthin-group Au'\C'S.



There are two main reasons for adopting this calculational approach. First,
as already noted, it can be shown, rigorously in some cases and by experience in
others, that k<nl does indeed converge to a constant which is the desired eigen-
value. The convergence is often rapid, and even when it is normally not, the
underlying mathematical theory can be used to speed up the convergence.
Second, when neutrons gain energy only as a result of fission, and the fission is
treated accordingly, the group equations can be solved successively, as seen
above, rather than simultaneously. This results in a considerable simplification
in the computations.

When the thermal neutrons are divided into several energy groups, because
of variations in cross section, neutrons can pass from a lower to a higher energy
group as a result of scattering; this is known as up-scattering. Then successive
solution of the group equations is not possible. But if the number of thermal
groups is small, it is convenient to solve most of the group equations in succes-
sion. Additional iterations of the thermal groups may be necessary to obtain
their convergence. The up-scattering may slow down the convergence quite
significantly, and special procedures have been proposed for overcoming this
drawback. For one-dimensional problems, it has been suggested that all the
group equations should be solved simultaneously by a ••stabilized march"
method.17 This is a direct procedure somewhat analogous to the method of
sweeps described in §3.2c. Other methods have also been applied to this
problem.18

If some eigenvalue other than k, such as a or a critical size or composition, is
being sought, it is frequently found in the following manner. Suppose that it is
desired to find the composition for which a reactor of a given size will be critical.
For the required composition, the equations (4.39) and (4.40) will have a solu·
tion for k = I, i.e., the system is criticaJ, whereas for any other composition the
equations would have a solution for k i= I, i.e., the system is subcritical or
su percri tical.

The cl)mposition that will make k = 1 is determined by first guessing a
composition. represented by (<OJ and then finding klOl for this composition, as
described abo\c. In general. the guess will be wrong, so that k(O) will not be
unit). A second guess. c( 1 '. is then made and the corresponding value of k(1)

is computed. \Vith k(Q1 and kIll known for two compositions, e(O) and e(1). it is
possi ble to make a better guess. C(2). for the critical composition, e.g., by assum-
ing a linear relationship between k and e. By proceeding in this manner. the
required critical composition can be readily determined. Other eigenvalues,
such as a and critical dimensions, are also frequently found by the same generai
procedure.

4.4e Difference Equations for the Multigroup EigenvalueProblem

The equations for anyone group in multigroup theory can be written in exactly
the same form as for a .one-speed problem. Consider, for example, the .p1



equations (4.39) and (4.40) for the group g and for the eigenvalue k. If the group
index is deleted, i.e., J is used for Jg and cP for cPg, these equations can be written

in the form

V· J(r) + Go(r)c/>(r) == Qo(r)

VcP(r) + 3G1(r)J(r) == 3Q1(r),

(4.49)

(4.50)

where the quantities vo, G1, Qo, and Q1 are here defined by.

Qo(r) = 2: GSO,g,_g(r)cPg·(r) + ~.L VGf.g'_g(r)cPg·(r)
g'"* g g'

Ql(r) = L. GS1.g·_g(r)Jg.(r).
g'"* g

It should be noted that the scattering terms for which g' = g have been
moved to the left sides of equations (4.49) and (4.50), by using equation (4.51)
to define Gn(r). The fission term with g' = g has been retained, however, on the
right-hand side of equation (4.49) since, as described in §4.4d, the fissions are
treated as a known source when cP and J are being computed. Hence, the quan-
tities Qo and Ql can be considered as known in the one-speed problem defined
by equations (4.49) and (4.50), These equations are seen to be identical with
equations (3.50) and (3.51). respectively. Moreover. Go will be positive. so that
the one-speed problem corresponds to that in a nonmultiplying medium and
consequently has a unique solution.

The equations (4.49) and (4.50) can be reduced to difference-equation form
by rntroductil)n of a suitable space mesh and they can be solved by the methods
described in Chapter 3. In general. the same space mesh would be used for all
l)f t he energy grou ps.

,.\hhnugh the PI equations h;.l\e been treated here. as an example. similar
considcratil\n~ apply tll the more general spherical harmonics expansions. The
special case of diffusion theory will be examined in more detail in the next

section.

The system of difTerence equations for multigroup diffusion theory has been
subjected t(l th\lrough analysis. II< Particular emphasis has been placed upon the
reacti\it} eigemalue pr\lblem and Sllmc re~ults \If the analysis will he considered
here ..

4.4f Analysis of the Multigroup Eigenvalue Problem in
Diffusion Theory; Outer Iterations



The multigroup diffusion equation (4.41) for the k eigenvalue problem may
be written

vFg(r) = L VUf,9'''''9(r)cPg,(r).
g'

It is assumed, as usual, that 4>9 and DVcPg are continuous across interfaces and
that boundary conditions are of the form

cPg(r) + b(r)fi· VcPg{r) = 0,

with b(r) nonnegative and r on the boundary (§4.4c).
For each neutron group, difference equations may be derived as in Chapter 3.

In plane geometry, for example. equation (4.54) may be represented by

which has the same form as equation (3.9) with

UOq(x) = uo.91.X) - USO,g-+g(x)

Q . _ " . IIFg(x)Oa('\) = L...., O'so.g'-+g(x)cPg{\) + k .
1/' "'1/

When the ditTerential equation (4.56) is reduced to a difference equation, the
s~stem of ditference equations may be expressed, as in equations (3.25) and
(J.WI. h~

"hefe <P. IS the \ ector ha\ ing as components the values of cPg at the mesh points
\ .••.• Af I~ a kno" n matri:'<. as given in §3.2c. and SI/ is a vector (§3.2d) for which
the m component is

In addition. from equation (4.55)~

.,F,(x ••) = >' vU'.I/ ....•g{xm)cPg'(x",),--g'

• In ord~ to a~Otd con(~on with the reactivity eigenvalue. the mesh points are repre-
~ntcd by ~. ralhn than ., .•.•In §3.2a. etc.
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More generally, for example in two-dimensional geometry, the source vector
Sg for group g may be written as

Sg = L Bg' ..•g«l>g' + v:g, (4.58)
g':F g

where Bg' •.•g is a diagonal matrix with nonnegative components and vF17 is a
vector. In plane geometry, the m, m component of Bg' ..•g is

(Bg' ..•g)m.m = ~mO'so.g, ..•g(xm),

and the mth component of vFg is ~mvFg(xm)' In general, vFg may be written

vF" = L C", ..."«I>,,.
g'

where Cg'_g is a diagonal matrix with nonnegative components, which are given
for plane geometry by

(C"' ...g)m.m = ~mvO'/.g, ..•,,(xm)'

When equation (4.58) is inserted into equation (4.57), it is found that

A"«I>,, = L B", ...,,«I>g' + V~g.

g' " g

The set of difference equations (4.59) and (4.60) constitutes the multigroup
eigenvalue problem which is to be solved by outer iterations as described in
§4.4d. The solution gives the effective multiplication factor, k, together with the
associated eigenfunction, «I>g, for each group, i.e., g = 1. 2, ... , G. In the present
notation, the scheme of outer iterations, which was· represented in the Pl

approximation by equations (4.45) through (4.48), is expressed by

corresponding to equations (4.45) and (4.46), where

V
I:"("-1) = ~ C A..<,,-l)
rilL ,'-,"'t"I1' .

II'

In addition. the estimate for k, i.e., k<"\ may be computed from equation (4.47),
I.e.,

where, in the present notation, liP">, the total source of fission neutrons, may
be represented as

IIF<·> - L .,f1.). I,
•

..-.~



where I is a vector having unit components, such that vFg' I is a sum over
volume elements or the volume integral of vFg•

As explained in §4.4d, the procedure for solving the equations (4.61) through
(4.64) is to guess vF~O)/k(Ql, compute eP~l) from equation (4.61), and then derive
vF~l)/k(1) from equations (4.62), (4.63), and (4.64). The iteration procedure is
continued until convergence is obtained.

The system of equations (4.59) and (4.60) has been analyzed and it has been
shown 20 that the largest eigenvalue, k, is positive and simple, and that its
corresponding unique eigenvector, ep, can be chosen to have nonnegative com-
ponents. Moreover, the procedure of iterating on the fission density was proved
to converge to this eigenvector. These conclusions are analogous to those de-~ ~ ~
scribed in §4.4c for the multigroup equations with continuous space dependence
of the neutron flux. In addition, they provide a sound basis for the outer itera-
tions. As in the case of the inner iterations, various methods are available for
accelerating the convergence of the outer iterations.21 '

The discrete time-dependent multi group equations, obtained by adding
(a/t·g) fePg/h to the left side of equation (4.54) and setting k = 1, have also been
considered.22 For the initial value problem, the solution has an exponential time
behavior, proportional to eat, as 1-+ 00. Hence. -the criticality state of the
system can be based on the sign of a. The results given in §1.5 for general trans-
port theory and in §4.4c for multigroup diffusion theory with continuous space
dependence of the flux are carried over to multigroup diffusion theory with
discrete spatial variation of the neutron flux. In addition. the coefficient of the
exponential solution is given by the product of the initial flux vector and the
normalized positive eigenvector of the adjoint equations (see Chapter 6). When
a source is present. a finite time-dependent solution as 1-+00 can be obtained
only for a subcritical system, in agreement with physical expectations, as
discussed in §1.5d.

4.4g Outer Iterations in the Multigroup PI Approximation

The analysis in the preceding section was based on multigroup diffusion theory.
For most other approximations. including PI theory, the corresponding mathe-
matical analysis has not been carried out. In many instances the conclusions will
presumably not apply. since the system of difference equations_ will not corre-
spond to a positi\e operator.23 Nevertheless. the general strategy of outer itera-
tions has been used successfully in most multigroup problems, including, for
ex.ample, those based on spherical harmonics or the method of discrete ordinates
(§5.4c) in which this procedure has no firm mathematical basis. Under such
conditions the outer iteration procedure may not always yield a stable numerical
solution; nevertheless, it has been found to be extremely fruitful in practice.

In view of the relationship between the PI approximation and diffusion
theory. it is of interest to consider why the results of the diffusion theory analysis



in §4.4f are not applicable to PI theory. The explanation may be found in equa-
tion (3.24), which represents a component of the source vector for a one-speed
problem in the PI approximation. The appropriate multigroup forms for Qo
and QI are given by equations (4.52) and (4.53), respectively. Upon combining
these results, it is found that the source vector in a PI calculation cannot be
expressed in the simple form of equation (4.58) which applies to diffusion theory.

It appears possible that, in some circumstances, a source component term,
(sm)g, might be negative and, furthermore, a flux component might also be
negative. The difference equations could then not correspond to a positive
operator and even the existen~ of an eigenvalue, k,- might be in doubt. In any
case, it is evident that the mathematical analysis for diffusion theory cannot be
applied without modification to the PI approximation.

4.4h General Comments on the Eigenvalue Problem

In general, the solution of the eigenvalue problem in multigroup PI or diffusion
theory can be based on the system of inner and outer iterations. For one-
dimensional geometries, the inner iteration is not necessary, as seen in Chapter 3.
If up-scattering occurs, then iteration for the groups involved in up-scattering is
also required, unless a direct method such as the stabilized march technique is
used. In all cases, procedures for accelerating convergence of the iterations are
adopted. In practice, too, it is advisable to allow some interdependence between
inner and outer iterations; for example, it is unnecessary to spend time obtaining
accurately converged group fluxes when working with a rough estimate of the
fission source.

Multigroup PI and diffusion theory codes form the basis of much reactor
design. In these codes a system of equations, such as equations (4.61) through
(4.64), is solved on a fast digital computer; the essential features of such codes
will be discussed at the end of this chapter. When the ~ometry of the system
can be approximated by one or two space coordinates, and when conditions for
the validity of PI theory are fulfilled, the results obtained are accurate. Even
~hen the PI approximation is not strictly valid, the experienced designer can
use various devices, such as renormalization of group constants to agree with
the data from integral experiments and incorporation of results from the un-
approximated transport theory, as noted in §4.2d, in order to obtain accurate
solutions to certain problems.

When PI theory is not valid, but the geometry is simple, multi group equations
involving spherical harmonics of higher order can be used, as indicated for
plane geometry in §4.3a. Multigroup methods can be developed similarly on the
basis of any of the procedures mentioned in Chapter 3 for approximating the
directional dependence of the neutron angular flux. Highly accurate alternative
methods are described in the next chapter.



Two separate stages are involved in obtaining the individual group'~cross sec-
tions. First, the microscopic cross sections and their variations with energy for
all the isotopes and neutron reactions of interest must be available. And second,
an estimate must be made of the dependence on energy, within each group, of
the neutron flux and of as many of the Legendre components of the angular flux
as are required for the expansion being used. These two ingredients are then
combined in expressions of the f~rm of equations (4.26) and (4.27) to determine
the group constants.

When reliable experimental data for the microscopic cross sections are avail-
able. they should be used. If the required cross sections have not been measured
or if the experimental results are of doubtful accuracy, then theoretical cross
sections must be employed. The evaluation of measured and theoretical data, in
order to arrive at a ••best" or most reliable set of cross sections, is an important
aspect of the effort to place nuclear reactor theory on a sound basis.

For many years. experimental neutron cross sections were not accurate
enough for direct use in reactor criticality calculations. The values were therefore
adjusted. usually in multigroup form, in order to obtain agreement between the
calculations and the results of some integral experimental quantities, e.g.,
neutron age to thermal and 11le critical masses derived from critical (or ex-
ponential) experiments. At present, however, the situation is greatly improved.
Several evaluated compilations of neutron cross sections are available24 and,
in conjunction with reliable methods of computation, they can be counted upon
to give reasonably good results..

Ne\ertheless. for criticality calculations, the delicate balance between neutron
cre~ltil'n and loss may be easily upset by even small discrepancies in the cross
St.~tilln~. Consequently. some adjustment in the data may still be required to fit
the re~ult~ of critical (and other) experiments (§§5.4c. 6.3f). Such adjustments,
hl'",e\cr. are no", usu~lly of a minor character and are frequently not required
at all. \1oreo\er. it IS possible to adjust the cross sections in a systematic
manner ~(l a~ to keep the changes small and often within the range of the
c::\pcnmental uncertainties.~~

The aim of the cro~ section evaluation is to obtain a complete set of micro-
SCOpiCcro~ \Celion data in a form which can be readily processed by a digital
computer. The ~t should be complete in the sense that it includes all nuclides
and neutron reactions that are significant for the problems under consideration.
In practIce. the data are generally stored on magnetic tape in the form of micro-
scopic Cf(~\ ~Ions and angular distributions, especially for elastic scattering,
at di~rete neutron energies. For performing integrations over energy and anglc:,



which are required for determining group constants, the computer can interpo-'
late between the available data points. Alternatively, the interpolations can be
done beforehand in order to obtain microscopic s;ross seGtions at a standard set
of finely spaced energies; the results are then :;tored on magnetic tape for use by
the computer.

Special procedures are required for the treatment of resonances and of ther-
malization effects. In the resonance region there is so much fine structure in the
neutron cross sections of the heavy nuclides of interest in reactor problems that
many thousands of data points would be required for an accurate representation
of the dependence of the cross sections on energy. Moreover, the cross sections
vary with the temperature of the medium, because of the Doppler broadening
of the resonances as the temperature increases. It is more convenient, therefore,
to store the data in the form of resonance parameters for those resonances
which have been resolved experimentally, and as statistical distributions of
parameters for the unresolved resonances.

More will be said about resonance absorption in Chapter 8, but it may be
menrioned here that the treatment of resonances, especially in the unresolved
region, is on a less firm basis than most other aspects of nuclear reactor physics.
Closer association is required, therefore, with integral experiments. In the un-
resolved resonance region, the average fission and capture cross sections and the
statistical distribution of resonance parameters may be known. But there is no
guarantee that the actual values do not deviate from the average values in a
moderate energy range. Such uncertainties are important for calculations in-
volving large fast reactors which may have a significant proportion of neutrons
in the unresolved resonance region.

In the thermal energy range, a scattering model is often specified for computing
cross sections, which are a function of the temperature, as well as of the chemical
composition of the medium. The problems of thermalization are discussed in
Chapter 7.

4.5b Estimation of Within-Group Fluxes

The next step in the evaluation of the group constants, for example, as given by
equations (4.26) and (4.27), is to estimate for each group the energy dependence
of the total neutron flux, cPo, and the current, cPl' i.e., the first two terms of the
Legendre expansion of the angular flux, and such other components (cPn) as
may be required. In many cases, simple prescriptions based on qualitative
features of the infinite medium solutions are adequate. For example, it is often
assumed that the energy dependence of the total flux and of the components of
the angular flux are proportional to the fission spectrum at energies ~ 1MeV
and to 1/£ at lower energies. This approach has been reasonably successful when
a fairly large number. e.g., abo'ut 20. of energy groups are employed. It is very
convenient in the respect that group constants can be computed for each



nuclide, independent of all the others which are actually affecting the within-
group fluxes. Since the group cross sections obtained in this manner are inde-
pendent of the composition and geometry, the same set may be used for many
problems; such sets of group constants have been tabulated for ready refer-
ence.26

When the number of groups is small, it is essential, if reasonably accurate
calculations are to be made, to allow for variations in composition, and also of
geometry. By using the assumption that the collision (or slowing down) density
is proportional to liE, 27 the within-group fluxes will depend on all the nuclides
present. Another scheme is to postulate that the over-all angular flux is a separ-
able function of angle and energy withi~ a group, i.e., <1>(x, j1-, E) = ~(x, j1-)</>(E),
and then to try to estimate only the energy dependence of the total flux.28

A systematic approach to the problem of within-group fluxes, which can be
used for both moderately large and small numbers of groups, is based on what
is known as the B.", approximation to the neutron transport equa·tion. This is
discussed in the next section. A variational procedure for determining the group
constants in a self-consistent manner, which makes use of the adjoint to the
neutron flux. is described in Chapter 6.

The basis of the B..•.method. as a means of estimating within-group neutron
fluxes. is that the spatial dependence of the over-all angular flux can often be
approximated by a cosine or exponential term. Thus, by assuming the spatial
distribution to be independent of neutron energy, it is possible to write, in plane
geometry,

\0\ here B~ is the familiar buckling.29 For a bare homogeneous reactor, it is known
frl)m a~~mptotlc reactor theory that B2 is the lowest eigenvalue of the Helm-
hl)ltl (ur \o\a\e) equation. i.e .. '(J2¢ = - B2ep, with the boundary condition of
ICfl' flu\ at the e\trapl)lated boundary of the system. Thus, for example, for a
bare ~phcrc

J ..J'..•..
\Il,here R and II arc the extrapolated radius and height respectively, For a
reflected reactor. B IS expected to be a real number in the core and an imaginary
num~r in the reflector.



In general, it is usually not difficult to estimate values of B which will provide
an approximation to the spatial form of the flux in various regions of a reactor.
After the multigroup calculations have been completed, the spatial distribution
of the neutron flux in the solution can be compared with that based on the
assumed value of B. If the difference is significant, the solution may be iterated
until good agreement is obtained. It has been found in practice, however, that
the results are not very sensitive to the values of B assumed in deriving the
spatial distribution of the flux.30

Of course, if the neutron flux really varied as e - LBx for all energies, the simple
asymptotic reactor theory could be used to determine the conditions for criti-
cality. In these circumstances, the multigroup approach to the problem, as
described in this chapter, would be unnecessary. The fact is, however, that
although the assumed spatial dependence of the flux is good enough for evaluat-
ing within-group fluxes, it is usually inadequate for the over-all criticality
problem.

If equation (4.65) is inserted into the neutron transport equation (4.4) with
Q(x, fL, E) replaced by an isotropic fission source, iF(E)e - iBx, and an additional
subscript, s, for scattering is added to ah the result is

(
iBfL)a I - ~ ~(B. fl-, E)

'X:

= ~ 2/ ; I Pj(fl-) J as/(E' ~ E) f~1~(B, fL', E')P/(fl-') dfl-' dE' + -IF(E). (4.66)
/=0

As in p.\ theory. this could be multiplied by Pn(fL) and integrated over fl- from
- I to I to obtain equations satisfled by the Legendre components of ~(B. fL. E).
f\1ore rapid comcrgcnce of the expansion is achieved. however, by using the
procedure emplo~cd in *2.6d in connectil)O with anisotropic scattering.31

Equation (-t.66) i~ di\ided hy I - (iB/la). multiplied hy Pn(fl-). and then inte-
grated III l)htain, for 11 = O. I, 2, ... ,

,

= ~ (21 + 1 )A1n(B, E) J a)/(£' -- E)1>/(B. £') dE' + Aon(B, E)F(£). (4.67)
I A 0

The coefncients A/" are defined by

A1"II(B, £) = -2
1 II P/(fL)~~fl-) dp.

-11 _..!.L
aCE)

and ,p,,( B. E) is given by

tP.,,(B. £) == f~ltfs(B. p.. £)P.,,(}.t) dp..

j ,
!

I
j

.j

J
--J

1
I

I



The coefficients A1n can be found by utilizing the fact that they satisfy the re~
currence relation

1 ~y(21 + l)Ajl(y) - (l + l)Aj,l+l -IAj,l-l = y'

iB
y = aCE)

and Sjl is the Kronecker delta, as can be verified from equation (4.68) and the
general recurrence relation, given in the. Appendix, for Legendre polynomials.
Furthermore,

A
_ tanh-1 y

00 - •
y

The set of coupled integral equations (4.67) can be solved numerically for
4>n(B. E) provided the sum on the right-hand side is truncated. For example,
when the series is terminated by assuming ePl = 0 for 1 > N, the result is the BN

approximation. This approximation converges much more rapidly, as a function
of N. than would the corresponding PN approximation. To illustrate this point,
it may be noted that, for isotropic scattering, the right-hand side of equation
(4.67) would contain only the 4>0 (i.e., 1 = 0) component. From the equation for
n = O. it is possible to solve for 4>0 exactly, and the successive components could
then also be obtained exactly from the equations with n = 1, 2, 3, .... The BN

approximation would then give the first N + 1 components exactly. When the
scattering is not isotropic but there are only a few important terms in the sum
over /, it is reasonable to suppose that convergence will occur rapidly.

For use in deriving within-group fluxes, a value of B is estimated, the series in
equation (4.67) is truncated, and the resulting set of equations is solved for
~,,( B. E} by numerical methods, i.e., by replacing the integral by a sum, and so
forth. The energy dependence of ePn(E), which is required for deriving the group
constants. IS then assumed to be the same as that of 4>n(B, E). Either this or very
similar procedures are used for generating group constants in a variety of
codes.32 Accurate results can be obtained with as few as four groups if the
buckhng is known fairly well. The method has been applied in the study of
water-moderated 33 and most other types of reactors.

4.5d Overlapping Energy Groups

In the foregoing treatment. it has been assumed that the group structure is such
as to permit ,ubdivision of the energy range into a set of nonoverlapping groups.
It i' pouible. hO\l\f'ever.to use groups which overlap in energy. Such a situation
could arise. for example. in a medium with a temperature discontinuity; it
might then be reasonable to represent the thermal flux by two groups, with



different group cross sections, each characteristic of one of the two temperatures.
In cases of this kind, calculation of the group constants requires a physical
model for the within-group spectra and for the mechanisms which transfer
neutrons from one group to the other.34

4.6a Reactor Codes

The various stages of a multigroup calculation are illustrated by the block
diagram in Fig. 4.2. At the present time. all of the calculations are carried out
more-or-less automatica.!ly by an electronic digital computer. starting from the
input data and problem specification. in accordance \,ith the instructions pro-
vided by a suitable .. code" or program. Many codes have been developed for
performing reactor calculatiors.3':i and new ones are introduced from time to
time. The manner in which these codes function \,ill be indicated shortly. and
some specific examples will be gi\en in ~IO.3c.

Although the e\aluation of the group cross sections is included in the scheme
in Fig. 4.2. this stage of the calculation is often carried out in a separate com-
puter program which furnishes the group constants for the multigroup program;
this is. howe\er. only an operational detail.
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In general the input to a computer code includes three main aspects, which are
described below. They are: (1) the data required to generate the group constants;
(2) certain quantities which serve both as input and as factors determining the
choice of code: and (3) the specifications of the problem for which a solution is
being sought.

Generation of the group constants requires the microscopic cross sections as a
function of energy .. toKether with specifications of the energy groups, i.e.,
number and individual energy ranges, and the geometry and composition of the
system under consideration. From this information, the group constants are
evaluated. e.g .. by the BN method. If the whole energy range is divided into a
moderately large number of groups, tgbulated group cross sections for in-
dividual nuclides. independent of geometry and composition. may sometimes
be used directly.

The quantities which represent input data and which also determine the code
to he used are the geometry of the system and the approximation to'the angular
flux distribution. The geometry may be one-dimensional, e.g., slab. sphere. or
infinite cylinder. or it may be two- or three-dimensional. Different computer
prllgram~ are generally used according to the number of space dimensions of the
system. Ty picalIy. the number of points in the space mesh might be (50)d, where
d is the numher of space dimensions. The nature of the approximation to the
angular flu\ distrihution. e.g .. Pl' P3• double-Pl. etc .. is part of the code: in
multigrpup calculations fllr whole reactors, Pl, diffusion. and age-diffusion
aprrl'\lm~ltl,'r1'o are commonly used. In addition. the value of / may be specified
at \\ hlch cut plf i...to take place in the Legendre expansion of the scattering
fu 11I.:t I, '11 in cq uati"n (·t~).

hn~dly. anwn!! the ~recilications which define the problem for which a solu-
tipn i...hCITl~",lught are (ed the bl'undary conditi'ons. e.g .. free surface. periodic.
llr rcncctlll~. and (hI \\ hether the system includes an independent (or extraneous)
ncutr,'11 ..."llr •...c pr If an ci!!emalue is being sought. For a subcritical system with
an 1I1lit.'pl.·rllknt "lurce. the magnitude of this source must be specified. In an
t:1:=co!l\.dlll.·pr"hkm. the reqUired solution may have as an eigenvalue either the
elkdl\e multlpllclll"n factl'r. i.e .. J.... the time rate of multiplication. represented
hy fI, thl.' c"n~ ..t:'ntratIPn l,f tis~ile material required for criticality in a region. or
retll.'I.'l\'r thll..'~ne". elc. Hence. the nature of the eigenvalue must be specified.
If It ., J... It ." 3ut,'m;.ltlcally included in the guessed fission source described in
~.-kJ. On the: ,'ther hand. If another equivalue is required a g.uess must be made
a" tll It, magnttude.

4.6b Computation of an Eigenvalue Problem

In the fl)1I11~Illg. It \\ ill he as\umed that an eigenvalue problem is to be solved.
f"r c'amrle. f"r the rurro"C llf determining the effective multiplication factor
or the Cl,"dlll,.n ••f\Jr cnucallt) in a given system. Once the group constants have



been defined, together with the geometry and composition of the system and the
nature of the problem to be solved, a fission source is guessed. The spatial distri-
bution of the total flux in the first group (g = 1) may then be computed either
directly, for a one-dimensional system, or by using inner iterations. If approxi-
mations of higher order than Pi are involved, then components of the angular
flux are required in addition to the total flux and current. When the flux is known
for the first group, the calculation can proceed to the next (g = 2) group, with
the guessed fission source, and so on through all the G groups. If some of the
groups involve up-scattering then separate iterations will be required unless
special methods, such as the stabilized march technique, are employed.

When all the group fluxes are known. the solution is tested for convergence as
described in §4.4d. If it has not converged, then outer iterations are continued
until k(nl is sufficiently close to kIn -1). If the eigenvalue k is being sought, to-,
gether with the associated eigenfunction, i.e., the neutron flux distribution. the
calculation is now complete. However, it is still \\'orth checking to determine jf
the computed group fluxes are more-or-Iess consistent with the within-group
fluxes postulated in generating the group constants. If there is a significant
inconsistency, then it may be necessary to redetermine the group constants and
to reiterate the procedure until convergence is attained.

Suppose it is desrred to determine the conditions for criticality; the value of k
derived in the manner described above should then be unity. If it is not, the
dimensions or composition (or both) of the system are changed, as described at
the end of ~.4d. The whole computation. il1cluding recalculation of group
constants, if necessary. is then repeated until k is found to be unity.

Various methods are commonly used for accelerating the convergence of both
inner and outer iterations. According to the arguments in ~.4f, k calcula-
tions are guaranteed to converge. at least in muitigroup diffusion theory. For
more complicated. but physical1y reasonable eigenvalues. such as material con-
centrations or region thicknesses. convergence generally occurs in practice,
although difficulties can arise from the use of merambitious accelerating pro-
cedures.

Since the calculations described ahtne yield the neutron flux distribution in
hoth '-pace and energy. the code can include instructions to the computer to
determine various quantities that are related to the flux distribution and cross
sectitms. Thus. in addition to the required eigenvalue and corresponding eigen-
function. the computer printout may include such information as fission (or
pm\er) density as a function of position. total power generation, conversion
(or breeding) ratios. fuel burnup, and so on (Chapter 10).

Finally. the code may be constructed so as to compute the adjoint to the
neutron flux. As mentioned earlier. this information can be employed to deter-
mine the group constants in a self-consistent manner. Several uses of the adjoint
in reactor calculations will be discussed in Chapter 6.



4.7 APPENDIX: RELATIONSHIP BETWEEN Pl,

AGE-DIFFUSION, AND OTHER THEORIES

4.7a The Lethargy Variable

In elementary slowing-down theory,36 it is convenient to use the lethargy
variable, u (= In £0/ E). in treating neutron moderation. The reason is, of
course. that in elastic scattering a neutron tends to lose a fraction, rather than
a given amount. of its energy. Hence. a logarithmic energy scale is "appropriate
where moderation by elastic scattering is predominant. For example, the
neutron flux per unit lethargy is approximately constant in many slowing-down
problems. In multigroup calculations a logarithmic energy scale is often adopted
in setting ur the group boundaries for the energy range. e.g., I eV ~ £ ~ 0.1
MeV, where slowing down of neutrons by elastic scattering is important. At
higher and 10\\ er energies. however, other choices are more appropriate.

Lethargy i~ not used in the main text of this book, primarily because it is an
awkward energy \ariable for use in describing cross sections. The application of

"the letharg~ \ariable to multigroup problems will be treated in this appendix,
Illl\\e\cr. hecause it pfln ides a convenient way of obtaining the relationship
het\\ccn PI and age-diffusion theories. Some of the early multigroup methods
\\crc flr"t arr11cJ tlJ age-din'usion theory37 and they are quite capable of treating
a IImiteJ cia" •..l,f rcactors \\ ith good accuracy.

In the f,dl'l\\ Ing. r1ane geometry will be considered for simplicity. but the
fl'rmuL!li,ln c"uIJ he readily generalized to any geometry. as in Chapter 3.
The lethargy. /I. of a ncutron of energy £ is defined by

Eo
lI=ln!f'

4.7b Elastic Scattering in Terms of Lethargy

Let thc angul.lr Ilu\ Ill" neutrllns rer unit lethargy he rerresented by 'I'(x. /1.. 1I):

It I' rCl.lll'J {.\ thc angular flu\. (1). rer unit energy hy

ctlCr. }(. E I dE. = 'I'(x. /1.. u) dl/.

Idul = ~ Id£l,



Similarly, let the source per unit lethargy be Q(x, fL, u) and letf(x; u' -+ U, /Lo)
be the probability of scattering from lethargy u' into a unit lethargy range about
u for the scattering angle cos -lfLo.

For elastic scattering that is isotropic in the center-of-mass system, equation
(4.5) may then be expressed in terms of the lethargy variable by

( ')/',(' ) us(x, u') E Sf.. S)
a X, U 'J. X; U -+ U, fLo = 271'( 1 _ a) E' \1""0-

__ asCx, u') eU'-u r:::f ••o _ S) of' , 1_-'--_'- 0\1"" 1 U ~ u ~ u - n a
271'(1 - a)

where S is given in terms of lethargy by

s = t[(A + l)eCl/2)(U'-U) - (A - l)eCl/2)(U-u·)].

In the foregoing,

u' = In Eo.
E'

4.7c The PI Approximation in Terms of Lethargy

The transport equation (4.1) in plane geometry for the lethargy variable is

(-'r(x, fL, u) ()\I!( ) 2 ffl ( , .{j' .fL . + (J x, U T X, fL. U = TT' U X, U )'J (x; u -+ u, fLo)
ex -1

X 'l~(x, fL', u') dfL' du' + Q(x, fL, u). (4.70)

Hence, upon expanding in Legendre polynomials,
ae

~2m+l~(x, fL, u) = L, 4fT .p,.(x, u)PfIl(p.).-0
co

",2m+l
Q(x, fL, u) == L, 41r Q.(x, u)P fIl{p.).-0

lID

cr(x, u')f(x; u' -+ U, fLo) - L2/; 1u,(x; u' -+ u)P,(}J-o).
1-0



These expansions are inserted into equation (4.70) and upon truncation after
two terms, i.e., by making the Pl approximation, it is found that

alh~x,u) + a(x, u)tPo(x, u) = f ao(x; u' --+ u)tPo(x, u') du' + Qo(x, u)
ox

atPo~x, u) + 3a(x, U)tPl(X, u) = 3I aleX; U' --+ U)tf;l(X, u') du' + 3Ql(X, u). (4.72)
ox

Equations (4.71) and (4.72) are equivalent to the Pl equations (4.15) and
(4.16), except that all functions of energy have been replaced by the correspond-
ing functions of lethargy. As before, tPo and tPl are equivalent to the total neutron
flux and the current, respectively. A set of multi group equations could now be
obtained by integrating equations (4.71) and (4.72) over the lethargy range
representing each energy (lethargy) group, and so on, in the manner described
in §4.3a.

4.7d Age-Diffusion Theory

In order to derive age-diffusion theory, the integrals over u' in equations (4.71)
and (4.72) are evaluated approximately by expanding the integrands in a
Taylor series about lethargy u. From elementary slowing-down theory, it is
known that the ftux tPo, or the collision density aotPo, will be nearly constant in
many situations, e.g., in the moderation of neutrons in the energy range of, say,
1 eV ~ E ~ 0.1 MeV (or 4 ;S u ;S 16), by graphite or beryllium. Hence, for
such cases. ~he Taylor expansion should be quite good.

In expanding the integrands in a Taylor series, two terms are retained for
equation (4.71) aRd one for equation (4.72). The situation is somewhat clearer
when the cross ~ctions in the integrals are written as functions of u' and
II - lI'; thus.

ak\"; 1/ -- u) = aleX, u', U - u').

Then the expansions of the integrands are

.' , ./.' , ./. (') caoePoao(·\. 1I • 1I - U )'t'o(.\", 1I ) ~ ao(x, U, U - U )'t'o(x, u) - II - U -~-
ou

aj(x, u'. U - U'}lPl(X, u') ~ aleX, U, U - U')tPl(X, ll).

Upon inserting these expressions into equations (4.71) and (4.72) and using
the notation

J ao(x, U, U - u') du' == ao(.'\'",u)

J (u - u')ao(x, U, U - u') du' = ~(u)ao(x, u)

J aleX, U, U - u') du' = Jlo(u)ao(x, u),



it is found from equation (4.71) that

OtPl a .1.ox + (0" - O"o)tP = AU (~O"o't'o) + Qo

and from equation (4.72) that

otPo _
ox + 3(0" - fLOO"O)tPl = 3Ql.

For isotropic scattering in the center-of-mass system, for a single element, so
that O"f is given by equation (4.69), it follows from equations (4.73), (4.74), and
(4.75) that

~= 1 + 0: tn 0:

1-0:
2P-o = -.3A

These quantities have their elementary interpretations, respectively, as the scat-
tering cross section, the mean logarithmic energy loss for neutron-nucleus
collision, and the mean cosine of the scattering angle.38

For an isotropic source, Ql = 0, and equation (4.77) represents a form of
Fick's law with the diffusion coefficient the same as in equation (4.23); thus,

ctPo
tPl = - D ox and D = !CO" - p.OO"O)-l.

As before, the Fick's law expression may be used to eliminate tPl from equation
(4.76): the resulting age-diffusion equation is

c ( ?tPo) c--. D -;:-: + (0" - O"o)tPo = -. (~O"otPo) + Qo·ex L\ eu

The quantity ~aotPo is commonly called the slowing-down density and is denoted
by the symbol q(x. u). .

For some situations, equation (4.78) may be simplified further. Fot example,
if Qo = 0 and there is no neutron absorption, so that 0" = 0"0' and the quantities
D, t. and 0" are independent of energy (or lethargy), equation (4.78) may be
written

C2q(x, u) {O"o cq c;q
=--=-. ,

ax2 D CU CT

where T, called the Fermi age, is defined by

f- D J- du'.,-(11) == - du' - .
o to"o 0 3t~( 1 - P1»



Equation (4.79) is frequently referred to as the Fermi age,equation, here given
in plane geometry. Solutions for simple cases will be found in the standard
reactor theory texts.

From the present point of view, it is seen that age-diffusion theory may be
regarded as resulting from the approximation of the slowing-down integrals of
the energy-dependent PI theory. The approximation to the integral in equation
(4.71) represents the age aspect, whereas the diffusion aspect arises from the
approximation to the integral in equation (4.72). Both approximations should
be good for problems in which the collision density varies gradually and
smoothly with energy. Such is usually the case when the moderating system
consists of elements with fairly large or large mass numbers. When hydrogen is
present. ho\',:ever, a neutron can lose a considerable proportion of its energy in
a scattering co.llision and the age-diffusion approximations are not valid. A
thorough discussion of the cond;tions of validity of age-diffusion theory will be
found in the literature.39

Other related approximations to the slowing-down integrals are of historical
interest and some practical importance. For example, in treating neutron
moderation in a medium containing hydrogen as well as heavier elements. the
age-ditTusion approximation can sometimes be made for the contributions to
the slln ••ing down integrals due to collisions with the heavier nuclei, whereas the
full integrals are retained for collisions with hydrogen. This treatment is known
as the Selenl!ut-Goertzel method.40 Among other methods of deriving the~ ~ ~
Inte~ral" mention mav be made of that of Greuling and Goertzel.41 Since these~. ~
appru\lnrallt)n" ll) p! theory are becoming less important in reactor analysis.
the:- ,••III nul. be descrihed here.42

4.7e M'Ultigroup Age-Diffusion Theory

In \lrder 1\l de'el\)p a multigroup form of age-diffusion theory, the lethargy
ran~t: 0 ~; /I ~ IIm,\< is subdivided into a number of groups with lethargy
hl1undane" II,~ =0). /11' II.!, ...• lie (=umax)' Equation (4.78) is then integrated
\1\ er \lne •..udl grllup. frllm II" _ 1 to /lQ• and the group diffusion constant, absorp-
tl(lll crll"" •..ectilln. and ~l)UrCe are defined as in ~~4.3a, 4.3b, at least if D is piece-
\'-I't.' (lln,tant. The llllly ne\'- feature arises from the slowing down term which
gl\ e~

,'''' (
- (~(1oc/Jo)tlu = ~(1o.potx. ug) - ~(1oc/Jo(x~ Uq - 1)'

•••• 1 (LI

Thu •..the grllup equation involves the fluxes. or slowing down densities, at both
'e:nd-p\llnt~ llf the group, as well as the group flux f c/J du. To eliminate one or

• q

the other, It 1\ nece~~ary to postulate some relation between the group flux and
the t1u\e, at the group end-points. A number of choices are possible to complete
the: '~Ificatilln of the multigroup problem43; for example • .po is assumed to
\ar)' hne:arly ~Ith u ~Ithin a group.



-J~1. Suppose that neutrons are being moderated in water, and consider an energy
region in which the cross sections of both hydrogen and oxygen are constant. In a
multigroup problem, the energy groups are such that Eq _ 1 = 3Eg• Derive the PI
(or p".) group constants for hydrogen and oxygen, i.e., On.g and On.g'_g, for
isotropic scattering in the center-of-mass system, assuming (a) c?n(E) = constant
and (b) c?n( E) ex 1/ E within a group, Discuss the results .

.., .Make the PJ approximation to the one-speed equation (3.5) in plane geometry,
and consider new independent variables Fa = CPo + 2c?2 and FI = c?2' Use these
variables in the P3 equations and combine them to eliminate c?1 and c?3, thus
obtaining two second-order equations resembling those of a two-group diffusion
theory. Show how the result can be used to solve the PJ equations. This method
can be extended to p.\ and double-P.\· equations in slab geometry.44

3. Definitions of an energy-dependent diffusion coefficient, other than that given by
equation (4.23), are potentially more accurate. Consider the following two
alternatives for use in developing multigroup ditTusion theory: (a) by using
equation (4.19) and (b) by deriving a form of Fick's law from equation (4.31) with
QI = O. Discuss the diftlculties and advantages of these possibilities.45

4. In connection \\ith the preceding exercise. suppo .•.c that neutrons from a 2-MeV
source are being moderated in a hydrogenous medium. such that the energy
dependence of the nux and current. for computlOg the group constants, can be
approximated hy that in an intinlte medium of h~drogen.4" Suppose that a group
structure \\ Ith houndaries at 2.1. 1.4. O.lJ. 0.4. .. \te\' IS used. Determine the
group dltru'.\nn cl)ellicienh for the .•.c: tir ...t fe\\ gfl1Up'" according to equations
(4.llJ) and (..L2J). The hydrogen cro "cctll'n ma~ he taken to he proportional to
I \ F In the gl\cn enag~ range.

" \ eflf~ that. fl'r l'l)tropIC ,catterlng tn the cc:ntcr-l,f·ma"" s~slem. 00, f. and p-o
h~l\e the \alue' gl\cn in ~4.7d.
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5. DISCRETE
ORDINATES AND
DISCRETE SN METHODS

5.1a Special Features of the Discrete Ordinates Methods

The discrete ordinates and related mctlh)ds t)f obtaining numerical solutions of
the energy~dependent neutron tran:-.pl)rt equatll)n ha\e' been used extensively
in rcacwr calculations. The essential hasl •• l)f t he~e metlwds i" that the an£ular
distrihutit)1l of the neut~iiu\ is e\a~d in a numher l)f discrete directions.
in'>tcad l)f u"ing ,>pherical har.nll1nlc .....J' In Chapter" ,:\ and 4. By cl)llsidering
enough dlrcctil)n". it is possihle. 111 pnnclple. tl).l,ht •.lJn a 'lliutil)n of the transport
equati,'l1 to an~ desired degree of aCClJr~H:~.suhJect \Inl~ h' the Ilrl1ltations of the
~l\ailahlc-cl)mputing machine. It \\111 he ••cen that \,'me \Cr ••ll'ns (,fthese discrete
meth{)(b arc related tl) thc methl,J \.11' spherical t1Jrml'l1IC ••.

In the s,)\ution of practical problems b~ dl'tCrete ordll1ates techniques. a dis-
crete: encrg~ \ariable is intrl'duccd. by meJn •.•of a multigrl)Up approximation,
and a discrete space mesh IS used for the spatial coordlOates as in the preceding
chapter. Consequently. all the independent \ anahl~ t.lf the time-independent
neutron transpl)rt equation. namel~. ~pace. r. dm~ctwn. n. and energy. E. are
treated as discrete. As ct,mri\[fd \\'Ib we method of spherical harmonics. the
distinguishing feature of the method of d,~rele ordanat~ is the discrete treat-
ment of the angular (or direction) \ ariablc.

A number of new and important problems ari~ in the de\'elopment of the
method. They are: (I) the choice of the particular di\Crctc dir«tions; (2) the



approximation of the integrals over the direction variable; and (3) the approxi-
mation of the derivatives of the neutron angular flux with respect to the com-
ponents of Q appearing in the transport equation in curved geometries (§§5.3a,
5.3b). These.problems will be treated in the present chapter, but it may be stated
at the outset that there are no unique solutions to them. This lack of uniqueness,
is. however. not unexpected. In the PN approximation, the choices of energy
groups and a space mesh are not unique. but must be based on physical insight
and experience. The same factors determine the choice of direction and other
parameters in the method of discrete ordinates.

In order to minimize the formidable notational complexity, it will be con-
venient to consider first the one-speed transport equation. Subsequently, the
solution of the energy-dependent problem by multigroup methods will be
examined: as in Chapter 4. this involves a set of coupled one-speed differential
equations. The determination of reliable group constants is once again an
essential resuirement for obtaining a satisfactory solution.

c::e=ze~.•.u:a •. _.. . e -

The discrete ordinates method of solving the one-speed transport equation will
be treated initially in plane geometry. This is not only a simple case of interest,
but it is also an idealization of some lattices. It is for the one-speed problem in
plane geometr~ that a relationship is particularly clear between the use of dis-
crete directions and of spherical harmonics to represent the angular distribution
of the neutron flux.

A special aspect of plane geometry (or of rectangular cartesian coordinates in
general) l~ that the direction of a neutron, as specified by direction cosines
relati\c tl) IllCal clh)rdinates. does not change as the neutron streams. that is,
nllnes tIH\lu~h the medium without making any collisions. In plane geometry,
therefllre. tht: \)nly Cl)nCern is with problems (I) and (2) mentioned above. i.e.,
choice l)f dlrt:ctl\ln and the evaluation of integrals.

In CUf\t:J geometry. i.c .. in systems of spherical or cylindrical coor{1inates,
ho\\c\cr. the situatH)n is JilTerent and the angular derivatives in the transport
equatlPn must he appro\imated in addition. These derivatives arise because, in
streamlflg. the Jlrection \ aria hie of a neutron changes continuously in curved
geomctr~. Hcnce. the streaming term. Q. V<1.l. in the transport equation will
introduce Jeri\atl\es \\ith respect to the components of n. Suppose, for
"'ample. that the neutron dircction in spherical coordinates is described by fL,
I.e.• the dln:ctlOn co ..•ine rclati\e to the radius vector; then it is evident that fL

incrca-.cs continuously a •.•the neutron streams through the medium (Fig. 5.1). In
a later ~"\:tic.," it "ill he shown how this situation is treated by discrete S."
tcchniques.

An a1ternatl\c apprc.'a"h "nuld he to describe the neutron motion relative to
a fi'ed direction in ~pace. rather than to local coordinates. This would be
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equivalent to considering characteristic directions in the integral form of the
neutron transport equation (§1.2b). Numerical solutions of the integral equation
or, what is the same thing. solutions of the transport equation by the method
of characteristics have been obtained 1; they will. however, not be described \in
this book.

5.2 DISCRETE ORDINATES FOR ONE SPEED IN PLANE
GEOMETRY

The method of discrete ordinates (or discrete directions) in plane geometry was
first proposed 2 and developed in detail3 for the study of radiation transfer
problems in stellar atmospheres. This treatment utilized a special choice of
directions and a particular method of numerical integration. using the Gauss
quadrature formula (cf. §5.2c). In the development given here. a more general
procedure will first be described.

The one-speed transport equation in plane geometry for isotropic scattering
and a generalized source may be written (see §2.1c) as

o<I>(x. po) ( ')""( c(x)c7(x) II If\I ' d ' . Q(II. . + u x "'"x. 11.) =, .....\x. 11.) II. + x.p.).ex • -1

. Consider this equation for a set of discrete directions ~}; if the integral were
evaluated by a numerical quadrature formula involving ~x. JI.t). there would be

1.
I .1 .

"1-.



obtained a set of coupled first-order differential equations for <1>(x, f-Li) that would
be equivalent to equation (5.1). Thus, if the integral is represented by

NJ~1 <1>(x, f-L') df-L' ~ 2: Wi<1>(X, f-Lt), (5.2)
i= 1

where the Wi are the quadrature weights (or weighting factors), equation (5.1)
becomes

This set of N coupled differential equations can be solved readily by finite
difference techniques once the boundary conditions and the character of the
problem are specified.

So far nothing has been said about the choice of the set of direction cosines,
{f-Li}, nor of the associated quadrature weights, {Wi}' The accuracy which can be
achieved in solving the equations (5.3) for a given N will depend, however, to a
large extent on making a good choice. The following properties of the Wi and f-Ll

seem to be reasonable requirements:
(I) Since the integral in equation (5.1) is always positive (or nonnegative), it

is required that H'l > 0 for all i.
(2) A symmetric choice of directionsln~ weights about f-L = 0, i.e.,

is suggested so that the formulation will be symmetric upon reflection. In other
words. the solution will not depend on which side of a slab is designated as the
right side and which as the left side. *

(3) It is required that if <1>(x. f-L) is a polynomial of low order in f-L, then the
quadrature formula of equation (5.2) should give the exact value of the integral.
This Implies that

N

') Wf-L"..:.- "-n+
1·1

N

') u'tf-L~ = ° for n odd.~
1-1

Actually. the condition for n odd is guaranteed by property (2).
The values of n for \I, hich these relations should be satisfied must now be

considered. Suppose that N is even; then there are N values of f-Lj and N values

• If. In a particular situation. the flux is known to be highly asymmetric. it may be ad-
\'anta,rou~ to use unsymmetrical quadrature sets; for example. if the flux is peaked near
'" - -r I. It may be useful to have the 'discrete directions closer together in this vicinity.-



of ",'j, or 2N parameters in all to be determined. Condition (2) implies that only
N of these are independent. If there were N independent parameters for fitting
condition (3) with n even, then it might be possible to satisfy this condition for
n = 0, 2, 4, ... , 2N - 2, but not beyond. If such a choice is made, it will
determine f-Li and Wi uniquely as the Gauss quadrature 5 set of directions and
weights; the weights are all positive and satisfy condition (1). It is not necessary,
however, to satisfy condition (3) for so many values of n (with n even); in this
event, there is some freedom to impose other conditions. More will be said about
this presently.

5.2b Discrete Ordinates and Spherical Harmonics

Before proceeding to consider some special choices of f-Lj, Wj, the relationship
between the. methods of discrete ordinates and spherical harmonics will be
examined. In the spherical harmonics (PJ,J procedure the integrals involved are
[cf. equation (2.58)]

epn(x) = f <D(x, f-L)Pn(f-L) dQ = 27T f~1 <D(x, f-L)Pn(f-L) df-L.

The equi\"alent quantities for the discrete ordinates treatment are defined by
using the quadrature formula as in equation (5.2): thus,

N

~n(x) = 27T 2 I\'j<D(x, f-Lt)Pn(f-Li),
j = 1

where the symbol ~n(x) is used to indicate an approximation to epn(x) that is '
obtained from the quadrature formula.

To find equations satisfied by the ~n(x). equation (5.3) is multiplied by
:!rr(211 ...•. 1)11', P'l(/l.) and summed over j: with the recurrence relation for Legendre
pl)l) rwmials and the requirement (3) given above for all n ~ N - I, the result is

(n ..;.. I) d~l;.l ..;..n d~t-l + (2n + I)O'(x)[1 - c(x) SO"]~1\= (2n + IH2n(x)

n = 0, 1, 2, ... , N - 1, (5.5)

H

Q,,(x) = 211 L w.Q(x, J.I1)P,,(p..)
.-1

and So" is the Kronecker delta.
It should be noted that equation (5.5) represents a set of N equations, selected

since there are only N independent quantities 4>(x, fLt) available. That is, for
n ~ N, the value of <1>" can be expressed in terms of {<I>,,} with n ~ N - 1 in the
following way. If <1>" were known for n ~ N - I, equation (5.4) could be solved

,

\



·""t'.....

, for <I>(x, fJ-i) with i = 1, 2, ... , N, and then ePn could be found from equation
(5.4) for any n ~ N.

Comparison of equation (5.5) with the~n of the spherical harmonics
method, such as equation (2.59), shows that ~nCx) satisfies the same set of equa-
tions as does ePn(x) in the spherical harmonics treatment.

In the spherical harmonics expansion of the angular flux, the series of terms
in the summation of polynomials is truncated by assuming that dePN(X)/dx = 0
for a PN -1 approximation and boundary conditions are used. It will be recalled
that this truncation or an equivalent (§2.4b) is required in order to have the same
number of unknown functions, ePn, as equations relating them, e.g., equations
(2.59). But for the system of equations (5.5) it is not possible simply to set
d~N(X)/dx = 0, because ePN may be derived from the fundamental quantities
<1>(x. fJ-i) by means of equation (5.4), and therefore dePNldx is determined. By a
special choice of fJ-j, however, namely, {fJ-i} is the set of N zeros of the polynomial
Ps(fJ-). i.e ..

d~s(x)/dx is automatically zero. The set of equations (5.5) for isotropic scattering
is then identical with the truncated set of spherical harmonics.

From the properties of the Legendre polynomials. it is known that PN(fJ-)
will have exactly N zeros in the range - I ~ fJ- ~ 1, and so these values form an
acceptable set for the present requirement. For N even. there are an even number
of directil)ns and an even number of equations (5.5) corresponding to the odd-
l)rder sphencal harmonics equations. Thus. N = 2 in the discrete ordinates
procedure corresponds to a Pi approximation.

If the :'1,: art: ch,)sen. as indicated above. to satisfy equation (5.6). then the
:",: \\i11 tle determined fwm requirement (3) for n ~ N - I. These quadrature
p~r~meter~ ~n:. in fact. the Gauss quadrature set which is widely used in
nurnem:~llntt:~r~tllln.h Such a set of order N. i.e .. N \alues of fJ-1 and N values of
'I I' I~ the 'lnl~ ~t:t ha\ ing the pmperty that the integration formula of equation

TABLE 5.1. CONSTANTS FOR THE GAUSS QUADRATURE
FORMULA';'

", = "J = 1.000
"'1 = "'. = 0.65215
".~ '"' "', = 0.34785
"'1 ""' •••• = 0.46791
"'J = "', = 0.36076
WJ - It. :: 0.17132

fIol = - fIo~ = 0.57735
fIol "'" - fIo. = 0.33998
fIo~ = -fIo.l = 0.86114
JJ.l = - fIot; = 0.23862
fIo~ = -fIo~ = 0.66121
JJ.3 = - JJ.. = 0.93247



(5.2) is exact for, a polynomial in JL of order 2N - 1. From the discussion in
§5.2a, it is known that this is the polynomial of highest order that can be
integrated exactly by an expression with N directions and N weights. The values
of JLj and Wj in the Gauss quadrature set for N = 2, 4, and 6 are presented in
Table 5.1.7 '

Some consideration must now be given to boundary conditions. For a
vacuum (free-surface) boundary, with no incoming neutrons, it is natural to
assume that <1>(x, JLj) = 0 for all incoming directions. If the domain of interest
is a slab of thicknessa,~.e., 0 ~ x ~ a, then

<1>(a, JLj) = 0 for JLj < 0;

These boundary conditions are then identical with the Mark boundary condi-
tions of the spherical harmonics method (§2.5d).

The method of discrete ordinates with constants from the Gauss quadrature
set is thus seen to be e'luivaIent to the method of spherical harmonics with Mark
boundary conditions. In particular, the approximate integrals, ePn' as given by
the summation of equation (5.4), satisfy the. same equations and boundary
conditions as do the ePn of the spherical harmonics method. The same neutron
flux and the same eigenvalues are obtained by both methods. Furthermore, if
the angular dependence of the flux <D(x, f-L) for f-L "# f-Li is given by the usual
spherical harmonics expansion

both discrete and spherical harmonics methods lead to the same results for the
angular distribution. In. addition it can be shown that equation (5.7) gives the
same values for <D(x. f-Ll) as were used to derive the {ePI\1. Consider. for example.
the one and only polynomial of order N - I which can be passed through the
points <!>(x. ill): the quantities ~"(x) defined in equation (5.4) are exact for such a
polynomial. This polynomial is uniquely determined by {ePn: and is given by
eq u a t ion (5.7).

It is of interest to recall that in Chapter 2 no particular justification was given
for the Mark boundary conditions. It now appears, however, that they are
natural free-surface boundary conditions for the discrete ordinates method with
Gauss quadrature constants, and hence for the equivalent spherical harmonics
method.

S.2d The Double-PN Method in Discrete Ordinates

It was seen in §3.5a that there is. in general. a discontinuity in the angular neutron
flux for f-L = 0 at an interface (or boundary) in plane geometry. It was then



found useful to treat each side of the discontinuity separately in solving the
transport equation by expansion of the angular flux distribution in terms
of Legendre polynomials. A similar double-PN approach has been used
in the discrete ordinates method by making separate expansion in the ranges
- 1 ~ fL ~ 0 and 0 ~ fL ~ 1.8

If the Gauss quadrature is utilized with N points in each of these two ranges,
the discrete directions {fLi} are now given in terms of the directions used earlier
(see Table 5.1) by

, fLi 1 ,
fLi = "2 + "2 = - fL2N + 1- i

Consequently, there are now 2N directions and 2N weighting factors. For either
positive or negative fL, there are N directions corresponding to the N roots of
Ps fitted to the range 0 ~ fL ~ 1. Such a choice with 2N directions would be
called a double-Ps _ 1 approximation; thus, for example, the double-PI approxi-
mation has four discrete directions. The double-P .....approach has proved to be
very useful in applying the method of discrete ordinates to slab problems
because of the ability to treat interfaces in a simple manner. For curved geome-
tries, however. there are no discontinuities in the flux and then the double-P.v
method has no particular merit, as will be seen later.

Fl)r anisotropic scattering, the foregoing treatment must be modified. If the
scattering depends only on flo. the cosine of the scattering angle in the laboratory
s~",tem. th~ right side of equatil)n (5.1), which will be represented by q(x, fL), can
be \\ rinen a... pt" •.._#\ r,.

q(x.}Ll = c(x) I af(x, /lo)<l)(x. fl') dQ.' + Q(x, fL}·

Expansion llf the a( in Legendre polynomials, in the usual way (§4.2b), and
multiplication by 2rr for integration over all azimuthal angles, gives

Upon introduction of the quadrature formula of equation (5,2), the right side
of equation (5,9) becomes



In practice, the sum over I will be cut off at L; it is then necessary to specify L
cross sections, O'z, in order to perform the summation. Otherwise, the procedure
is the same as that described for isotropic scattering.

For comparison with the equations of spherical harmonics, equation (5.3),
with the right-hand side given by equation (5.10), is again multiplied by wjPn(p.;)
and summed over j. If the full-range Gauss quadrature set with N directions is
used, then, since the scheme is exact for polynomials of order 2N - 1, it is
found that

where Din is the Kronecker delta. Hence, provided I + n ~ 2N -' 1, there will
be just the same terms on the right-hand side as occur in the spherical harmonics
expansion. If L ~ N, however, additional terms will be present, although they
are seldom of any significance. Thus, with one minor exception, the Gauss
discrete ordinates methods and that of spherical harmonics are equivalent for
anisotropic scattering.

5.2f Solution of the Discrete Ordinates Equations

In describing a method for solving the system of equations (5.3), it will be
assumed that the problem is too complicated for a solution in closed form to be
practical, so that a numerical solution is being sought. The first step, as in Chap-
ter 3, is to introduce a space mesh, i.e., a set of discrete values of x, namely Xk,

where k = 0, I, 2, ... , K, such that the left boundary of the system is at Xo and
the right boundary at x K; as a rule, points are also chosen to lie on any interfaces
that may be present. The derivative terms are then approximated by finite
differences, such as

c<1>(:\"~ fLl) I ,...,<1>(Xk ·1, fLf} ~ <1>(Xk' ""1),
OoX x-xlc+(l/2l XIe+1 - -"Ie

If, as before, the right-hand side of equation (5.3) is represented by the symbol
q(x, ""J)' to allow for the possibility of anisotropic scattering, this equation at the
point Xle +<1/2> becomes

According to equation (5.3), or (5.10) in general, q(Xt+(lJ2)' J-LJ) depends on
~(Xt-+{1I2)' 14t), and for small N, at leas~ the dependence is simple enough for a
rapid solution of equation (5.11) for the <l>(x, J-LJ} to be possible.' A more general



method of solution by iteration will be described here, however, because it is
also applicable to more complicated situations such as curved geometries in two
dimensions. Exactly the same procedure can be used for any number, N, of
directions; this represents a great advantage of the discrete ordinates method.

To start with, it is assumed" that q(x, iLj) is known; a value is guessed the first
time and thereafter it is available as a result of each preceding iteration. The
term <1>(Xk +(1/2), iLj) is usually eliminated by expressing it as an average of the <1>
values on either side; thus,

Upon inserting this into equation (5.11), the resulting expression ,can be solved
for <1>(XkT}, iLJ in terms of <1>(xk, iLj), or vice versa. If Uk+(l/2) is defined by

and the arguments of quantities at Xk+(l/2l are dropped, it is found· from equation
(5.11) that

- au/2iL' U
+ au/2iL: <1>(Xb iLj) + q iLil + au/2iLj)

(use for iLj > 0) (5.12)

+ aj,./2iLj u
- a!1/2iLj <1>(Xk+1, iLj) - q iLil - a!1/2iLj)

(use for iLj < 0). (5.13)

With vacuum boundary conditions, <1>(xo, iLj) is zero for all positive iLj; hence,
<1>(x/,;. J.lJ) for positive iLl can then be found by repeated application of eC(uation
(5.12). Similarly, <1>(XK' iLf) is zero for all negative iLj and equation (5.13) can be
applied to determine <1>(xk, iLj) for negative values of iLj' The value of q, i.e.,
q(x. +(112). J.lj), can then be recalculated and the problem can be solved by itera-
tion. Various methods for accelerating the procedure have been suggested.10

If there are reflecting boundary conditions at x = XK, then <1>(XK, iLf) may be
found for negative fLf by setting

If there are reflecting boundary conditions at both interfaces, i.e., at Xo and XlC'

a somewhat more general procedure may be adopted. For example, it is possible
to run a series of iN problems, where for the nth problem the boundary condi-
tion at Xo is



where Sjn is the Kronecker delta. By taking an appropriate linear combination
of these tN conditions, the reflecting boundary condition

<1>(xo, fLj) = <1>(xo, - fLj)

can be satisfied.
Reference may be made to some important features of equations (5.12) and

(5.13). First, it will be recalled that equation (5.12) was to be used for positive
fLj and equation (5.13) for negative fLj' In both cases, the coefficient of <1>on the
right-hand side is then less than unity. As a consequence, errors in <1>,which may
be introduced in the numerical approximation, e.g., by round off, are attenuated
rather than amplified as a result of repeated application of the equations. More
generally, the rule is that in integrating along a neutron direction, the procedure -
should be in the direction of neutron travel in order to minimize the accumula-
tion of numerical errors. For fL > 0, this would be from Xk to Xk+1' as in
equation (5.12), whereas for fL < 0 the direction would be from Xk + 1 to Xk, as in
equation (5.13).

A second point to be noted is that if ~ is large in comparison with 12fLjl/a, the
coefficients of <1>on the right side of equations (5.12) and (5.13) become nega-
tive. If q is small, negative values of <1>.which are physically and numerically
undesirable, are then obtained. Actually. the coefficient in equation (5.12) is
simply an approximation to exp (-a~;fL)). and so J cannot be taken too large
without loss of accuracy.

In order to show this. consider equation (5.12) in the absence of a source,
that is,

The source-free transport equation for fL = PJ is

(-<I>(x. it,)
PJ '. + a<I)(x, p)) = O.ex

so that upon dividing by pj and introducing the integrating factor exp ra dx',
• Pj

.f [<1>(X, fl.) exp IX !!... dX'] = O.
ex PI

<1>(XIr + 10 PI) - ~ - tlA.·,cJ>(Xh PI)'

Comparison with equation (5.14) shows that the coefficient of cJ>(.'tIr• PI) in this
equation. and hence also in equation (5.12). is an approximation for t-tlAJIIJ.

Although this approximation is poor when ~ is too large. it is in error by only
1 percent when a~/fl.l = 0.5.
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As the number of angular directions, N, is increased, some of the values of flj,

in particular flO'2l. •••., will become increasingly closer to zero. It is necessary,
therefore, simultaneously to increase the number of space points, i.e., to de-
crease .,j,. in order to avoid large values of a~/flo.2l."

The foregoing system of difference equations may lead to negative values of the
neutron flux: hence, it does not correspond to a positive operator (*4.4c). Thus.,
it is not possible to use the theory of such operators to establish. as for multi-
group diffusion theory in §4.4f, the existence of eigenvalues and to accelerate
convergence, Alternative difference schemes have been used to preserve positive
values of the flUX,11 but they have been found to be generally less accurate than
the scheme given here .

.5.29 Results of Discrete Ordinates Calculations

By using the procedure described above~e one-speed transport equation can
be sohed b) the method of discrete ordinates. Such a one-speed problem would
normally arise in the treatment of one group in a multigroup calculation, as seen
in ~·L~b and as \\ill be considered in ~5.3e. The method may also be used to
Sl)!\e ~imple one-speed test problems: the accuracy of the procedure for various
chl)ie~:-. l)f quadrature coeffIcients can thereby be assessed. As an example. the
Cl)l1lputt:J critic.!.1 thicknesses l)f bare slabs are gi\en in Table 5.2. In making the
cakuL.itil)n:-.. th~ iterati\e methud of ~5.2f was applied with the following
rdinemL'nt: "inee th~re i" no external source, the thickness is varied until the
iteratll1lh L'l'merge. The prllcedurc is analogous to that described in *4.4d with
q nl)\\ pb~ing the rok l,f IF.

The \;.l!ue" recnrded in Table 5.2 are the critical half-thicknesses. in terms of
neu[rl'n mean free raths. as functions of r. for the simple P.\ _ 1 and double-
P'l .: \ ; Gauss quadrature schemes with various numbers l.)f directions, N. In
the numerical cl.)mputatinns the space mesh consisted l.)f 4.\ equally spaced
inten ;.11" I n each case. I": The re"ul ts of exact calculations lJ are given for compari-
son. The aceurac: att;.tinabk b) the double-P.\' method is seen to be very striking.

.. TABLE 52 CALCULATED CRITICAL HALF·THICKNESSES OF
SLABS USING GAUSS QUADRATURE.12.13 (IN MEAN FREE

L PATHS)

P"-I Double-PO,2l.\' - 1

\.
c " .\' :! 4 6 4 '6 Exact

\

1.02 5.856 5.687 5.675 5.670 5.668 5.665
1.05 3.496 3.3:! I 3.308 3.299 3.301 3.300
1.10 2.315 2.136 2.121 2.107 2.114 2.113
1.20 1.487 1.319 1.299 1.278 1.290 1.289
1.40 0.920 0.778 0.750 0.723 0.736 0.737
1.60 0.680 0.559 0.530 0.503 0.510 0.512



A comparison has also been made of the critical half-thicknesses of slabs
obtained by the method of discrete ordinates with those given by the" exact"
method of the separation of variables (see Chapter 2) for anisotropic scatter-
ing.14 For this purpose the angular distribution of the scattered neutrons was
taken to be that for hydrogen, and either two or three terms in its expansion were
retained in both treatments. Various ratios of anisotropic to isotropic scattering
were considered. By using a large number of space points, namely 75, and the
double-P7' i.e., N = 16, quadrature scheme, the results obtained from the
discrete ordinate method generally agreed with the "exact" values to within
one part in 104; in most cases the agreement was even better. Thus, a consider-
able degree of accuracy can be attained in plane geometry by using a high-order
discrete ordinates method. It is of interest to mention that, even for the most
complicated scattering, the time taken to solve a problem of this type on a
modern digital computer is only a minute or less.

The Gauss quadrature formula for approximating the integral in the transport
equation has the advantage of giving fairly accurate results with a relatively
small number of terms. It does not constitute, however, the only practical
choice of directions and weighting factors for representing the angular distribu-
tion of the neutron flux. Other schemes have been proposed and mention may
be made of one which involves directions equally spaced in fJ-2; this has some
useful symmetry properties when generalized to geometries of more than one
dimension (§5.3c).

5.3 DISCRETE ORDINATES FOR ONE SPEED IN CURVED
GEOMETRIES

It '" as mentioned earlier that in curved geometry a problem arises because the
angular coordinate of the neutron, in a local coordinate system, changes due to
streaming, i.e .. to collision-free motilm. Consequently. a further coupling is
introduced between equations describing neutron fl0WS In discrete directions.
Spherical geometry will be treated here, although the techniques to be described
are also applicable to other cuned geometries.

In spherical geometry the one-speed transport equation may be written as
(§1.3a).

where the source term q(r. fl) may include aniwtropic scattering and anisotropic
sources. as discussed in the preceding section. The treatment of the source term
is the same as in plane geometry and so it \\ill not be considered here in any
detail. In more general geometries. the only difference is that the scattering
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source is not simply a sum of Legendre polynomials but involves spherical
harmonics; the latter are present, as pointed out in §3.3e because there is no
azimuthal symmetry to eliminate terms from the addition theorem of Legendre
polynomials.

The new problem in spherical geometry is how to approximate the seeond
term on the left-hand side of equation (5.15) and especially the derivative factor
a <1>/OfL. Various possibilities have been proposed,15 most of which ~troduce a
complicated coupling between the angular fluxes, <1>(r, fLi), for varioJlvalues of
fLi' For example,16 equations (5.4) and (5.7) could be used, with r replacing x, to
write

Such a choice can be shown to give a discrete ordinates method which is equiva-
lent to the spherical harmonics method in spherica1 geometry as described in
§3.3a.

A simple procedure was proposed by B. Carlson in his original SN method.17

The dependence of t1>(r, fL} on fL was approximated bya series of connected straight
Iine segments between fL = - I and fL = 1; thus, the letter S stands for segments.
In one-dimensional geometries. N indicates the number of segments chosen to

o f

SEGMENTS APPROXI~ATlNG ACTUAL ANGU~ FLUX OISTRI·FIG. 5.2 liNEAR
BUTION.



represent the angular distribution of the neutron flux. With N segments, there
will be N + 1 discrete directions, including fL = - 1 and 1. In Fig. 5.2, the actual
distribution between fL = - 1 and 1 is indicated by the broken line, and it is
approximated by four linear segments, so that in this one-dimensional system
N is 4. Obviously, the larger the number of directions used to express the
angular flux distribution, the better the approximation.

By introducing this representation into equation (5.15), and integrating over
a fL interval, explicit expressions were found to be satisfied by the values of <P
at the junction points. In this approximation the only free parameters were the
values of fL separating the various segments. Subsequently, it was recognized
that the resulting equations were only a special case of a more general formula-
tion using discrete ordinates. This led to the development of the discrete SN
method which will now be described. IS

/

It should be noted at the outset that in curved geometries there are special
angles along which the neutron direction variables do not change as a result of
streaming. For spheres, these directions are for fL = - 1 and fL = + 1, corre-
sponding to motion straight in toward the center or straight out, respectively.
For these values of fL. the coefficient (I - J-L2)/r of f<!>j?J-L in equation (5.15) is
zero, and with known q, the equation can be solved exactly as in plane geometry.
(At the origin a neutron can change from IL = ---,I to J-L = + I discontinuously,
but this can be imposed as a symmetry condition (§5.3d).) In curved geometry,
the solutions in special directions can be utilized for boundary conditions on the
angular dependence of the neutron flux. but they are not usually used in evaluat-
ing the integrals for determining the source term. The general practice in
spherical geometry is to compute <1)(r, - 1) from the boundary conditions at the
outer radius by integrating equation (5.15) numerically assuming q(r, J-L) to be
known.

In deriving the numerical approximation to the transport equation, one
principle is very helpful. It is that a difference equation for a fundamental r, J-L

cell should obey an explicit conservation law for the neutron economy in that
cell; each term in the equation should clearly represent a physical component
in the neutron conservation, such as absorption in the cell or flow across a face.
When the conservation principle is included in the difference equations, the
Jatter are always more readily interpreted and are usually more accurate than
when the derivatives are simply replaced by differences without attention being
paid to conservation. Moreover, in the absence of such a principle. the possible
difference equations are so numerous that a good choice is difficult to make
except by a process of trial and error. This is the reason why the neutron
transport equation was expressed in conscn'ation form in §1.3b.



To apply the conservation principle, equation (5.15)'may be written, accord-
ing to equation (1.35), as

!!: ~ (r2<1» + !~o [(1 - fL2)<1>] + a<1> = q,
r 2 or r OfL

where the argument (r, fL) has been omitted for simplicity. As seen in §1.3b,
integration of the first term on the left side of equation (5.17) over all directions
and over a bounded volume gives the net outward neutron current, whereas the
second term is zero.

The same result, and the conservation relation, may be derived by integrating
equation (5.17) over a region in r, fL space. Thus upon integration over a volume
from ri to ri + 1, i.e., multiplication by 471'r2 and integration over r from ri to
ri + b and over all directions, i.e., multiplication by 271' and integration over fL

from - I to 1, the first term in equation (5.17) becomes

471'(rl+1)2271' f~l fL<1>(ri+1, fL) dfL - 471'(r?)271' I~l fL<1>(rj, fL) dfL

= Ai + 1Ji+ 1 - A Jj, (5. 18)

is the outward radial current at r = ri; AI + 1 and Ji + 1 have the same respective
significances at r = rl-;- 1" The second term on the left of equation (5.17). after the
integration over the specified volume and all directions, is zero. Hence, the net
result of the integration may be written as

Al~lJl-;-l - AJi = 871'2r~I-;-' r2dr f~l (q - a<1»dfL

= source - sink

since the q term represents the neutron source and a<l> the neutrons lost in
various collisions. Equation (5.19) is thus an obvious conservation relationship:
the net rate at which neutrons flow out of the specified volume is equal to that
supplied by the source minus the loss due to interactions (collisions) with nuclei.

5.3c Derivation of the Difference Equations

The foregoing procedure will now be followed except that the integration wilt
be over a limited range (or segment) of fL. Consider a fL. r mesh, as in Fig. 5.3.
where the {r,} are chosen so that points occur on boundaries between regions and
the cross sections are assumed to be constant within an interval '" '1+1; the
points fL". etc. are selected to coincide with the J-L values in the quadrature formula
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of equation (5.2). Consider a typical cell. b.ounded by fl, 'i+ 1 and by fLn-0I2)'
fLn + (l 2)' as shown in Fig.. 5.3. The direction fLl 2 is chosen to be - ), so that along
this special direction the transport equation can be solved by the methods of
plane geometry. Moreover, for an N-point quadrature. fLS+(1/2J must then be
equal to I.

Suppose equation (5.17) is integrated over the volume of the cell and over a
se~ment of fL between fln-(1:21 and fLn.O:2j' The source (q) minus collision (a<l»
terms then become

817:: C·1
rZdr C"·CI2'[Q(f.fL) - a<1)(r.fL)]dfL

•. t • •.• "-(1:21

f.II + 0/2)

.11 _ (1/2) f(P) dfL ~ K",J(p,.J.
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has been used, and ij and <1>are volume averages over the cell, e.g.,

Turning now to the first term on the left of equation (5.17), this can be inte-
grated by using the same approximation for the partial fL integral to give

2mt'nfLn[Ai + 1<1>(ri + 1, fLn) - Ai<1>(rj, fLn)]'

The second term can be integrated first over the limited range of fL and then over
the volume of the cell; the result is

where the coefficients an±(lf2l remain to be determined. The complete difference
equation, resulting from the integration of the one-speed transport equation
(5.17), is then

fLn[Ai+1<1>(ri+l, fLn} - Ai<1>(rj, fLn)]

+ an.o.(1 21<1>(rl+(1 2" fLn+(1'2l) - an-(121(!:>(ri+<l2l' fLn-(l'21)_ V(ii _ a<P). (5.20)
H'n

To determine the values of an +(1 2)' consider an infinite medium in which the
flux is constant and isotropic. Such a situation will arise, approximately at least,
near the center of a large sphere. I n this case, there is no net current, and the
conservation principle requires that

q = a$.
For equation (5.20) to be consistent with this limiting situation, it is necessary,
si nee all the t1> values are assumed to be the same, that

This is a recursion relation from which the value of an +(1!2) can be determined
if an _ (1 21 is known.

It will now be shown that al2 should be zero and, hence, once this choice is
made all subsequent values of a can be determined by means of equation (5.21).
Suppose equation (5.20) is multiplied by l\'n and summed over all values of n,
where n = 1, 2, ... , N, for an N-point quadrature formula. Agreement with
equation (5.19) can be obtained only if the sum of the a terms is zero; thus,

III

)' 0"+(1:2)[$(rl+(1'2h f'Y&+11!2» - a"-Cl/2)$(rl+(1I2)' f',,-(1/2»].-..J.-1



This result should be true regardless of the dependence of <I>on rand fL; hence,
it is necessary that

Incidentally, for a symmetric quadrature scheme, as IS nearly always used,
01/2 and ON +0/2) must be identical, in any event.

With 01/2 = 0, equation (5.21) for n = 1 yields

and so on for n = 2, etc. It should be observed that 0n+0/2) depends not merely
on n, but also on i. Since Ai + 1 - Ai is always positive, and fL1 < 0, it follows
that 03/2 is positive. By repeated application of equation (5.21), it is then seen
that 0n+<l 2) will always be positive provided li-n < O. When fLn > 0, however, n
in equation (5.21) is set equal to N, and since 0N+(1/2) = 0, it follows that
0N-(lf2) is positive; the same will be true for 0 •••-(3;2), etc. It is thus found that all
values of ° are positive.

If equation (5.21) were not used to determine 0n+O/2) and the integral of the
second term in equation (5.17) had been approximated in another manner, it
would be found that the numerical solution could not yield an i~otropic flux at
the center of the sphere. Apart from this, the resulting difference equations might
be almost as accurate as obtained above. It seems to be generally advisable,
however, to build as many features as possible of the exact solutions into the
difference equations. Actually, even for the approximation given here the
central flux is not exactly rsotropic.19

The terms in equation (S.10) can be interpreted in the following manner. '
When multiplied by H'n, the first two terms on the left side are the neutron flows
across the areas of radii ri + 1 and rt in the nth Ii- interval. The a terms represent
streaming flows which transfer neutrons from the n - t direction into the n
interval and from the n interval into the n + 1- direction, respectively; the terms
on the right-hand side are, of course, the source and the sink.

5.3d Solution of the Difference Equation

As it stands. the one-speed equation (5.20) cannot be solved because there are
too many l!)(r, fl.) values. Consequently. some further relations between them
must be postulated. Suppose the problem being solved is one with a boundary
condition at the outer radius, r,. As was the case for plane geometry, the calcu-
lation of <1'is initiated with some postulated value of the source term q(r, fL), so
that ii is known. Starting at the outer boundary with the boundary condition
given as the incoming angular flux $(r, Ii-) for fL < 0, the special direction Ii- =
- I is-considered. From equation (5.15) it is seen that for fL = -1, the transport
equation is just as for plane geometry, e.g., equation (5.1) with the right side
written as q. Hence. in this direction integration is performed inward to the



DISCRETE ORDINATES FOR ONE SPEED IN CURVED GEOMETRIES 233

center, in a manner similar to that used in plane geometry, so that <1>(rt+(1/2>, J-L1/2)

can be determined for all values of i, with fL1/2 = - l.
Next. the inward integration is started for fL1; at any step in this process

<!>(rj .•o '21' fL112) is known and <I>(ri+1, fL1) is obtained from the preceding step, or
initially from the boundary conditions. Thus, in equation (5.20), for n = I, the
quantities <l>(r

l
+ (1/2), fL112) and <t>(rj + l' fLJ are known and the unknown quanti-

ties are <1>(rl' fLl), <D(r
i
+(1/2), 1-'-312)' and <1>(ri+(1/2), fL1)' Methods for eliminating

t\VOof the three unknowns are developed below. .
In general, for any fLn < 0, th~ unknown quantities in equation (5.20) are

<t>(rj, fLn)' <D(rt + 0 '2)' J-Ln+ 0/2», and <D(rt + (112)' J-Ln}; hence, two additional relations
are required between these three quantities in order to solve the equation. The
simplest of such relations is the so-called" diamond" difference scheme wherein
<Dis assumed to be linear between adjacent r, fL mesh points (Fig. 5.4); thus

2<t>(r
i
+(lf2)' fLn) ~ <1>(ri+1J.JLn) + <D(rj, fLn) (5.23)

~ <1>(ri+(1!2)' J-Ln+(12» + <D(ri+W2)' fLn-of2)' (5.24)

Equations (5.23) and (5.24) rnay now be used in_equation (5.20) to eliminate
<1>(r

l
, fLn) and <1>(rl+(lo'2)' fLn+(1I2»; upon solving for <1>(ri+(1I2)' fLn), it is found that

-P'n(A
j

+ A
i
+l)<D('i+l' fLn) + (l!wn)(an+oi2) + an-(1/2')

1> x <t>(rj +<1.'2)' fLn-0/2) + Vq
< ('I-Il :.;,./i,,) = ------~ ) (I' )(-fLll(A

1
+ ".1i+1 + /\\'n an..-O'2) + an-(12» + aV

(5.25)

\\ ht're equation (5.21) has been used to write the denominator in a symmetrical
form. Once iji has been found in this way. by using the <1>(ri+l' fLn) and <D(ri+<l12h
fL"-I! :.;,) obtamed ablne, equation (5.23) and (5.24) may be applied to determine

. <l>(r
1
• IL,,) and <11(rl. (1 2" fLll' (! '21 )v;hich will b! required for subsequent steps.

By rereatln~ thl~ rn)cedure, the values of <t> may be found for all space points
and all in~l\lng direction. i.e .. fL.1rfLll < O. For outgoing directions. i.e .. for fLll > O.
IOtegratlllfl I" rcrfl\rmed l)ut\\ard in accordance with the principle stated earlier
that numc:nl.."al errors are minimized if the integration is in the direction of
neutrl\n rTh\t1lln. TlI ~et started on the integration some condition on isotropy of
the neutwn flu, at t~he center may be used. Thus. it is assumed that

<1'(0, f-Ln) = <D(O. - fLn)' (5.26)

"here. fpr rp~ltl\e IL,.. the rieht-hand side is known from the inward integration;
thu~. (1)(0. fL,,) ili a\ ailable fl;r starting the outward integration. In this direction,
(~(rl' Ii,,) I~ Knl'"n and (1)(r 'L,,) is unknown; hence equation (5.25) is replaced

lol·r-

by

<1>('1011 ~" 104•• ) ;:::

104•• ( AI + A I. I )<P(rl' J-Ln) + (l!wn)(an + 0'21 + an -(1/2»)
X <1>('1 + (12)' J-Ln -112) + V{

I4.(A, + .~) + (liH'n)(an+(1/21 + an-(2» + tJV
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In this manner. <5 may be found for all angles fLn and all space points 'j+(1/2)' By
using these values, ij can be recomputed and the process repeated until convergence
is obtained. These repetitions are inner iterations analogous to those described in
Chapter 3 for determining the within-group (or one-speed) spatial distribution
of the flux based on Pi or diffusion approximations. In praCtice the convergence
may be accelerated by using the method of scaling or other techniques.2o

Because of the complex structure of the difference equations, the matrices
involved in the iteration are quite involved. Consequently, the procedures which
have been used are not as well understood mathematically, nor as highly de-
veloped, as are those employed in PI or diffusion theory. The iteration tech-
niques have been found empirically to accelerate convergence, but they have
not yet been analyzed formally. One reason is that, as noted in §5.2f, when A is
large the solutions to the equations may not be positive for all values of 'h fLn.

This means that the positivity property of the transport operator (§4.4c) is being
violated by the approximation and the analysis then becomes more complicated.

It was mentioned earlier that the difference equations derived above are not
the only ones which could be used to approximate the original differential
equation (5.17). Those given here have been preferred for the following reasons:
(a) several general principles are embodied in their derivation; (b) the treatment
is readily extended to other geometries for which the transport equation was
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expressed in conservation form in Chapter 1; and (c) the results obtained have
been found to be more accurate than those given by other difference equations.
It should be pointed out. however, that the possible difference schemes have not
been studied exhaustively; for example, variational derivations, along the lines
indicated at the end of Chapter 6, were not reported until 1968.21

In applying the method of discrete ordinates to spherical geometry use may
be made of any of the quadrature points and weights, mentioned in connection
with plane geometry, e.g., the Gauss quadrature set. Some indication of the
accuracy which can be achieved in such calculations, using Gauss quadrature
and Mark boundary conditions, is obtained from the results given in Table
5.322 for the critical radii, expressed in uflits of mean free path, of bare spheres.
As in Table 5.2. the space mesh was made up of 4N equal intervals, where N is
the number of discrete directions. In the original 5N method, N represented the
number of segments (§5.3a), but in the modified form described here, N is the
number of directions.

It is seen that a high degree of accuracy can be attained when N is large.
Surprisingly accurate critical radii, within about 1 percent of the exact results,
are possible. however. with N = 4, i.e., in the 54 approximation, for all values of
c in the table; \Vith the available fissile materials, the highest c, effectively about
1.6. arises in a one-group treatment of an assembly of plutonium-239. It is
evident. therefore. that for a wide range of criticality problems the 54 calcula-
tions sh()uldsi\e acceptable accuracy. For c -1 « 1, even the 52 approximation
is quite accurate: in these circumstances, the critical system is large and then any
lo~-order approximation to the angular flux distribution, including diffusion
theory. as seen in Chapter 2, gives acceptable accuracy.

The criw:al radii of bare spheres have also been calculated by the discrete
ordinate~ method with directions and weights given by separate Gauss quadra-
ture sets f01" the range - I :::; f.L < 0 and 0 ~ f.L ~ 1.22 The procedure, which is
equivalent In the double-P, method that proved so satisfactory in plane geom-
etry (Tahle 5.~ l. gl\es Itttle. if any. improvement over the results obtained by the

TABLE 53 CALCULATED CRITICAL RADII OF SPHERES
BY S.• METHOD USING GAUSS QUADRATURE.22 (IN
MEAN FREE PATHS)

~" 2 4 8 16 Exact

1.02 11.917 12.028 12.031 12.032 12.027
1.05 7.153 7.261 7.273 7.276 7.277
1.10 ".7SO 4.850 4.866 4.871 4.873
1.20 3.062 3.146 3.165 3.170 3.172
1.40 1.8904 1.961 1.978 1.983 1.985
1.60 1.400 1.454 1.470 1.474 1.476



use of a single quadrature set over the whole range - 1 ~ I-'- ~ 1. This is prob-
ably becaus·e in spherical geometry the flux is continuous at I-'- = 0, as noted in
§3.5a.

S.3e The Discrete Ordinates Method in General Geometry

The procedures described above for plane and spherical geometries may be
extended to more general geometry. The approach will be discussed briefly here
and further details will be found in Ref. 23.

The method of discrete ordinates in two- and three-dimensional rectangular
geometries is much the same as for plane geometry. In particular, the direction
variables of a neutron do not change during streaming, and derivatives with
respect to angular variables are not present in the transport equation (§l. 7a).
Two angular coordinates are now required in order to specify neutron direction,
and integrals over Q will involve sums over both direction coordinates. For
example, if the direction is represented by a direction cosine I-'- and an azimuthal
angle x, as in Table 1.2, it would be possible to write

J (2n II. <D(r, Q) dQ = Jo dx -1 dl-'-<D(r, 1-'-, x)

where the directions}in and weights H'nmight be chosen from a Gauss quadrature
set and the Xm directions are, in this example, equally spaced in the interval
o ~ X ~ 27T, i.e.,

_m-1-?
Xm - M _7T,

Such a choice would provide the basis for a reasonable discrete ordinates
method, but it has a disadvantage which is especially apparent in three dimen-
sions. The directions and weights depend on which physical direction is chosen
as the = axis. i.e .. the polar axis. Thus, the solution will depend on the alignment
of the coordinates. This undesirable feature may be avoided by a special choice
of direction coordinates that is invariant under rotation through 90° about any
of the coordinate axes. It has been shown 24 that this rotation invariance con-
dition constrains the values of ILn to be equally spaced in 1L'l, i.e.,

2 2 2(n - 1) I 2
IL" = ILl + N _ 2 ( - 3ILl),

and such direction sets have frequently been used in S..•calculations (§5.4d). The
first d·irection cosine. ILl' is found by imposing condition (3) of §5.2a for n = 2.

For curved geometries, other than spherical, it is also necessary to specify
two direction coordinates. This is true even for an infinitely long cylinder in



which the angular flux depends only on one position coordinate, r (see Table
1.2). The integrations over neutron directions may be treated as in' rectangular
2:eometry. In addition, the derivatives with respect to angular coordinates must
be approximated. As for spherical geometry, the difference equations may be
based on conservation principles. Moreover, the transport equation may first be
solved in special directions along which the neutron direction coordinates do
not change with streaming; the results may then be used as boundary conditions
for the main system of equations.

For cylindrical geometry, for example, these special directions- are those for
which fL = ± I, i.e., neutron motion parallel to the cylinder axis, or sin X = 0,
i.e .. motion toward or away from the cylinder axis (see Fig. 1.16). Diamond
difference approximations, such as in equations (5.23) and (5.24), can be used
to reduce the number of unknowns to the number of difference equations. The
latter should be evaluated, as explained in §§5.2e, 5.3d, in the direction of
neutron motion.

\\'hen the angular dependence of the neutron flux does not have an axis of
symmetry. the treatment of anisotropic scattering given in §5.2e can be general-
ized. As before. the cross section is expanded in Legendre polynomials, the
addition theorem of these polynomials is used (§2.6a), and the resulting integrals
in the tranSpl)rt equation are approximated by sums.

Furthernwre. when the angular flux depends on two direction (angle) co-
ordinate~. other methods for solving the transport equation can be developed
by assuming that the dependence on one coordinate is contlnuous. but the other
is rerre~ented in discrete form. For example. with the t\VO angular variables fL

and ).. the fL might be treated as a discrete variable. whereas the dependence of
the flux l)n X might be given by a sum of trigonometric functions.25

Frl)m \\ hat hao; been stated here. it is apparent that many possible discrete
l)rlllnate~ arpnn,imations to the transport equation can be considered. Of course.
the dC~lrahle appW\lmatlllns are those which are both accurate and rapid for
numenl.:al I.:llmputatll)n. The methods referred to in this section have been
prl)\eJ u,eful fl)r Sl)lutilln of practical problems; in addition. a number of
ml~di(;H1,)n~ ha\c heen proposed.26 some of which may be found to be
aJ\antage\lus.

5.4a Expansion of Scattering Cross Sections in Spherical
Harmonics

The d('\e1l'prhent of the discrete ordinates methods given above has been con-
cerned ~ Ith the an~ular distribution of neutrons in a one-speed problem. It is
n('C~\3f) no~ to conSider the treatment of realistic. energy-dependent situations



by means of multi group methods. The main problem here, as will be seen shortly,
is the consistent determination of the group cross sections.

Just as in the multigroup spherical harmonics approach, in Chapter 4, the
energy-dependent multi group equation&are derived by integration over a num-
ber of energy intervals (or groups). In the discrete ordinates methods, these
equations are evaluated in certain discrete directions. As stated in §1.6d, how-
ever, such a procedure would generally lead to group cross sections depending
on direction; in addition there would be uncertainty in the evaluation of the
transfer cross sections.

To facilitate the determination and handling of group cross sections, it has
become the practice to adopt the procedure from the spherical harmonic~
method and introduce expansion of the scattering cross sections in Legendre
polynomials. Once this has been done, the group constants are similar to those
used in the spherical harmonics multigroup treatment. Nevertheless, there
remain some differences and, in particular, some free parameters are available
in the group constants for the discrete ordinates methods described here;
possible choices are considered later in this chapter.

In order to focus attention on the new features, the energy-dependent trans-
port equation will be considered, for simplicity, in plane geometry; thus,

o<1>(x. ,.,., E) (E)'h( E)fL r + a X, 'V X, IL,ox

= 27T f f af(x; E', IL' ~ E, 1L)<1>(.~,,.,.'. E') d,.,.' dE' + Q(x, IL, E). (5.28)

The group constants which will be derived for plane geometry can he used for
any geometry. The scattering cross section is expanded in Legendre polynomials
in the usual way (§4.2b) to give

<t

,.,. ~<1> + a<1>= ;; 2/
4
+ 1 P,(fL) f ~,(x, E')O',(x; E' -.. E) dE' + Q, (5.29)ex ~ 7T

, '" 0

As before, fLo is the cosine of the scattering angle.
It should be evidenUhat the foregoing expan5>ion of the scattering term in the

transport equation as a sum of Legendre polynomials is not a necessary feature
of the discrete ordinates methods. Other polynomial~ polynomials plus delta



functions. or explicit integrations of the differential cross sections could be
employed. The expansion in terms of Legendre polynomials (or spherical
harmonics). however, has been commonly used. It appears to be the natural
approach because spherical harmonics are a representation of the three-dimen-
sional rotation group.27 '

In general, multi group discrete ordinates codes solve a system of coupled one-... ~
speed equations of the form

oif;g{x, }J-) ( ).1. ( )
fl- ~ + Ug X 't'g x, fl-ax

<Xl G

= L 2/
4
: I Pi(}J-) L if;,.g.(x)u~~)_g(x) + Qg(-!, fl-),

1=0 g'=1

N

if;/.g'(x) = 21T ~ H'jp/(}J-aif;g'(x, }J-i)
~
i = 1

~ 21T f~1 P1(}J-)if;g'(x, }J-) d}J-

anJ g is the group index. with £g ~ £ ~ £9-1, as in Chapter 4. In practice the
sum 0\ er 1\\ ill. of course. be terminated at some value I = L. If this equation is
considered fl)r a fi.xed group it is seen to correspond to a one-speed problem
ha\ int! a ri~ht-hand side with anisotropic scattering and an anisotropic source
as in equatiun (5.9). As in ~.3b. in equation (5.30) the terms on the right side
with g' = g act as the anisotropic scattering. whereas those with g' =1= g would
be cl)nsidereJ part of the independent source for a one-group calculation. Thus,
the ~llurcc for the one-speed problem in group g would be, in t.he notation of
equation (5.9).

. _ ~ 21 + I () '" .1. (_) (/) _) Q _ )q(.\./!} - 417 PI}J- L 't'1.g' .X Gg'_g(.x + g(.\,}J-.
1=0 g'i'g

It i!'lnlly. n:quircd to make a suitable choice of the group cross sections, so that
the solutIOn t/J,.(.\'. }J-) of equation (5.30) will correspond closely to the integral of
(11(.\".}J-. £) o\cr the energy interval of each group g.

5.4b Determination of Group Constants

)f equati{)n (5.29) is simply integrated over the energy interval from Eg to Eg _ h

and the definitions (

fE'-1 ! Jt!111(x. }J-) == <1>(x, fL, E) dE = <1>(x, fL, E) dE
.,E, g

i are used. it is apparent that equation (5.30) is not obtained by replacing <1>11with
Ad-

" .. ]
, . ':J



l/Jg. As noted in §5.4a, the reason is that the second term on the left side of
equation (5.29) becomes ag(x, fL)<I>g(X,fL), where

f g a(x)<I>(x, fL, E) d£
ag(x, fL) = Jg ~(~'fL' E) d£ '

so that ag is dependent upon fL. This difficulty can be overcome in a number of
ways.

One possibility is to postulate that within an energy group the dependence of
<I>on E is separable from its dependence on x and fL; thus,

<I>(x, fL, E) = flex, fL)f2(£)'

This would make ag independent of fL, and then an equivalence could be es-
tablished between equation (5.29) and (5.30). Although the approximation of
separability can be used in some practical cases, it is not generally good and
should not be employed indiscriminately. An alternative approach, which is
satisfactory in all situations, is presented below.28

First, the angular flux in the second term on the left-hand side of equation
(5.29) is expanded as a sum of polynomials, i.e.,

and then the equation is integrated over E; the result is

( ~)a(x, fL)
fL

where Sin is the Kronecker delta and

Ie a(.\". E)¢/(.\". E) dE
at a(.\") == . <b (5.32)

. 1,11(.\")

arc the flux-a\crageo group cross sections. prcci~l~ as in equations (4.26) and
(4.~7). respecti\ely. If now the product a,(.\)lllq(x, Il} is added to bl)th sides of
equation (5.31). \\ ith llll1(x. It) expanded as a sum of polynomiab on the right
side but not on the left. it is found that

i. .;1
t .~
~
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Provided estimates of ePl are available, as in Chapter 4, for use in equations
(5.32) and (5.33), all the cross sections are known in equation (5.34), except for
the ag which are still undetermined.

It is now seen that equation (5.34) is identical in form with equation (5.30);
the group constants in the latter can then be chosen so that the corresponding
terms in equations (5.30) and (5.34) are equal. For g' i=- g, the transfer cross
sections a~~)...•g in equation (5.30) must satisfy the requirement that

and the transfer cross sections al.g' ...•g are the same as in PN theory [equation
(4.27)]. For g' = g, the only necessary constraint is

Here, al.g_g and a/.g are known, in principle, from equations (5.32) and (5.33),
but ag and a~l!...g are unknown; an exact result can be obtained, however, provided
the latter are chosen to satisfy equation (5.36).

In practice, the sum over I in equation (5.30) or (5.34) will be terminated after
some finite number, e.g., L + 1, of terms. Thus, in the summation over I from
I = 0 to I = L. there will be L + 1 terms. Consequently, there are only
G(L + I) equations for determining the G(L + I) values of the transfer cross
section a~l!..q and the G values of the collision cross section ag; thus. G extra
conditions must be imposed. One possibility is to chose ag = ao.,l' so that the
collision cross section aq in equation (5.34) is simply the flux-averaged collision
crosS section from equation (5.32), i.e.,

The name "consistent P" approximation is given to equation (5.37) because
if. \\ ith this choice of aq• equation (5.34) is integrated over all ang.les, the result
is identical \\ith the first of the multigroup Ps equations. as in equation (4,24).
It will be recalled that this equation, which is derived from (4.14'. is exact,
except for the uncertainties in evaluating the group constants. Since the choice
of aq in equation (5.37) is consistent with the P,.., equation (4.24), it is called the
consistent P approximation.

A more refined procedure would be based on choosing ag so that the first
neglected term in the summation in equation (5.34), i.e .• for I = L + 1. is small.
The neglected term is

g'·l

and in order to minimize it, information is required concerning the \pendence
of cPt .• 1.,' on g'. For most energy groups in re~ctor problems, the scattering into



5.4c Multigroup Discrete Ordinates Calculations

The methods for solving multigroup problems in the discFete ordinates approxi-
mation, based on the use of an appropriate digital computer code, are the same ~
in principle as those for the PH and related approximations. A four-point Gauss

~~s~t:~:~~ ~a::~~u::1 ~~t~~~li~~~~~~:t;~~~~~;~~~~~~e~n e:~i:;~h~s ~t~:ri~~ f!
terms in equation (5.30) can be approximated to any desired value of L. Few
problems have been encountered for which L = 3 is not adequate and usually t
the L = 0 transport approximation or the L = 1 consistent P approximation
suflices.

c

The discrete ordinates codes can be used to solve eigenvalue problems or they
can be applied to subcritical systems which include an extraneous source. In
general, all the procedures, including i.nner and outer iterations, evaluation of

a group of neutrons from higher energy groups is roughly balanced by the
scattering out to lower energy groups. If this is the case, then

G GL c/>L+l.g,GL+l.g'~g ~ L c/>L+l,gGL+l,g~g"

g'=l g'=l

where the left side is the scattering into group g from all other groups and the
right side is the corresponding scattering out. If equation (5.39) is substituted
into the expression (5.38) and the result set equal to zero and solved for ag, it is
found that

G

Gg = aL + 1,g - L GL + 1,g-g' (extended transport approximation).

The choice of Gg just described is called the" extended transport" approxima-
tion for the following reason. In one-speed theory, the transport approximation
consisted in replacing anisotropic scattering by isotropic scattering and using
the transport cross section (§2.6b). In the present energy-dependent situation,
the use of equation (5.40) with L = 0, i.e., assumed isotropic scattering, has
much the same effect and leads to a multigroup transport approximation. Con-
sequently, when ag is derived from equation (5.40) with L #- 0, it is referred to
as an extended transport approximation.29

In order to determine the group constants for application in equation (5.30),
the values of a/.g and a"g' _g must be obtained from equations (5.32) and (5.33).
To do this, estimates are required of the within-group flux, i.e., cPo, for each group,
and of the other cP/ terms in the Legendre expansion of the flux, as well as4a
knowledge of the variation of the microscopic cross sections with energy, The
problem is similar to that discussed in Chapter 4 in connection with the multi-
group constants for the PH (and related) approximations. The choice of the
number of groups is essentially the same as described in the preceding chapter.



the effective multiplication factor or of ce, and determination of criticality con-
ditions are the same as described at the end of Chapter 4. An example of the
application of such a code is given below.

5.4d An Application to Fast-Neutron Systems

The method of discrete ordinates is a versatile tool for the solution of neutron
transport problems in relatively simple geometry. In this section, an example
will be given of the application of the method to some fast-neutron systems.
The considerations which determine the procedure, especially the anisotropic
approximation and the choice of the number of energy groups, will be explained,
and the results of the calculations, particularly of the effective multiplicatioR
factor (or keigenvalue) and of the critical radii of spherical assemblies, will be
compared with experimental data on fast-neutron critical assemblies.

Good agreement between computed and observed values depends, not only
on the use of accurate methods for solving the transport equation, but also on
the availability of reliable neutron cross sections. Consequently, some of the
problems involved in determining the adequacy of nuclear data for reactor
calculations will be examined. Several" libraries" of cross sections in a form
suitable for computer processing are available30 and one which provides suitable
input data for a multigroup, discrete ordinates calculation is used.

The present discussion will refer, primarily, to relatively simple, metal
systems containing fissile material and operating with a fast-neutron spt?ctrum.
In fast reactors containing appreciable amounts of elements of low mass num-
ber, such as sodium as coolant and oxygen or carbon as the oxide or carbide,
respectively. of uranium or plutonium, the neutron spectrum will be shifted to
lower energies. In these circumstances, neutron absorption in the resonance
region becomes important; this subject will be treated in Chapter 8, but for the
assemblies described here, resonance absorption ~s not significant.

To permit a meaningful comparison between calculation and experiment,
the computations will be made for fast critical assemblies. having simple geom-
etry and composition. which have been the subject of careful experimental
studies. These include the (approximately) spherical* assemblies Godiva, of
unreflected uranium metal enriched to 93.9 atomic percent in uranium-235,31
Jezebel. of unreflected metallic (95/0) plutonium-239,32 and Topsy, of 94.0%
uranium-235 metal with a thick reflector of natural uranium.33

Few, if any, of the cross sections in the library referred to earlier are known
to ± 1/0; typically, even the most important fast-neutron cross sections will have
experimental uncertainties of plus or minus a few percent. Consequently, it is
not to be expected that agreement between experimental values of k or critical
radius and those calculated from the library data will be better than a few

• The assemblies mentioned here are not exactly spherical and minor corrections are
made to arrive at the dimensions of a critical sphere.



percent. Nevertheless, for establishing accurate computing methods and in
particular for evaluation of the accuracy of the cross sections, it is desirable that
all approximations in the transport computations should be such that the
resulting uncertainties are small in comparison with a few percent.

The reference fast critical assemblies mentioned above consist of highly enriched
fissile material, and they are consequently quite small. It is evident, therefore,
that PI or diffusion theory is inadequate and a more accurate solution of the
neutron transport must be used. To determine what this might be, consider,
for simplicity, a one-speed treatment. Since the mean number of neutrons, c,
emerging from a collision is approximately 1.3 for uranium-235 and 1.5 for
plutonium-239, it is apparent from Table 2.7 that even a P5 approximation will
give errors in the critical radius of about 1/0' For the cases considered here, a
multi group discrete ordinates calculation was used with the S8 approximation.
According to the results in Table 5.3, for a one-speed problem, this should give
critical radii within about 0.3% of the values obtained by the exact solution of
the neutron transport equation. The corresponding error in k is roughly 0.15/0'
Similar conclusions concerning the accuracy to be ex.pected from the S8 ap-
proximation are applicable to multigroup theory.34

In making the calculations the first point to consider is how accurately the
.angular distribution of scattered neutrons must be taken into account, i.e., how
many terms are required in a Legendre expansion such as that in equation
(5.34). From the shapes of the curves of the differential elastic cross sections
versus scattering angle for neutrons in the energy range of interest,35 it might be
imagined that several terms in the Legendre expansion would have to be in-
cluded. Typical curves for the elastic scattering of neutrons of higher energy
(2.5 MeV) and lower energy (0.65 MeV) by uranium are given in Fig. 5.5.

It will now be shown, however, by examining the sensitivity of the results to
the number of terms, that quite accurate results can be obtained by means of a
P2 or P3 representation of the anisotropic scattering. In fact, even the L = 0
extended transport approximation (§5.4b) is reasonably adequate for many fast
critical assemblies. That such is the case is apparent from the values in Table 5.4
of the critical radius of the Godiva assembly computed by the S8 method for
various approximations to the anisotropic scattering.36 The number of terms in
the Legendre expansion of the scattering cross section is equal to L + I in each
case. These calculations were performed using six energy groups, which will be
described below, and the DTF IV discrete ordinates code.

The reason why the extended transport approximation represents the scatter-
ing moderately well even when L - 0 is that the pronounced forward peaks,
which occur in the differential elastic cross-section curves at energies above
about I MeV (see the upper curve in Fig. S.S), are not important for tne neutron
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transport and are largely ignored in the extended transport approximations.
Fl)f\\ard scattering is like no scattering at all. since the neutrons continue to
lr~l\el III the same direclil1n. and so it can be neglected. For the calculations de-
sl.:'ribed heln\\. a c()n~istent P~. i.e .. L = 2. approximation was made to the
ani~l)lrl)plc ~cattering. The results in Table 5.4 indicate that this should introduce
no Significant erwr.

'e\.t. there i~ the question of the number of energy groups to use for these
cllmputations and hl)\\ tll ohtain estimates of the within-group neutron fluxes.
An t:lrllrt \\as made tl) minimize the sensitivity of the results to these fluxes by
using many energy groups. up to 24 in number. to span the energy range 17 keY
~ E" ~ 14 MeV. The within-group fluxes were generated from a 80 calculation

(~.5c) of the detailed energy dependence of the neutron flux in the Godiva
a~semhly uSing the Iihrary cross sections. The value of the buckling. 82• was
taken to he 7T

2 (R + xOf2
• where xo• the extrapolation distance (§2.5b). was

estimated from the a\erage values of the transport cross section and c. The
neutron spectrum obtained in this manner was taken to be the same for all the



TABLE 5.4. CRITICAL RADIUS OF THE GODIVA

ASSEMBLY FOR DIFFERENT APPROXIMATIONS
TO THE SCATTERING36

Consistent P
[Equation (5.37)]

Extended Transport
[Equation (5.40)]

7.865
8.863
8.810
8.810

8.779
8.808
8.809
8.809

assemblies studied; all the Legendre components of the flux were also assumed
to have the same energy dependence in each case.

To show that the calculations are indeed insensitive to the within-group
fluxes, provided the number of groups is fairly large, the spectrum referred to
above was employed to compute k for the Godiva, Jezebel, and Topsy critical
assemblies and for a bare sphere of uranium-233. The number of energy groups
was either 6, 12, or 24. The ranges of the six groups were 14 to 3 MeV, 3 to
1.4 MeV, 1.4 to 0.9 MeV, 0.9 to 0.4 MeV, 0.4 to 0.1 MeV, and 0.1 MeV to
17 keV.* For the 12- and 24-group calculations. these ranges were divided into
two or four groups, respectively, of equal lethargy width. The results of the
computations, based on the known critical radii. are given in Table 5.5.37 It is
evident that the calculated values of k are not sensitive to the number of energy
groups and, hence, to the \1,'ithin-group neutron fluxes when the number of
groups is sufficiently large.

TABLE 5.5. DEPENDENCE OF CALCULATED k ON
NUMBER OF ENERGY GROUPS37

Number of Groups

Assembly 6 12 24

Godiva 0.9960 0.9911 0.9912
Jezebel 1.0045 1.0035 1.0039
Topsy 0.9965 0.9925 0.9907
Uranium-233 sphere 1.0106 1.0110 1.0115

• This six-group structure evolved from an original three-group representation in which
th~ boundaries between the groups were set at 1.4 and 0.4 MeV, since these energies repre-
sent the (approximate) fission thresholds of uranium-238 and neptunium-237, respectively.
Thus, a uranium-238 fission counter would give the neutron flux in the first (highest energy)
aroup, and a neptunium-237 counter that in the first two groups.



The multigroup calculations used to obtain the data in the table, as well as
those for the fast-neutron systems described below, were performed with the
DTF IV code, a versatile discrete-ordinates program for solving the transport
equation in one dimension with anisotropic scattering.38 The particular S8

quadrature set employed had equally spaced values of f-L2 (§5.3e). The spatial
distribution of the flux was determined by using 20 radial mesh points.

From the arguments presented above, it may be concluded that the 24-group,
Sa calculations, with a P2 approximation to the scattering anisotropy, should be
sufficient to provide an accurate treatment of neutron transport in fast (metal)
assemblies. Hence, when this procedure is used, together with the data from a
particular cross-section library, for computing the k of experimental critical
systems. it will provide a good test of the accuracy of the library fo~ fast-neutron
systems. The results of such computations of k for a variety of fast critical
assemblies are summarized in Table-5.6.39

All the systems. except ZPR-III 48, were small and were simple in both
composition. as indicated in the table, and geometry (approximately spherical).
ZPR-IIf 48 simulated a fast reactor with a core consisting mainly of carbides of
uranium-238 and plutonium-239, with sodium as coolant and iron as the
structural material: the reflector was largely uranium. For the reason given
earlier. the neutron spectrum in such a system extends to lower energies than
fM the other (hean' metal) assemblies. The cross-section treatment used here,. .
esrecially the choice of energy groups and the neglect of resonance absorption,
\\lluIJ thus not be e.\pected to be suitable for treatment of the ZPR-Ill 48
~bscmhly. It has heen included here, however. as a matter of general interest.

TABLE 56, COMPUTED VALUES OF THE EFFECTIVE MULTIPLICATION
FACTOR FOR FAST CRITICAL ASSEMBLlES39

,·h.\ (' IIIhly·
('(Ire Ref/eclor

Cor" Radills
(c IIi)

Calcllialed
k

L t.1011.JIl1-:JJ

L r.1nlllm-:J5 ((illJl\a)

Plulllnlum-:.'Y (Jelebcl)
L ranlum-:!J5 137.5 <T"o)

L'ranlum-:!J5 (16.7 ••..
0

)

LraolUm-ZJ5
L raolum·Z35
L'ra~.s 'Top')})
Lranlum-ZJ5
L' ranlum-13 5
ZPR·1I1 48 (\eC tc'\t)

None
None
None
None
7.6 em uranium
1.8 em uranium
8.9 em uranium
Tb~k uranium
5.1 em iron
4.6 em thorium
30 em uranium

5.965
8.710
6.285

14.57
20.32

7.725
6.391
6.045
7.39
7.80

47.42

1.0115
0.9912
1.0039
0.9855
0.9893
0.9907
0.9939
0.9907
0.9756
0.9905
1.016



Adequacy of Cross-Section Data

From the results in Table 5.6, it is apparent that the computed values of k are,
at worst, within a percent or two of unity for essentially all the critical assem-
blies. It may be concluded, therefore, that the cross-section library is as accurate as
can be expected for predicting criticality in fast (metal) reactor systems. In view
of the assemblies considered, however, the cross sections of only a few nuclides,
in particular uranium-233, -235, and -238 and plutonium-239, and to a lesser extent
thorium, iron, carbon, and sodium, are actually tested by the data in Table 5.6.

A closer examination of the results in the table suggests some possibilities for
improvement in the cross-section library. For example, it is seen that, for all the
assemblies containing uranium-235, k is less than unity; this would imply that
the values of IJ or af used in the computations are too small. Furthermore, the
very low value of k for the system with the iron reflector indicates that the cross
section of iron would merit reexamination. Information concerning the re-
liability of a cross-section library can also be obtained from calculations and
observations of the effect on k (or on the reactivity) of introducing various
materials into a critical assembly. This approach will be described in §6.3f.

Another way of determining the accuracy of cross-section data is to compare
the computed group fluxes with actual measurements. Without going into
details. some general features of such measurements may be mentioned. A
common experimental technique is to make use of acti\ation detectors. Thresh-
old detection. such as by the :31P{n. p)IISi reacli~)n \\ ith a threshold at about
2.7 MeV. and by the 21BU(n. fl reaction with a threshold around 1.4 MeV. are
useful for characterizing the high-energy portion of the neutron spectrum.
For neutrons oflawer energy. (no y) detectors. such a~ gold in the 197 A U(I1. y) 198 A u
reaction. are employed. Relative (fission) activation of the fissile nuclides can be
used to characterize the neutron spectrum. becausc thc f1s~ion cross sections
vary somewhat differently \\ ith neutron enerl!v .., ., ~.

In activation measurements. in general. the Cllmml)[1 practice is to determine
the ratios of the activities of se\ eral detect~)rs: ••uch ratil)S ha\ c heen called
spectral indices.u The ad\antage of this technique I" tlut it minimizcs the effects
of uncertainties in the irradiation history of the dctt~·h)r.

The neutron spectrum can sometimes he mC •.l'.urcJ directly. FM example,
tl me-of-flight experiments ha\e been u~d for suhcntical sy ...•tems.~: For either
subcritical or critical assemblies. nuclear emuisillns llr proton-recoil propor-
tional counters can be employed.43 Comparison of the results of measurements
"ith the computed flux provides a good test fl)r inelastic scattcrtng cross
~tions: these are the most important quantities for neutron energy loss with
heavy nuclei.

It is evident that procedures are .1\ ailablc: for characterizing the neutron
spectra in fast reactors. By compariwn with the results llf multigroup calcula-
tions. confidence may be gained both in the rehability of the method of compu-
tation and in the library of cros.s sections. If dls.crepancics are obsened between



calculations and observations, the source of such discrepancies can often be
determined and methods can be suggested for eliminating them.

1. Consider the discrete ordinates equation (5.3) for a source-free homogeneous
slab with N = 2 and with fLl = - fL2' Derive equations satisfied by the sum and
difference of the two angular flux components, l1>(x, fLl) and l1>(x, fL2)' and show
that, with an appropriate choice of fLl, the flux will have the exact asymptotic
diffusion length.44 The scattering should be assumed to be isotropic.

f 2. By using off-center difference approximations for the derivatives in equation
(5.3), such as

~l1>I ::: l1>(Xk + 1> fLj) - l1>(Xk, fLj),

ox X=Xk D.x

show that difference equations can be obtained from which <1> will always be
positive. no matter what the spacing. (Such difference equations are, however,
generally less accurate than the central difference equations which may lead to
negative values of the angular flux.45)

3. In the Liebmann iterative procedure (§3.4d). it was found efficient to use all the
latest flux values as they become available. Suggest a way in which this might be
done in sol\(ing the discrete ordinates equation (5.3). Indicate some possible
advantages and disadvantages as compared with the method in *5.2f.46

,,' 4. Show that the discrete ordinates equations for spherical geometry with Gauss
quadrature. and the angular derivative approximated by equation (5.16), are
equivalent to the spherical harmonics equations (3.35).

5. Suppose the angular dependence of the neutron flux is represented by straight line
segments. as in Fig. 5.2. By integrating over an angular interval. derive equations
satisfied by the neutron flux at the junction points in plane (or spherical) geometry.
(These are the original 5." equations.·l7) Describe a method for solving the equa-
tions along the lines indicated in the text.

6. Show that in the limit, .•.\hen rif ~a is very large. the d~frerence equations (5.25)
and (5.27) reduce to those for plane geometry; ~ is the distance between adjacent
radial mesh points.

7. For those .•.\ho have computed the group constants in Exercise I of Chapter 4:
evaluate the multigroup constants according to the consistent P and extended
transport approximations for L = I.

8. Dc\e1op discrete ordinates difference equations for cylindrical geometry by
selecting a set of discrete directions and a quadrature formula and working
through the steps outlined in §5.3e. In case of difficulty, Ref. 48 may be consulted.
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6. THE ADJOINT
EQUATION,
PERTURBATION THEORY,
AND VARIATIONAL
.METHODS

In this chapter. consideration will be given to the equation which is adjoint to
the neutron transport equation. The solutil)ns to an adjoint equation will be
seen to be. in a sense. orthogonal tl) the solutions of the transport equation.
Moreo\er. the former have a clear physical significance as the "importance" of
neutrons within a particular system. For these and other reasons, the solutions
to the adjoint to the transport equation are widely used in perturbation theory
and variational calculations relating to the behavior of nuclear reactors.

Among the more important applications which will be described in this
chapter are the following: determination of the changes in the multiplication
rate constant. (I. and the effecti\e multiplication factor. k, resulting from small
changes in cross sections; the calculation of critical dimensions; the evaluation
of group constants for multigroup calculations: and the use of solutions of one-
dimensional problems to derive solutions for more complex geometries.



The first step in the development is to define certain quantities which will be
used here. Let I/;(g) and ~(O both be functions of the same variables, represented
by the general symbol g; the inner product of these two functions is then
expressed and defined by

where the integration is carried over the whole accessible range of the variables.
If I/; and ~ are any" acceptable" or "well-behaved" functions, in the sense that
they satisfy certain boundary and smoothness (continuity) conditions, then a
Hermitian or self-adjoint operator M is one for which the inner products
(I/;, M~) and (~, MI/;) are equal, i.e.,

(1/;, M~) = (~,MI/;).

The eigenfunctions of Hermitian operators are orthogonal and the eigenvalues
are always real.

In quantum mechanics, operators representing physical quantities are Her-
mitian and they operate on wave functions. Both the operators and the wave
functions in quantum mechanics are complex, and so complex conjugates are
used in defining the inner products.

In the treatment of neutron transport theory, the operators and the functions
on \\ hich they operate, e.g., the neutron angular flux, are real and complex
Cl)njugatc~ are not required. However, the operator associated with the transport
equation is not self-adjoint.

If an operator L is not self-adjoint, it is possible in the following way to define
an operator U that is adjoint to L. The operator, Lt, will operate on functions lj/,
often called adjoillt functions, which may satisfy boundary conditions different
f[()m those satisfied hy the functions ~ on which L operates. The adjoint
operator. L+. is then defined by the requirement that

fl)r any" acceptable" functions ~ and I/;t. The eigenfunctions of the adjoint
operatl)r, L". are then orthogonal to those of the operator L. Thus, if ~ is an
eigenfunctIOn of L. such that

~ (A - .,,)(1/;\ ~) = O.

Hence. if ,\ #= '1. then (,,/. 4» = O. i.e .. eigenfunctions of Land Lt corresponding
to different eigenvalues (,\ and ".,,) are orthogonal. If. on the other hand,



(if;t, cP) i= 0, then ,\ = TJ. These considerations will now be applied to the trans-
port equation.

6.1b The Transport Operator
A neutron transport operator L may be defined by writing the time-independent
,form of the transport equation (1.14) as

L<l>(r, n, E) + Q(r, n, E) = 0,

L<l>(r, n, E) = - n· V<l>(r, n, E) - a<l>

+ II af(r; n', E' ~ n, E)<l>(r, n', E') dn' dE', (6.5)

The operator L, as will be shown below, is not self-adjoint. In other words, if
if;(r, n, E) and eP(r, n, E) are functions of r, n, E satisfying the required
continuity and boundary conditions, then

(if;, LeP) i= (cP, 14).

where in determining the inner products the integration in equation (6.1) is over
all directions Q.. all neutron energies. and the finite volume on the surface of
which the boundary conditions are imposed.

To demonstrate that the inner products arc nl)t equal, consider, first, the
gradient (or streaming) term; in (if;. up) this term is

IJI -if;[Q.. V4>l "I'dn dE.

r If - d>[n v.p1 dJ' tin £IE.

In general. these two quantities arc dIfferent. SImilarly, the integral term In
(.p. LP) \\ iII be

. .I ... I .p(r. n. E)af(r: n'. E' - •. n, E)J»(r. n'. E') dl' dn dE dn' dE'
. .

and in (d>. 14). with the terms in .p and t/> interchanged. the value will clearly be
different. Hence. it follows that (rb.14) and (t/>. W) are not equal and the
transport operator is not self-adj(1inl.

6.1c The Adjoint to the Transport Operator
As indicated earlier, however, it is pos~ible to define an operator Lt. adjoint to
L, so that any functiQn !/It fulfilling continuity and boundary conditions, which
may be different from those on •• Vw'illsatisfy the relationship

<",t. L;) _ <•. L·~t).



Since, in this chapter, L will operate on the neutron angular flux, the adjoint
operator, Lt, will be defined by the requirement that

(<Dt,L<D)= (<D,Lt<Dt), (6.6)

where <Dtis sometimes referred to as the adjoint (angular) flux or, more com-
manly, as the adjoint function (or, in brief, as the adjoint); <Dand <Dtare any two
functions satisfying the appropriate boundary and continuity conditions for the
anQ;ular flux and adjoint, respectively. By considering the left side of equation
(6.6), it is possible to derive the necessary form for Lt and the boundary condi-
tions on <Dt.For simplicity, however, the procedure adopted here will be to
write down the expression for the adjoint operator and show that it indeed
obeys equation (6.6).

The function <Dmay be taken to satisfy the free-surface boundary conditions
in §1.1d; thus, <1>(r,Q, E) = 0 for all r on the convex boundary andall incoming
neutron directions, i.e., for fi· Q < O. Then the adjoint function will satisfy the
boundary conditions that <1>t(r,Q, E) = 0 for all r on the boundary and for all
outgoing directions, i.e., fi· Q > O. Moreover, it is assumed that both <Dand<Dt

are continuous functions of space, as described in §1.1d, so that no difficulties
arise when their gradients are computed: Then, in accordance with the definition
of the adjoint transport operator, Lt, in equation (6.6),

Lt(t>t(r. .n. E) = Q. V<1>t(r.Q, E) - a<1>t

+ JJ af(r; Q, E -+ Q', E')<1>t(r, Q', E') dQ' dE'. (6.7)*

The following differences should be noted between V as given by equation (6.7)
and L as defined by equation (6.5): (a) the gradient terms have opposite signs and
(M the hc:fl)re and after parts of the scattering function af have been inter-
ch~lOget1.i.e .. Q', E' --- Q, E in L becomes Q. E ~ Q', E' in Lt.

It \\ ill nln\ he shClwn that Lt is indeed the adjoint operator in the respect that
""",~u~t1on (6.6) is satisfied. i.e ..

------

fLlr any functions (I> and <.1>+ satisfying the boundary and continuity conditions.
In \tew of the e\pressions for L<1>and Lt<1>tin equations (6.5) and (6.7), it is
e\ldent that each side of equation (6.6) consists of three analogous terms, one
10\ 01\ in£. the gradient, the second containing a, and the third af The terms with
a all)ne are clearly identical, and so also are those with af as may be seen by
IOtcrchangmg the integration variables Q', E' and Q, E on one side. It remains,

• The a In the Integrand of equation (6.7) is cr(r, £), whereas in the integrand in equation
Hd) It ••• afro E'). as IS apparent from the respective arguments of f The reader should
become accu\tomed to considenng the combination af as a whole.



therefore, to show that the gradient terms are equal. The difference, ~, between
the two gradient terms in equation (6.6) is

and it is required to prove that ~ = O. The procedure is similar to that given in
§2.7a in the derivation of the optical reciprocity theorem.

Since V does not operate' on directions, it is permissible to write , t:
f .IT1, j.,

Q·V<1> = V·Q<1> and Q·V<1>t = V·Q<1>t. ~ ;\1

The two terms in equation (6.8) may now be combined to give

~ = f f f V .Q<1>t<1>dV dQ dE.

The volume integral can be converted to a surface integral by use of the diver-
gence theorem. with the result

~ = r r r fi· Q<1>t(r, Q, E)<1>(r, Q, E) dA dQ dE,
••• As .

where the surface integration is over the bounding surface .. 48, on \vhich the
boundary conditions are imposed. On this surface. however. 'fl+~) is zero. since
according to the boundary conditions given above (1)+ is zero for fi· Q > 0 and
<I) is zero for n' Q < O. Consequently, ~ = 0, and hence equation (6.6) is
satisfied.

6.1d The Adjoint Function and Neutron Importance

It will he recalled from §1.5d that the time-independent transport equation has a
ph~ ...ically mt:aningful solution for a subcritical system containing a steady
(time-independent) source. Similarly. for a subcritical system. the time-indepen-
dent adJl'lnt equation "ill have a solution (the adjoint function) for a steady
source. The significance of this solution will be ex.amined here: the time-
dependent problem will be treated in later sections.

The physical significance of the energy-dependent adjoint function can be
understol.x1 by considering a steady-state subcritical system containing an
arbitrary. steady source. Q(r. n. E). Suppose there is present a neutron detec-
tor, such a~ one based on the lOB(n.a) or the 235U(n.() reaction. with a response
proportIOnal to the macroscopic cross section. C7d(r. E). of the detector nuclide .
.e.g .. C7d is the probability of a count in the detector per unit distance of neutron
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travel. The neutron angular flux in the system
transport equation (6.4), i.e., (~Q

Q. V <1> + a<1>= ff al(r; Q', E' -+ Q, E)<1>(r,Q', E') dQ' dE'

+ Q(r, n, E), (6.9)

with the usual free-surface boundary condition of no incoming neutrons. In
addition, consider the inhomogeneous adjoint equation with the source ad(r, E),
that is,

or
_ Q. V<1>t + a<1>t

= J af(r; n, E -+ Q', E')<1>t(r, Q', E') dQ' dE' + air, E) (6.10)

with the boundary condition of no outgoing adjoint flux <1>t.
Equation (6.9) is now multiplied by <1>t and equation (6.10) by <1>; the resulting

expressions are subtracted and the difference is integrated over all variables. By
using the definition of the adjoint operator in equation (6.6), it is then found that

J Q(r. Q, E)(1'I(r. Q, E) dV dQ dE = J aAr, E)<1>(r,n' E) dV dn dE.

The right-hand side of this expression is simply proportional to the response of
the detector tl) the source Q.

The source is. however, quite arbitrary and could be a unit source with par-
ticular \alues of roo Qo, Eo, i.e., a product of delta functions, in which case it is
seen that

Hen~c. {II"(ro• no. Eo) is proportional to the detector response to such a unit
source. In other \Hlrds. the adjoint function, <1>t, is a measure of the "impor-
tance" of a neutron in contributing to the response of the detector. This physical
!.Ignlficance of the adjoint is in harmony with the condition of zero outgoing
adjOint flu\ at the free-surface boundary; clearly, a neutron at the free-surface
boundary of a ~)'stem and about to leave it has no ••importance" since it cannot
return.

It j\ ~n from equation (6.10) that <1>t does not have any units. If ad is the
pn)babillt) of a count per unit distance of neutron travel, then from equation
(6. J I l. j Q~t dV dn dE is the expected counting rate due to the source Q, and



<I>t(ro, Qo, Eo) is the expected counts per neutron with position ro, direction no,
and energy Eo. *

One use of the adjoint function is apparent from equation (6.11). If it is
desired to determine the response of a given detector to neutrons of many
energies, it is not necessary to perform calculations of the neutron flux for each
neutron source (or energy). A single calculation of the adjoint, together with the
application of equation (6.11), will suffice to compute the detector response for
any source.

The results derived above depend on the postulated boundary conditions of n{)
incoming neutrons and no outgoing adjoint. By permitting incoming neutrons,
equation (6.11) will contain an additional term for such neutrons and the result
could be used to determine the response of a detector to the incoming neutrons.

Let the boundary conditions on the incoming flux be

and r on the boundary. These conditions must. of course. be known in order to
obtain a solution to the problem. Then. proceeding in the same manner as used
above to verify equation (6.6) the result is

II I Iii·QI [<1>(r. - Q. E )<1)~ut(r. - Q. E) - <1>ln(r. Q. E )<t>t(r. Q. E)] dA dQ dE
n·Q< °

= III [Q(r. Q. E )<t)t(r. Q. E) - 0.l(r. E )<1>(r.Q. E)] dV dQ dE. (6.12)

This equation is the energy-dependent generalization of the one-speed reci-
procity relation of equation (2.97). From this more general form, special cases
can be obtained as for the one-speed relation.

6.1e Adjoint of Green's Functions

From equation (6.11) a relationship v.hich will be used later can be derived
between a Green's function and its adjoint. Suppose the source Q(r, n, E) and

• It would be possible to normalize the "source ,. in equation (6.10) differently and thereby
give ~, some units. If, for example. a, In thi, equ.-llon were replaced by qa". where q is the
number of coulombs of charge collected In a count, «%»' Yoouldbe the upected number of
coulombs collected per neutron, and equation (6.11) ••auld relate electrical curren~s in'
amperes. In general. the units of «%»' are dc1ennaned by the units of the source term or an
••.initial" condition (§6.1 k) and may be .elected in a \,&ricty of ways (or different proble~.

i

j
; ,~

II
I .J'

f
! '.,
. 1
:
~ ,



the analogous source, here denoted by Qt instead of ad' for the adjoint problem
can be represented by products of delta functions; thus,

Q(r, n, E) = S(r - ro) S(n - no) SeE - Eo)

<1>t(r,n, E) = Gt(rh n1, E1 ~ r, n, E).

Then, if Qt is substituted for ad in equation (6.11), it follows that

et(r1, n1> E1 ~ ro, no, Eo) = G(ro, no, Eo ~ r1, n1> E1),

which relates the Green's function and its adjoint.

In one-speed theory. the operator in the time-independent transport equatio~
equivalent to equation (6.5), is defined by [cf. equation (2.3)]

L<1)(r. Q) = - Q. V <1>(r,Q) - 0'<1>+ O'C f f(r; Q' ~ n )<1>(r,Q') dQ', (6.14'

L'(t>'(r. Q) = Q. V<1>'(r. Q) - O'<1>t+ O'C f fer; Q ~ Q')<1>t(r, Q') dQ'. (6.15)

If it is assumed that f(r: Q' ~ Q) = f(r: Q ~ Q'), which is the case iff is a
function L)nly of the scattering angle. Q. Q', as has been assumed in previous
chapters. then the adjoint operator U differs from L only in the sign of the first
(gradient or streaming) term on the right of the equations given above. Further-
more. L will usually operate on functions, <1>,which satisfy the free-surface
boundary cl)ndltlon of zero incoming flux, whereas U will operate on functions.
(1". "hlch satisfy the free-surface boundary condition of zero outgoing adjoint
flu\. It "ould seem. therefore, that, for a one-speed problem, <1>and <1>tmight
differ only in the sign of Q.

The situation may be made more precise by considering the inhomogeneous
adjoint transport equation

Lt<1>t= - Qt(r, Q),

"here ¢>t satisfies the free-surface adjoint boundary conditions. If a function .p
is defined such that



then if; evidently satisfies the relation

Qt(r, Q) = -Q. VljJ(r,-Q) + mP(r,-Q) - uC f fer; Q -r Q')if;(r, -Q') dQ'.

(6.17)

Upon changing the variable from Q to - si, equation (6.17) becomes

Qt(r, -Q) = Q. VljJ(r,Q) + mP(r,Q) - uC f fer; -Q -r Q')if;(r, -Q') dQ'.

(6.18)

In the last term, Q' is now changed to Q" = - Q' as the variable of integration,
and then the integral in equation (6.18) becomes

I = f fer; - Q -r -Q")ljJ(r, Q") dQ".

fer; -Q -r -Q") = fer; Q" -r Q)

which, again, is true for a function of Q. Q' only, but is more generally a con-
dition of time-reversal invariance 1; consequently,

I = r fer; Q" -r Q)ljJ(r,Q") dQ".
~

This is the same form as the integral in equation (6.14), with allowance for the
different variables. Consequently, equation (6.18) may be written as

and t/J satisfies the flux free-surface boundary condition that it is zero if fi· Q < 0
on the boundary. It follows that if; is the flux due to a source Qt(r, -Q), a
result which \I.'ill be used in §6.1g.

In a critical system, with no extraneous source, Q = 0, so that

L<1>(r, Q) = O.

Moreover, the adjoint problem has a solution for Qt = 0 (§6.1j), so that, from
eq uation (6. 19),

W(r, Q) = O.

Thus. <1>(r, Q) and .p(r, Q) satisfy the same equation and, in addition, they
satisfy the same free-surface boundary conditions. Hence, if the functions are
appr~priately normalized so that <1>(r, Q) = .p(r, Q), then, by the definition of if;

in equation (6.16),
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It is seen, therefore, that for the one-speed transport problem, the angular
flux and its adjoint are very similar, differing for a critical system only in the
sign of the neutron direction vectors for a time-independent situation, i.e., the
flux at r in the direction Q. is equal to the adjoint at r in direction - Q.. If time
were included as a variable, there would also be a difference in the time (§6.lk).
The reason for this similarity of the flux and adjoint is that the one-speed
transport operator is "almost" self-adjoint; for a true self-adjoint operator
Lt = L, but in the present case this is not completely true because of the
difference in sign of the streaming term.

6.19 One-Speed Reciprocity Relation

Some of the equations given above may be used to derive a one-speed reCi-
procity relation. Suppose that Qt is a delta function source, namely

Qt(r, Q.) = D(r - r1) D(Q. - Q.1),

and hence <I>tis the adjoint Green's function (§6.1e)

<I>t(r, Q.) = (Jt(r1, Q.1 ---+ r, Q).

But according to equation (6.19), t/J is the Green's.function
t/J(r, Q.) = G(r1, - Q.1 ---+ r, Q.),

and since <I>t(r. Q.) = t/J(r. - Q.) by definition, it follows that

Gt(rl, Q.1 -- r. Q.) = G(r1, - Q.1 ---+ r,- Q.).

When this result is introduced into the general equation (6.13), with ro replaced
by r2• and so on. i.e.,

Gt(rl• Q.1' £1 -- r2, Q.2, £2) = G(r2, Q.2, £2 ---+ r1. Q.1, £1),

it is seen that
G(rl• Q.1 --- r2. Q.2) = G(r2, -Q.2 -- r1' -Q.1), (6.21)

which is the required one-speed reciprocity relationship. This is the same as the
l)ptlcal reciprocity relation given in equation (2.99). except that the sign of Q.2
has been rcversed.

6.1h The Adjoint Integral Transport Equation

It has becn shown that in the one-speed critical problem, the neutron angular
flux differs from its adjoint only in the sign of the direction vector. It is evident,
therefore. that the total ftu.·<,cPoobtained by inte.grating <I>over all directions Q.,
I.C .•

cP(r) = J <1>(r.Q.) dQ.

must be equal to its adjoint: thus,

eP(r) = ePt(r).



This indicates that the transport operator for the one-speed integral equation
for the total flux must be self-adjoint. The reason is that in the one-speed prob-
lem the kernel of the integral is symmetric in rand r'; a theory of such kernels
and their eigenvalues and eigenfunctions has been developed.2

It was seen in §§1.2c, 1.2d that only for isotropic scattering is it possible to
write an integral equation for the total flux, namely equation (1.29). In the one-
speed problem, the kernel of this equation is symmetric. With anisotropic
scattering there is no integral equation for the total flux or density [cf. §1.2d and
equation (1.31)]; nevertheless, relations such as those in equations (6.20) and
(6.21) are valid in one-speed problems with anisotropic scattering.

For the general energy-dependent situation, the integral kernel is asymmetric
even for isotropic scattering, and the operator, as already seen, is not self-
adjoint. There is ~hen no relation between the flux and its adjoint, except as may
be given by such expressions as equation (6.12). It will be shown in §7.2c, how-
ever, that for thermal neutrons the flux and its adjoint are related in a simple
manner because the transport operator for thermal neutrons can be made
••almost" self-adjoint in an elementary way.

6.1i Direct Derivation of an Equation for the Neutron Importance

By using the physical interpretation of the adjoint function as a neutron im-
portance, it is possible to derive directly from first principles an equation satis-
fied by the neutron importance. equivalent to the adjoint transport equation.
The opportunity \\'ill be taken to make the treatment quite general by including
time dependence.3

The first step in the derivation is to develop an operational definition of
•. importance." Consider a system containing a neutron detector which is
characterized by the macroscopic cross section al1(r, E. 1), such that for a neutron
at r there is a probability l'ad(r. E. 1) per unit time of the detector being acti-
vated. i.e .. of registering a count. As before. l' is the speed of the neutron. By
including the time dependence in ad' allowance can be made for the possibility
that the detector is not turned on all the time: thus, ad would be zero if the
detector were not operating. Suppose a neutron at position r and direction n
has energy £ at time t ~ then its importance, <1>'(r, n, E, t), may be defined as
the ex.pected detector activity, e.g .• expected number of counts, that will be
produced at all subsequent times by the neutron itself or by the secondary
neutrons generated. as a result of scattering, fission, etc., by the neutron in
question.

An equation satisfied by the neutron importance will now be obtained by a
method similar to that used in Chapter I to derive the transport equation.
Consider a neutron at position r having direction n and energy E at time t. It
will be assumed, for the moment.. that the neutron is not at the detector position,
5 that it cannot activate the detector during a short time interval t1t. Thus, in



time ~t, the neutron will either move to the position r + nv~t or it wil~'suffer
a collision. The probability that it does not make a collision is 1 - av!).t and the
probability that it will make a collision is av~t, where a represents a(r, E). The
number of detector counts to be expected from the neutron at time t is equal to
the number of counts expected from the neutron plus its progeny at time
t + ~t. In other words, the importance of the neutron at time t can be repre-
sented by

_ ) (prObability)( Importance) (prObability)

(

Importance ..
f

- of no of neutron of colhslOn
o neutron - 11' . . +... co ISlOn at time In time

at time t .." " "In time ut t + ut ut

Importance
of neutrons

expected
to emerge

from
collisions

IV

that is,

<1>t(r, n, E, t) = [(1 - al."~t )][<1>t(r + nVLlt, Q, E, t + ~t)]

I II

+ [aL.~t][JI al(r; Q, E-+Q', E')<1>t(r, Q', E'~ t)dQ' dE']'

(6.22)

where the quantities r. II. III. IV in the square brackets represent those indicated
correspondingly above. Equation (6.22) is a mathematical statement of the
conservation of neutron importance. If the neutron is in the detector at the
time 1. there will be an additional probability l."ad~l that the detector will be
activated during the interval .J.l. and this quantity must be included in the
neutron importance at time t. Hence. for completeness. the quantity l"ad~l must
he added to the right side of equation (6.22).

Equation (6.22) l~ now divided by r~l. and the limit is taken as .J.l -+ O. By
using the relatllmship

11m (11"(r + nl".J.l. n. E. t + .J.t) - <1>t(r. Q. E. t )]
~I ~O l".J.t

analogous to the one derived in §1.1c. and defining

Q'(r. E. t) == ad(r. E. l),

'<1>t
= Q·V<1>t +~,

L'et

it is thus found that
I ($'-- - - n V (1)' + a$t
t' et

- If af(r~ n. E - $1', £')4>'(r. Q', E', t) dQ' dE' + Qt(r. £.1). (6.23)



This is the fundamental (adjoint) equation to be satisfied by any time-dependent
importance function. In the time-independent case, the first term on the left side
of equation (6.23), and the time variable, f, may be removed. The ~tesl,llt is then
seen to be identical with equation (6.10), with Qt(r, E) in place of air, E).

The boundary condition in equation (6.23) is obtained by noting that a
neutron which is just about to leave a free surface must have zero importance.
since by definition of a free surface it cannot return. Consequently, the ap-
propriate free-surface boundary condition is

<t>t(r, Q, E, T) = 0 for n·Q > 0

and all r on the boundary.
It is of interest to compare equation (6.23) with the time-dependent neutron

transport equation. As seen in Chapter I. the latter may be regarded as defining
an initial value problem: given (l)(r. Q. E.O). the transport equation can be
used, in principle, to determine (1) at all subsequent times. The situation is quite
different for equation (6.23). which. by contrast. may he regarded as defining a
final value problem. That is to say. if (1)' i~ gi\en at some final time. f = fr• the
values of <1>+ may be found at earlier time-; h: Integrating equation (6.23) back-
ward in time. Mathematically. the reaSl)O fl1f the dilTerence is that the time
derivative in equation (6.23) is 0ppl)site in sign h) that In the transport equation
(1.14).

In physical terms. this means that the al.:t!\lty llf a detc..:tl)r (or adjl)int source)
at some particular time affects the impl'rtanl.:e fl)f al.:ti\ating the detector of
neutrons at all earlier times. hut it can ha\e no elTect on the importance l)f
neutrl)OS at later times. Fl)r the flux. hll\\e\cr. the situation is just the opposite:
the source at any gi\en time \\111h;l\C nl) clreet lln the flu\ at earlter times but it
afTech the flux at later times.

6.1j Spectrum of the Adjoint Operator and Criticality

"here V IS the t1me-llldependent adJ0tnt operator gl\en 10 equatll1n (6.7). As in
the case of the ncutrl)O tran~rl)rt equatll)o treated 10 §1.5a. solutions may be
sought for the homogeneous equation
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In particular, solutions for which

o<1>~
- -a1<1>1ot

are of interest. It is then found 4 that the spectrum of the adjoint operator vLt,
i.e .• the values of at for which equation (6.27) has a solution, will be similar to
that for the neutron transport equation considered in §1.5b. There will then be
a real value of ai. designated ab, which is larger, i.e., more positive. than the real
part of any other value of a;' and the associated eigenfunction <1>t will be as-
sumed to be everywhere nonnegative. As in Chapter I, the criticality of the
system can then be\ased on the sign of at; for ab > 0, the system is supercritical,
for at = 0 it is critical. and for ab < 0 it is subcritical.

It should be noted. however, in view of equation (6.26), that in the super-
critical system. when at is positive, the importance. <1>t, decreases with time. This
is in accord with the physical interpretation of the importaooe function. A
neutron at an early time in a supercritical system will be relatively more im-
portant than one at a later time because the early neutron will have additional
time to multiply and will thus lead to greater detector activity.

RelationshIps between ao and at and the corresponding flux and its adjoint,
rcspecti\ c1~. can be derived in the following manner. Consider the equation
satisfied by the angular flux eigenfunction, et>j, that is,

a·~ tl» = L<1>J"r .

and the adJ~)lnt ci~el1\alue a; and the corresponding eigenfunction (}); which
arc rebtt:d h~ equation (6.27). The quantities <1>j and <1>:are assumed to satisfy
the usual c\)ntlOulty and free-surface conditions. Equation (6.27) is now multi-
plu:d h~ (I·, and equation (6.28) by <1>:, and the results are inte.grated over the
c\)mpktt: ran~e l)f the \ ariables r, n, E. Upon subtraction, it is found that

B~ definltll)n (.'1' the adjDint operator, Lt, the two inner products on the right side
are equal: hem:e.

((I, - anU <1>;' $1) = O.

If i = j = O. ~o that the fundamental eigenvalues are being considered. then



both <D~ and <1)0 will be nonnegative, and the inner product in equation (6.29)
will be positive. It follows, therefore, that

On the other hand, if Uj i= ai, then according to equation (6.29)

or, in other words, <D; and <Dj are orthogonal, with a weight factor of I/v. Use
will be madeof this orthogonality relationship in due course.

6.1k Interpretations of the Time-Dependent Adjoint Function

In Chapter I. the various kinds of solutil)ns to he expected for the flux in sub-
critical. critical. and supercritical systems were discussed at some length.
Analogous conclusil)ns are applicable to the adjoint function.:; Thus, for any
system there will he a solution of the time-dependent final value adjoint problem.
If it is assumed that the detectl)r is shut oIT permanently at the final time 1 = If'

so that (1)+(r.n. E. 1,) = 0, then the phy •.ical interpretation of the solution as an
impl)rtance for detectl)r acti\atil)[l is the same as in ~6.li. If. on the other hand,
<11+is finite at , = 1,. the solutil1l1 can still he chosen so as to have physical sig-
nificance. It \\ill f\l)W he 5ho\\n, as an example, that if <11+(r,n, E. If} is chosen
to he unit~ fl)r all \ ~duc" or r. n, E in the ~~•.tem. then the solution to the source-
free adjl)int equation. i.e .. equati<)n (h.2)) \\lth Q+ = O. at earlier times may be
interpreted as the expected numher of neutwm.in the system at 1 = I, arising
from a neutron at r. n. E. ,.

To Pfl)\C that this is the case. c()n~ider the time-dependent transport equation
without an indL'pendent Sl)Un:e. i.c ..

Suppose a solution is heing sought to equation (6.30) for the initial condition,
at I = O. of one neutron present at '0' ~. Eo: thiS condition may be represented
by

The solutIOn for equation (6.31) i\ being ~(}ughl for the postulated final condi-
tion at t = 1" namely.
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THE AQJOINT FUNCTtON AND ITS APPUCATiONS

Equation (6.30) is now multiplied by <1>tand equation (6.31) by <1>; integration
is carried over the whole range of the variables r, Q, E and the results are
subtracted. It is then found that

G <1>t, 8c~)+ (~ <1>,a~) = :1 G <1>t, <1» = (<1>t, L<1» - (<1>, Lt<1>t) = 0, (6.34)

since the difference of the inner products on th,right is zero. by the definition
of Lt. Upon integration of the second expression over I from I = 0 to I = If' the
result is

Because of the initial condition on <1>, given by equation (6.32), the left side of
equation (6.35) is simply <J)t(fo, Qo, Eo, 0); furthermore, by the final condition
on <lIt, given by equation (6.33). the right side of equation (6.35) "is the integral
of tI); l" ( = IV) over all r. Q, E; hence,

¢t(fo, Qo. Eo. 0) = JJJ N(f, Q. E, If) dV dQ dE.

The quantity on the right is the expected number of neutrons at the time If;

hence the interpretation of tI)t given above has been established.
If <lIt \\ere chosen to be. unity at If in some subregion of f, Q. E, the solution

<II' at earlier times would correspond to the expected neutron population in the
suhrel:!ipn. By taking the subregion to be very small. a relation between the
time-dependent flux and adjoint Green's functions. analogous to equation
(6.D!. i.e ..

C'(r:. QJ' £1.11 -. fa. Qo. Eo. 10) = C(fo. Qo, Eo, 'a --;. f1, Ql, E1• It> (6.36)
t I> to

can he deri\cd.
C~\TlClu"ipns similar h) those reached above are applicable to the time-

independent "ituatil)os. i.e .. \"ith i' <!>t1i'! = O. such as exist for a subcritical
": "tem \\ Ith a CPTbtant source l)r an exactly critical system with no independent
s,lurce. In the fl1rmer case. the adjoint function is a neutron importance. as
defl\ed. In ~(l. Id. For the exactly critical system. a~ = 0, and the corresponding
fundamental elgemalue. (ll~)(r. Q. E), may be interpreted as the importance of a
neutrnn at r. Q. E for establishing the fundamental flux mode. This follows
frl1m equation (6.35) pnn ided , f is large and certain consequences of exact
cflilcallt: are assumed. as \\ ill now be demonstrated.

It IS knl1\\n. from Chapter I. that in an exactly critical source-free system the
t1U\ at !atl' ••mes \\ ill he independent of time and proportional to the funda-
mental t1U\ mpde ([)o(r. Q. E). where the amplitude, A, is a function of the
II1ltlal neutron parameters, fo, Qo. Eo. Thus. if 'f is large, it is possible to write



The mode <1>0may be normalized arbitrarily, and a convenient choice is to set

f f f ~<l>o(r, Q, E) dV dQ dE = 1.

Similarly, the solution to the adjoint problem at times much earlier than t,
will approach a constant, C, multiplied by the normalized fundamental adjoint

mode, that is,
<l>t(r, Q, E,O) = C<I>b(r, Q, E). (6.38)

By substituting equations (6.37) and (6.38) into equation (6.35), it is found that

<l>t(ro, Qo, Eo) = ~ A(ro, Qo, Eo). (6.39)

This means that the time-independent adjoint function <l>b(ro, Qo, Eo) for a
critical system is proportional to the amplitude of the fundamental (or persisting)
mode established by a neutron at ro, Qo, Eo·

6.1m Expansion of Time-Dependent Solutions

It is known that, for certain discrete values of the Ct.j, solutions are possible for

the equation

Ct.f '" _ L'" . h . - 0 1 .,- 'Vj - 'Vf WIt } - , , -, ...
t'

In general. as seen in Chapter I, there is no reason to believe that the set of
eigenfunctions {<t»} is complete in the sense that a solution to the initial value
problem could be expanded in these eigenfunctions. For some simple approxi-
mations to transport theory, however, e.g .. multigroup diffusion theory in one
dimension with continuous space variable (§4.4c).6 and for systems of difference
equations (~.4f). the eigenfunctions are complete and an expansion may be
utilized for time-dependent solutions. Since such expansions are employed in
kinetic studies, they will be outlined here. Although the general transport
operator notation will be used, it must be understood that the procedure is
\alid only for special cases such as tho~ just indicated.

Con~ider the homogeneous initial \aluc problem in which the solution is

sought of
!;;"<1>= L<t>
v 01 '

where <t>(r,Q. E. 0) is known. The fundamental assumption is now made that
at any time, 1. the solution may be expanded in terms of the flux eigenfunctions
corresponding to the al eigenvalues; thus •

••
<t>(r, Q, E, 1) = ') D/(1 ) <t>,(r, n.. E) ...-

J-O



I "'" da j "'" <1> "'" a.j <1>V ~ dt <1>j= ~ ajL j = ~ arlj j,
j j j

using the definition of <1>jin equation (6.40).
Equation (6.43) is now multiplied by <1>1and integrated over all variables. By

introducing the orthogonality relationship derived from equation (6.29), i.e.,

dai
-= a.·a·dt I I

ai(t) = ai(O)ea,t. (6.44)

The initial value, ai(O), is found by multiplying equation (6.42) at t = 0 by
(I ;r)<1>: and integrating; the result is

(0) = «(l / r)<1>r, <1>(1 = 0» .
a I « I /z')<1>r, <1>i)

The solution to equation (6.42) is consequently
x

~ « I Ir)<1>). <1>(1 = 0» at'

(Il(r . .n. E. t) = ---' « I /r)<1>). <1>j) e J <Dj(r, .n, E).
) = 0

In this expression. it is seen that <I>; is a measure of the importance of a neutron
in establishing the nux mode <1>J' It was shown earlier. without using an ex-
pansion such as equation (6.42). that this is true for the particular case of j = O.

The e.\pansion in equation (6.45) will be mQSYuseful in practice if only a few
terms ~unice to gi\ e a good representation of the solution. Further reference to
the subject \\ ill be made in Chap.er 10. Expansions of this type can be used to
sllh e the inhomogeneous time-dependent neutron transport equation

1(<1>
--, =L<1>+Q.
l' ('{

The procedure is the same as that described above e'xcept that the differential
equation for G1(t) contains (<1>1. Q); however, it can be readily integrated even
if Q is a function of time.

6.28 Introduction

In Chapte~ 3. 4. and 5. \'arious methods were described for obtaining approxi-
mate numerical solutions to the time-independent transport ~quation. In this



section, consideration will be given to some of the equations which are adjoint
to those arising in the approximate methods, particularly in PI and diffusion
theories.7 As in the preceding chapters, the one-speed problem will be examined
first and then the results will be extended to multi group situations.

6.2b One-Speed PI' Diffusion, and SN Theories

In one-speed PI theory, the angular flux is assumed to be given by equation
(3.44), i.e.,

I
cI>(r, Q) = 47T [4>(r) + 3Q· J(r)].

where the identities in Table 3.1 have been used to e\'aluate the integrals over !'Z.
In ~3.3e, when the neutron angular flux gi\en by equation (6.46) was inserted

into the one-speed. time-independent transport equation. L(I> = - Q. equation
(3.49) was obtained. From this the t\\ 0 PI equations (3.50) and (3.51) were
derived; they are, omitting the argument (r),

v .J + a01> = Q0

V4> -r 3alJ = 3QI'

(6.49)

(6.50)

The inner product of (I" and lA' c(luld he t)htained by multiplying equation
(3.49) by (lIt. as given by equatitln (6.·Pl. and If1tegrating over all Q and r. It is
then found that the result is the ~ame a" If the Inner product were formed by
multiplying equatitln (6.49) by 6' and equatil'n (6.50) by Jt .. adding and inte-
g.rating (Her volume. With the inner product f,lrrned in this \\ay. it can be seen
that. in the one-speed PI approximation. the adjt)int equations corresponding to
L¢lt = - Qt, are

(6.51 )

(6.52)

Moreover. if the flux sati~fie~ the boundary c()nditions n' J = a¢ (cf. §3.1 e,
where 0 = -! I. the adjoint must satlsf~ n, J' = - 0<1/.

To verify that equati'ons (6.51 I and (6.52) are adjoint to equations (6.49) and
(6.50), respectively, multiply equation (6.49) by ,p' and equation (6.50) by Jt.

•••
. '1".". . 5J!'JI..•.•'.......' .
..... J.;~.

1_.": '~I
I .~; 'r~

;.'~.[...•~
;,~

',j';~i
. )I.



and subtract equation (6.51) multiplied by 4> and equation (6.52) multiplied by
J .. The left ·sides become

1= f [~tV.J + Jt.VeP + 4>V,J'r + J,VePt] dV

= f V· [(ePtJ) + (ePJt)] dV

= f [(fi·J)4>t + (fi·Jt)eP]dA,

and upon using the boundary conditions, this gives

I = f (aePePt - aePteP) dA = O.

The one-speed diffusion equation (3.52), i.e.,

-V·DV4> + ooeP = Qo,

is self-adjoint. This means that the adjoint flux, 4>t, satisfies an equation of the
same form, namely,

- V· DVePt + ooePt = Qt>.
The boundary conditions are also the same for both flux and adjoint; for ex-
ample, if

fi· VePt + b4>t = O.
In this case, an inner product would be formed by multiplying equation (6.53)
by 4>t and integrating over volume.

In the one-speed discrete ordinates methods, the adjoint equations are
obtained by reversing all neutron directions. For example. in the equations (5.3)
for plane geometry. fii<1>/cx would be changed to - fil<1>t lex.

In the foregoing discussion the operators which are adjoint to certain differ-
ential operators were considered. When the differential equations are reduced to
difference equations. care must be taken to ensure that the" adjoint difference
equations" are really adjoint to the difference equations for the flux. For ex-
ample, in two-dimensional diffusion theory (§3.4b), the flux was represented by
a vector cP with as many components as mesh points and the difference equations
were written as

with A a matrix. The operator adjoint to A is the transposed matrix, denoted
here by At, formed by interchanging rows and columns, i.e., [At]il = [Al/t• * For

• There ii, unfortunately, an entirely different matrix which is usually called the matrix
adjoint to A.'



the special case of diffusion theory, it was seen that A was symmetric; hence,
At = A and the difference equations are self-adjoint.

For more complicated approximations to the angular flux, the analysis of the
difference equations is more difficult. It has been found, for example, that the
"adjoint difference equations" used in certain Ss codes are not quite adjoint to
the difference equations for the neutron flux in curved geometry.9

The time-independent multigroup PI equations for a source Q in a subcritical
system were given by equations (4.30) and (4.31) as

U· Jg + Go.grPg = )' Go.g, -grPg' + Qo.g-..J
0'

UrPg + 3GI,gJo = 3 > Gl,g' _gJg. + 3Ql.Q'-..J
9

where the summation over g' is from g' = I to g' = G. The corresponding
adjoint equations for a source Qt are

The latter ditTer fnHn the flu\ equaltum (6.54) and (6.55) In t\\O respects: first.
the signs l,f the deriv3ti\e terl1l~ are re\cr\cd. a~ In one-speed theory, and
second, g and g' are interchanged in the tramfer cro~~ ~ctions, in accord with
the general feature of the scattering kernel Thltcd In ~.Ic. If the boundary
condition fllr the flu\ i~ii·Jq = Of/tPilo Ih~n fpr the ad.ll'lntlhe houndary condition
is ii· J; = - ootP;. An inner prl)(juct 1\ formed. fllr example. hy multiplying
equatil)l1 (6.54) hy ch;, equation (6.55) b) J~ , and adding: the result is summed
over g and integrated over volume.

It should be pointed out that the adjOint equation, (6.56) and (6.57) could not
have been deri\ cd by integrating an energy-dcpcndcnt adJoint equation over an
energy intcnal corresponding tll the group g. In partIcular. the required cross
sections. ~ hich are flu\-~eighted a\eragC"\, ..-.ouJd not be obtained. This problem
is examined in ~6.4h, _~ here it \\ ill be ~n how muhigroup flu, and adjoint
equations can be derived from the encrg)'-dependent PI equation ~ the group
cross sections are then ~eighted by both flu, and adjoint.



In multigroup diffusion theory, the time-independent equation is

- V· DgV4>g + (Jo,g4>g = L (Jo,g'_g4>g' + Qo,g
g'

and the corresponding adjoint equation will then be

- V· DgV4>~+ (Jo,g4>~ = L (Jo.g ...•g'4>~, + Qt,g,
g'

which differs from equation (6.58) in the respect that g and g' have been inter-
changed in the group transfer cross sections. Thus, if these cross sections are
regarded as elements of a G x G matrix, then in the adjoint multigroup equa-
tions the matrix of transfer cross sections is transposed from that for the
flux equations. This is a general feature of multigroup equations and not only
those of diffusion theory; it arises from the general form of the adjoint transfer
operator.

6.3a Applications of Perturbation Theory

Suppose a multiplying system is near critical and a small change (or perturba-
tion) is made in the system; it is then required to determine how the system
responds to this perturbation, e.g., the change may be sought in 0:, the multi-
plication rate eigenvalue, or in k, the effective multiplication factor. If the per-
turbation is small enough, it is not necessary to perform a complete, new
calculation for the perturbed system or for each perturbation of interest. Instead,
by means of perturbation theory, the adjoint function can be used to obtain the
response to the small perturbation. Some of the more important applications of'
perturbation theory are indicated below.

In experiments with critical assemblies. it is a common practice to introduce
a small amount of a material of interest and to observe the accompanying change
in the criticality (or reactivity). The worth or effectiveness of the given material
determined in this manner is often interpreted in terms of effective absorption
or transport cross sections. From the measured effectiveness, deductions can be
made concerning the cross sections, or if the cross sections are known the
experimental results can provide information concerning the neutron flux and
importance. An example of the use of the reactivity effectiveness to evaluate
cross-section data is given in §6.3f.

Moreover. in the performance of criticality calculations, it is useful to know
how sensitive the computed eigenvalues are to uncertainties in the input cross
sections. This sensitivity can be determined by considering the cross section
uncertainties as perturbations. From stich studies, the cross sections can be



adjusted, within experimental uncertainty, so as to obtain better agreement with
a variety of clean critical experiments.

Small changes in reactor geometry, e.g., thermal expansion, in composition,
e.g., as a result of burnup, and in neutron spectrum, e.g., due to the Doppler
effect, occur during reactor operation. The effect of these changes on the
reactivity of the system can be found by means of perturbation theory.

Finally, in reactor calculations the actual geometry or cross sections may be
simplified in order to obtain a problem which can be solved by means of a
particular code. The effects of such simplifications on criticality can often be
estimated by perturbation theory.

6,3b Perturbation of the Multiplication Rate Constant, (1

As a first example of the application of perturbation theory, the change In (J.

resulting from a change in cross sections will be determined. In the present
treatment. delayed neutrons will be neglected, although they should be included
in deriving the effect of a small perturbation on the multiplication rate constant.
The procedures used, however. are much the same as those described here, as
will be seen when the problem with delayed neutrons is considered in §9.2b.

In a multiplying system with no extraneous source. the transport equation,
obtained by substituting a$ for Cl~ 'C"" can be written as

i. <1)+ Q. V<l>+ a<l> = J af(r: Q', E' -- Q. £ )<I>(r.n'. £') dQ' d £' (6.60)

and the corresponding adjoint function for the unperturbed system satisfies the
relationship

r;.t ll)t _ Q.V(t)t + a(t)t= J af(r: Q. £-. Q', £')(l)t(r. Q', £')dQ' dE', (6.61)

hoth with the usual free-"urface houndary cl)nditions. The fundamental modes
of thc~e equations are heing treated here: hence (l and at are the quantities for-
merly denoted hy (tc: and (L~. Cl)n"ider no\\ a perturhed system with a new
macrl>"copic cross sectil)n a·. so that

a· = a + ~a and a·f· = ar --r- ~(af).

Such a perturbation could arise fwm changes in densit~ or in the microscopic
cross sections, l>r from the ml)\cmcnt of an interface. For the perturbed cross
sectIon, the equation for the perturbed eIgenvalue. a·. is

•~ <1>. + Q. V(!I* + a*<1)*
l'

,

= J o*f*(r: n', E' -- n. E)<1>*(r. n', E') dn' dE', (6.62)

where <1>*is the perturbed flu\.



Equation (6.62) is multiplied by <1>tand equation (6.61) by <1>*; the latter is
subtracted from the former and the result is integrated over all r, n°, E to give

(a* - c/) If I ~<1>*<1>tdV dQ dE

- - .IJJ (.~a)<1>*<1>tdV dQ dE +J ... I ~[of(r; Q', E' -+ Q, E)]

x $*(r, Q', E')<1>t(r, Q, E) dV dQ' dE' dQ dE. (6.63)

It will be noted that this equation is exact and holds for any ~a and ~(af),
large or small.

For small perturbations, it is assumed that
$* = <l> + !.l$,

where (1) is the solution toequation (6.60). This expression for $* .may be sub-
stituted into equation (6.63) and all terms containing ~$ may be ignored since
they are always multiplied by another ~ term, and hence are of second order in
small quantities. Furthermore, a* - at may be replaced by ~a, since a = at for
the fundamental eigenvalues. The result is

.. , I .
~a .1.1 J ~ <lJtl1> dl' tlQ dE

- -III (~a)(l)t(t> dV dQ dE + J ... I ~[o:f(r; Q', E' -+ Q, E)]

x (l)(r, Q'. E')<!>t(r, Q, E) dV dQ' dE' dQ dE, (6.64)

where ~(L is the change in a due to the perturbations ~a in a and ~(a.r) in af
This equation for ~(L involves only the unperturbed flux and its adjoint. together
with the changes in the cross sections. These changes are weighted by both the
neutron flux and its adjoint (or importance) to determine the effect on the
multiplication rate constant.

An in~ight into the sensitivity of a to changes in a can be obtained by con-
sidering the one-speed case. According to equation (6.20),

<1>t(r,Q) = <1>(r,- n+
for a critical system, but it can be shown, by the method of §6.1 f, that this is also
true for the fundamental a (or k) mode in a subcritical or supercritical system.
Equation (6.64) then takes the form

~a II <1>(r. - n)<1>(r. n) dV dn

= -II (~a)<1>(r. -n)<1>(r, Q) dV dQ + III ~[af(r; n' ~ n)]

x <1>(r,Q')<1>(r, - n) dV dn' dn. (6.65)



Some physical aspects of this equation can be understood by considering a bare
sphere.

Suppose, in the first place, there is a change !lu = !lua in the absorption cross
section, but no change in the scattering (including fission) cross section, so that
!l(uf) = O. For such a perturbation, in one-speed theory, equation (6.65)
reduces to

!la = Constant [- f fLlua(r)<1>(r, - Q)<1>(r,Q) dV dQ].

As seen in §3.3b, at the center of the sphere <1>will be isotropic and usually a
maximum; hence a positive !lua at r = 0 will give a relatively large and negative
!la. That is to say, an increase in the absorption cross section at the center of a
spherical multiplying medium will cause a relatively large decrease in the multi-
plication rate constant, a. At a free surface, e.g., on the boundary of the sphere,
however, <1>(r,Q) = 0 if fi· Q < 0, and the product <1>(r,- Q)<1>(r,Q) is zero for
all values of Q. Thus, the value of a is unaffected by a small change in the
absorption cross section at the surface of the sphere. These conclusions are in
agreement with expectation on physical grounds.

Consider, next, a perturbation of the scattering cross section, with the ab-
sorption cross section remaining u!1changed. Suppose a small isotropic incre-
ment is added to the scattering, so that ~u = ~us(r) and 6.(uf) = .6.us(r)/41T. For
this case, the integration over Q' and Q in the last term of equation (6.65) may
be carried out: the result is

!la = Constant [ - J J !lus(r)<1>(r;- Q)<1>(r,Q) dV dQ + J .6.~:r)cP2(r) dV].

(6.67)

I
<1>(r.Q) = 41T cP(r),

since the flux is isotropic: hence, the two terms on the right side of equation
(6.67) are identical and ~a is zero. Thus, changes only in scattering at the center
of a sphere of multiplying material will not affect a. For a scattering perturba-
tion at the surface, however, the first term on the right side of equation (6.67) is
zero, since <1>(r.- n )<1>(r.n) is zero. as seen above, but the second term is
positive: hence, ~a wiJI be positive. and there will be an increase in a.

The respective effects on a of changing the absorption and scattering cross
sections are thus quite different. as indicated qualitatively in Fig. 6.1. The
curves show the general nature of the changes in a resulting from an increase in
absorption or scattering cross sections as a function of radial distance in a bare
sphere of radius rmu'

Before leaving this topic. it is ~sary to sound a note of caution. If a
strongly absorbing material is introduced into a multiplying system, the value

I
I •
)



FIG. 6.1 QUALITATIVE EFFECTS ON a
OF LOCAL INCREASE IN ABSORPTION
AND SCATTERING CROSS SECTIONS IN
A BARE SPHERE.

of ~a will be large and t~en perturbation theory may fail. The reason is that in
going from equation (6.63), which is exact, to equation (6.64), the assumption
is made that ~<1>is smaH incomparison with <1>in the region where the change in
the cross section occurs. Consequently, the essential requirement for equation
(6.64) to be applicable is that the local perturbation of the flux must be small.

\Vhen this ~(t) is not smalL as in the case of strong local absorption, it may
sometimes be possible to estimate ~<1>and <1>*and use the exact equation (6.63)
instead of equation (6.64). For example, a gold foil would cause a serious
perturbation of the flux in its vicinity only for neutrons with energies close to the
5-eV resonance. This perturbation might then be calculated by the methods
given in Chapter 8. Some authors apply the term perturbation theory when
referring to the use of equation (6.63) with a known value of the perturbed flux,
<1>*:the use of equation (6.64) is then called first-order perturbation theory.lo

6.3c Perturbation of the Effective Multiplication Factor

A treatment similar to that used in the preceding section for the eigenvalue a
can be applied to "derive the effect of a perturbation on the eigenvalue k, the
effective multiplication factor. The transport equation for this eigenvalue is
equation (1.49) and, in terms of the neutron angular flux instead of the angular
density. it is

n· V <1> + u<1>= f f 2: uJCfx(r; n', E' -+ n, E)<1>(r, n', E') dn' dE'
JC~'

+ ~f f ~ 1'<7,(r; ~' -+ E)<1>(r,n', E') dn' dE'.



The corresponding adjoint equation for the eigenvaluejkt is

-no V<1>t + a<1>t= f f 2 axfx(r; Q, E -+ n', E')<1>t(r, n', E') dn' dE'
x"i'f

+ :t f f ;7T vaf(r; E -+ £')<1>t(r, Q', E') dQ' dE'.

Of particular interest are the fundamental (largest) eigenvalues k and kt, for
which, according to considerations of §§1.5e, 6.lj, <1> and <1>t are nonnegative.
It can then be shown, by using the same procedure as in §6.lj, that k = kt

. This
is done by multiplying equation (6.68) by <1>t and equation (6.69) by <1>, sub-
tracting and integrating the result over all r. Q. and E. The gradient terms are
eliminated. as before, by assuming free-surface boundary conditions on <1> and
<1>t.

Suppose that equations (6.68) and (6.69) apply to an unperturbed reference
system. The most important of such systems. in practice, is an exactly critical
system, for which k = kt = I. In the general case. however, for a perturbed
system having cross sections a*. a.:.r:. and I'*a; and eigenvalue k*, the angular
flux <1)* satisfies equation (6.68) with all arpropriate quantities being perturbed,
and hence marked with an asterisk: thus.

Q. V<I)* + a*<l)* = JJ =. a~.r:(r: Q'. £' • Q. £)<I)*(r. Q'. E') dQ' dE'
x¥'f

I • 1
+ k* .l47T I'*ai(r; E' -. E )<I)*(r. Q'. E') dQ' dE'.

If equation (6.70) is now multiplied b) <II' (r. Q. E) and equation (6.69) by
<1}*(r.Q. £1. and the rcsulting exrres~lon ••are suhtracted and integrated over all
r. Q. and E. an cxact cquatil)n is obtained. anall)gous tC'cquation (6.63).

In general.
j.J.. 1

-- +-,A./.;- k

where ~k = k* - k is the perturbation in the effective multiplication factor.
For the special case of a critical reference sy~tem. k = 1; hence,

I jJ.
- :::I --,k- k-

where ~k is now th~ departure from cntlcahty.
In applying perturbation theof). It i~ a~~umcd that, to first order. 11>. may be

replaced by 11>. It is thus found that, a~ a result of the perturbations ~a and

i
I
I
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~(af) in cross sections, the change 6.k in the effective multiplication factor of a
critical system is given by

0-I ...I 4~ vat(r; E' -+ E)<t>t(r, Q, E)<t>(r, Q', E') dV dQ' dE' dQ dE
k* 7T

;::::-III ~a(r, E)<t>t(r, Q, E)<t>(r, Q, E) dV dQ dE

+ f ... f 6.[af(r ; Q', E' -+ Q, E)]<t>t(r, Q, E)

x <t>(r, Q', E') dV dQ' dE' dQ dE. (6.71)

The perturbations ~a and ~(af) are just as defined in §6.2b, and the warning
expressed above. that ~a must not be large, is equally applicable here. Since
k* :::: I, equation (6.71) provides. upon setting k* = I, a first-order expression
for ~k. The complete equation for ~k.k* is useful, however, as will be seen in
Chapter 9.

It will be observed that equation (6.71) for the change in k, resulting from
changes in cross sections, is analogous to equation (6.64) for the change in a. In
fact the right-hand sides of the two equations have the ,same form: the only
difference is that in equation (6.71) the flux and adjoint are the eigenfunctions
for the k and k* eigenvalues. whereas in equation (6.64) they are the eigenfunc-
tions for the (t and (£* eigenvalues. respectively. In one-speed theory, the effects
on II. of simrlt: crl)ss-section perturbations are similar to those given by equations
(6.66) and (6.67) fm changes in u. which are illustrated qualitatively in Fig. 6.1.

6.3d Perturbation of a Critical System

Further under~tanding of the adjoint function and of perturbation theory can
t1~ gained t1~ L·'lO~ldering an unrerturbed reference system at critical. i.e .. one
\\ Ith (£ = O. and cl)mraring it with a rerturbed. slightly subcriticaI. system which
I~ maintained In a steady state h~ a source. For the reference system, the
cquatll1m f,lf the flu\ and ib adj,)int may then be written as

- n V <1>' + 0<1)' = IJ af(r: Q, £ -- fi'E')<1>tdn' dE'.

For a subcntlcal perturbed system which is maintained in a steady state by a
source. thc}ransport equation is

i ./

n V<l>· + 0·(1)- ,. J J o·f·tr: n'. E' -+ n, E)<1>*dn' dE' + Q(r, n. E),

(6.74)



a* = a + ~a and a*f* = af + ~(af).

The quantities ~a and ~(af) represent differences between the perturbed (sub-
critical) system and the reference (critical) system. Equation (6.73) is multiplied
by <1>* and equation (6.74) by <1>t, and the results are subtracted and integrated
over the range of variables; it is then found that

JfJ Q<1>t dV dQ dE

= JJJ Lla<1>*<1>tdV dQ dE - J ... f Ll[af(r; Q', E' ~ Q, E)]

x <1>*(r, Q', E')<1>t(r, Q, E) dV dQ' dE' dQ dE. (6.75)

If the perturbed system is close to critical, it may be anticipated that

<1>* :: C<1>,

where <1>is the solution of the critical equation (6.72) that has been normalized
in some definite, but arbitrary, manner, and e is a constant for a given normali-
zation of the flux. Then equation (6.75) reduces to

JIf Q<1>t dV dQ dE

= e[fJJ ~a<1><1>tdV dQ dE - J J ~(af)<1><1>tdV ... dE]. (6.76)

It should be noted that, unlike the eigenfunctions corresponding to the a eigen-
values. the quantities <1>, <1>*. and <1>t in equations .(6.72). etc .. have measurable
steady-state values representing the existing experimental situation. Some
interesting conclusions can thus be drawn from equation (6.76). of which two
W III be mentioned here.

Cl1mider a subcritical system having some definite perturbation. i.e .. ~a and
,j,(a() are fixed. Then. according to equation (6.76), C. which is proportional to
the perturbed angular flux. <1>*. produced by the source Q. is proportional to the
integral of Q¢)'. In other words. <1>* is proportional 10 the integral of QlDt. Thus,
<1>' IS again seen to be the importance of neutrons in populating the persisting
mode (for a subcritical system).

Another situation of interest is that of the same source in a sequence of
subcritical multiplying systems of the same type. Suppose that th~ ith of these
systems has perturbations from critical given by al(~a) and aJ~(af)], where
a\ is proportional to the deviation from critical. whereas ~a and ~(af) are the
same for all the systems. Then. it fol1ows from equation (6.76) that lIe is pro-
portional to at. Furthermore. C is proportional to the detector response, and
hence to the multiplication of the system; consequently, the multiplication is



inversely proportional to the perturbation from the critical. This relation is the: ~
basis of a familiar experimental method for determining the conditions ot ~

. criticality; the reciproCa.1of themuttiplication, i.e., 11M, is plotted against soine'~:
parameter, usually the mass, for a number of subcritical assemblies and ex~~~'
trapolated to 11 ~1 = 0 in an almost linear manner.

6.3e Perturbations in Multigroup Diffusion Theory

In the preceding sections some general results were derived for changes in the
eigenvalues a or k as given by perturbation theory, based on the transport
equation. Analogous expressions can be obtained for various approximations.
to the transport equation. As an example, consideration will be given here to the
change in k based on the differential equations of multigroup diffusion theory.···

Equation (4.41) for the eigenvalue k in multigroup diffusion theory can be
written as

-v· DgV~g + uo.g~g = L (uso.g,-g~g, + VUtt-
g

~g-).

g'

This expression applies to the unperturbed system. The corresponding adjoirit~
equation for the eigenvalue kt• which is equal to k, as seen above, is

V D VJ.t J.t ~ ( J.t VUt,g_g' ..J,.t)
- . 9 'Pg + UO,g'Pg =.L UsO.g-g''Pg' + kt' 'Pg' •

g'

The equation for the flux in the perturbed system with eigenvalue k* I'S .

V D*V<i>* * J.* '\ (* J.* l'U!g'_g J.*)- . q ,lJ + UO.q'Pg = L..-- USO.g' -9'P9' + k* 'Pg',
g'

(6. 79). ~.
'--1.:

where the perturbcti quantities are again marked by an asterisk. The perturba-
tIOns. '" hich are assumed to be small, are then given by

.J.Dg = D: - Dg

.J.UO,g = Uci'9 - UO,g

j.uso.g· -g = u:o,g' -g - UsO.g'_g

J.k = k* - k.

Equation (6.78) is now multiplied/by ~: and equation (6.79) by ~g and the
results are subtracted. Upon summing over g and integrating over volume, it is
found that

2. j [-~:V·(D:V~:) + ~:V·(DIIV~:) + AUo.I1~:~:] dV
•

- ~ J- [~~a ' .LfJ.* + ~ (Vai.I1'_1I- vat'I1'-I1).Lt.J,*] dV.:.... L.- 10.' -,'1','1'.' L k* k '1'11'1'.' •
,,' 11'



2: f [-c/>~V ·(~DgVc/>:)] dV,
9

since, as in the one-speed problem (§6.2b), the remaining contributions cancel
upon integration by parts and use of the boundary conditions. The last two
terms on the right side of the equation may be simplified by using the relationship

VO*f--k*
VOf VOf + ~(vof)

T= k+~k

Upon substitution into equation (6.80) and solving for ~k, the result is

~J [~:V(..\D,V~,) - ..\aoA:~,.

...•..."" \, . dt.1 •••.. " ~(l·Of.Q'_Q) J..t.J. .J 11/
---' JO'O.Q -c P~,(;JQ '---, k 'PgCflg (r

o G". . ".I I'(J..
Q

~ QeP;eP
Q

, d I'--- --

~~J.
l·····;
--~

t
{
i

The astcrisks ha\c heen rcmmcd from 6* on thc assumption that the perturba-
tions are small and 1> ~ 6*, so that first-t'rder perturbJtion theory is applicable.
Of course. if the reference s\ stem i" CrltlCJ!. k = I.

In the special casc of one-specd difTusitm theory. the sums over g and g' may t:
he deleted.,Moreo\cr. cP' IS nm~ equJI tt' cp. and equation (6.81) reduces to

\\ here .loa = ~oo - .lo.o is the perturbation of the absorption cross section
(§3.ld). This equation may be simplified further by using the identity

f [rPV·(.lDVrP)]dV E J (V·(~.lDVrP) - .lD(VrP)2]dV

""'f 6·t/J.lDV4> d ..f - f j,D(V4»2 dV.



In many problems, e.g., if I:i..D = 0 at the surface or if c/> is assumed to be zero at
the surface, the first term on the right of equation (6.82) is zero. In these cases,

f [- l:i.D(Vc/»'l +'{Ll(~ur) - Llua}c/>2] dV.

f vUfc/>2 dV

The denominator of equation (6.83) is a constant. Hence, according to one-
speed diffusion theory, the effect on k of a small change in cross section, either
Llua or Ll(vuf), is proportional to the square of the flux at the position of the
cham!e. The effect of a change, !::i.D, in the diffusion coefficient is seen to be- - .

proportional to the square of the gradient of the flux. An expression analogous
to equation (6.83) is often derived directly from one-speed diffusion theory.ll

6.3f An Application of Perturbation Theory

It was mentioned in §5.4d that, in addition to the method giverrthere for assessing
the adequacy of nuclear data for making neutron transport calculations, there is
another procedure based on reactivity effects. The latter approach, which is
described here. involves measuring the changes in reactivity accompanying the
insertion of small samples of materials at various positions in a critical assembly
and comparing the results with those obtai-ned by using perturbation theory and
discrete ordinates multigroup calculations. The reactivity observations made in
this Cl)nneCtl(ln ha\e been mainly with the Godiva, JezebeL and Topsy fast
(m~tall assemhlies and. to a lesser extent, with a bare sphere of uranium-233
metal and ZPR III 4~ (~5.4d).

For the e\perimental determination of the reactivity effects. the assembly is
hfl)u!!ht ll) (ddayed l critical with a void at the position where the sample is to
he placed. The sample is then inserted and the resulling reactivity change. ;j.k. is
determined fwm the nwtion of a calibrated control rod required to maintain
cntlcallt~. The flld IS calihrated in terms of reactivity as a function of position.
\!. Ith the "ample ah"ent. in the usual manner from measurement of the asymp-
tlllle n:aclt'r rcn~)d.::":

The: chan~t: In reacti\ it~ caused by insertion of a sample of material in the
as"cmhl~ IS commonly reported in cents per gram-atom. A dollar (100 cents) is
the rcactl\ It~ chan!!c which \\ ill take a system from prompt to delayed critical.
I.t:.. ~J... I" then equal to S. the effective delayed-neutron fraction for the given
5.ystcm (~l).~hl: hence. the reactivity change in genera! is equal to ~k/~ in dollars
or 1CM"1:H S In cents. The reactivity effect in cents per gram-atom is then given
hy 100.-1 ~J.. dm. \\ here m is the mass of the sample in grams and A is the atomic
\\cl~ht llf the clement (llr nuclide) present.

In llrder ill ohtaln easily measurable reactivity changes by the method de-
~cflhcd ahn\e. It IS sometimes necessary to use samples which are large enough
to rrlxJucc 'Ignlficant local perturbations of the neutron flux. Under these



conditions, a correction should be made, by using second-order perturbation
theory 13 to reduce the reactivities to values applicable to very small samples
which would not perturb the flux.

For computing the reactivity effects of the small samples, the fluxes and
adjoints are determined according to the 24-group, 58 approximation using the
DTF IV code, as described in §5.4d. The value of ~k/k, which is essentially
equal to t::.k, is then obtained from the perturbation theory equation (6.71). The
results are then expressed in cents per gram-atom of the sample element (or
nuclide).

It was seen in §§6.3b, 6.3c that, in one-speed theory, the effect on k of a sample
at the center of a sphere was due mainly to neutron absorption (or fission) in the
sample and was essentially independent of the scattering: for a sample on the
surface, however, the changes resulted from scattering (and fission), but were
independent of the absorption cross section. These one-speed results are also
largely true for energy-dependent situations. except that the neutron energy
changes accompanying scattering (and fission) must be taken into account.
This means that central reactivity values are now' sensitive to elastic scattering,
particularly from the nuclei of low mass number. and to inelastic scattering.
Such scatterings transfer neutrons to lower energies where they have a different
importance. Nevertheless, for strongly absorbing (or fissile) nuclides, the central
reactivity values are dominated by absorption (or fission).

From equation (6.71), it is apparent that a change in k resulting from a
change in the neutron absorption cross sectIOn at energy E is proportional to the
product of the flux and adjoint at that energy. Hence. from a knowledge of <t><t>t
as a function of energy. it is possible to determine how errors in the absorption
cross sections would atfect the' computed reactl\ ity. It has been found in this
manner H that for the Godiva and Jezebel assemblies the energy range of about
0.1 to 5 MeV is important for determining reactivity effects, although higher
energies are emphasized mMe ~nJelcbel (plut\\nium-239) than Godiva (uranium-
235). F~)r ZPR-III 48. which contam" elements of low mass number, the
important energy range is from about 0.01 h) I MeV.

Some experimental values of central reactl\ It) effects. in cents per gram-atom,
together with the results cl)mputed from equation (6.71). are given in Table
6.1.15 The fissile species is indicated for each as\Cmbly. The generally good
agreement hetween calculated and e\penmental results. especially for the fissile
nuclides. uranium-233. uranium-235. and plutonlum-239. implies that, on the
whole. the nuclear data are satisfactory 10 the important energy ranges indicated
by the ¢>¢>t values.

Although the observed reactivity chan,n agfCC reawnably well with the values
calculated from the cross-section library, there arc some discrepancies. For

I~~! ._-.
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example, the calculated central reactivity change caused by uranium-238 is
substantially less than the experimental value in Jezebel, but is somewhat larger
in Topsy. The disagreement between measured and computed reactivity effects
is brought out in Fig. 6.2 and 6.3; they show the effects associated with uranium-
238 in the two assemblies as a function of the distance of the sample from the
center of the core. The calculated reactivity changes, especially near the center,
are seen to be too high in Topsy and too low in Jezebel.

The differences between calculated and observed reactivities may be due either
to errors in the neutron group fluxes used in the computations or to errors in the
cross-section data for uranium-238. The first possibility could be assessed by
examining all the central reactivity data, as given in Table 6.1, for a particular
assembly. If the group fluxes were incorrect. then there would be consistent
differences between all the measured and computed reactivity effects. The excel-
lent agreement for the fissile nuclides suggests that this is not the case. It must~ ~~
be concluded, therefore, that in this instance the errors are probably in the
uranium-238 cross sections. As mentioned in §5.4c, direct measurements of
neutron flux can also be used to check the accuracy of the group fluxes.

345
RADIUS, eM

FIG. 6.2 MEASURED AND COMPUTED REACTIVITY EFFECTS OF URANIUM·238
ON THE JUEBELASSEMBLY (AFTER C. B. MILLS. UNPUBLISHED).
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FIG, 6,3 MEASURED AND COMPUTED REACTIVITY EFFECTS OF URANIUM-238
ON THE TOPSY ASSEMBLY (AFTER C. B. MillS, REF. 14).

The central reacti\ it)' etTect of uranium-238 is the result of a positive effect
from tis .•lon .•cau .•eJ hy neutrons of high energy, greater than about 1A MeV, and
a negati\ e c~lntrihutiml from (fl. y) reactions, mostly due to neutrons of low
ener~\. There i.•also a contribution of variable sign from inelastic scattering....... •... . ••...

(EIa .•tll' .••caltenn~ fr~)m uranium-238 results in such small changes in neutron
encr~~ that the l'orrespnnding central reactivity effect can be neglected.) As will
he ..•h~\" n Iatcr. the data in Tahle ft. 1 indicate that the effect of elastic scattering
IS P,)Sltl\C In Tnp,,~ (uranium-235 fuel) and negative in Jezebel (plutonium-239
fuel l. A~ anal~\g~, it 1\ to be expected that the effects of inelastic scattering would
ha\e the same respecti\e signs, Consequently, one way to improve the agreement
Oet\\cen the ph\cned and calculated reactivity effects for uranium-238 would
he to decrease the inelastic scattering cross"sections of this nuclide.

Another posslhility arises from the faster neutron spectrum in Jezebel than in
T~)p,~. If the l.:"rosssection ..•of uranium-238 for fission at high neutron energies
and for the (n, yl reaction at low energies were both increased, the difference
hel\\«n the e,\perimental and computed reactivity effects could be largely
e!Jminated. The deslrabilit) of making such changes could be assessed by varying



the relevant uranium-238 cross sections within experimental limits and deter-
mining the effects on the central reactivity of small samples of uranium-238 in
Jezebel, Topsy, and other systems. The modified cross sections could also be
tested by using them to evaluate the effective multiplication factors for systems
which contain appreciable amounts of uranium-238.

The general conclusions to be drawn from the material presented above is
that the particular nuclear data library used in the computations is fairly good
for neutrons of high energy, e.g .• En 2: 0.1 MeV, but the reactivity results
suggest possible errors in some cross sections. Thus, the data used for design
studies, particularly of fast reactors, must be continuously reevaluated in the
light of new measurements on microscopic cross sections or of the results of
integral experiments with critical assemblies. In this con nection ••benchmark"
experiments, i.e., highly accurate measurements with critical assemblies, provide
essential integral tests of both the nuclear data and the computing methods. It is
particularly important that a variety of critical assemblies be used in these
studies and, furthermore. that different types of measurements be made.
Reactivity effects have been emphasized here, but there are other possibilities:
some of these were mentioned in ~5.4d and they are discussed in the references
given there.

Other Reactivity Effects

In addition to pro\iding a means f\)r e\aluating nuclear data. the results in
Table 6.1 lead to Sl)me other conclusil)ns l)f general interest. It will be observed.
for example. that \\ hen fissil)n or abSI)rptil)n (or hlHh) l)f the sample has the
dominant elTect l)n the central reacti\ ity. e.g .. horon-I 0 and the fertile and fissile
nuclides. the reactivity chant.!cs are much br1.!cr in the assemhlies containin!!.......... •....

uranium-233 and plutonium-::~39 than in thl)se having uranium-235 as the
fissile material. The main reasnn is that a dl)llar (or cent) of reactivity is worth
more in uranium-235 hecause S is larger than fl)r the other fissile nuclides (see
Tahle 6.1 ). When alln\\ ~lnCCis made for the dllTerencc~ in P. it is found that the
ahs01ute reacti\ ity changes fl)r a gi\cn sample are not greatly ditTerent in the
~e\eral assemhlies. Fl)r a specific fissile material in the assembly core. a par-
ticular central •..ample ha" a greater ahsl)lutc reacti\ it~ clTcct in a small system.
such as JczcheJ. than in a larger one. such a" ZPR-lll 4g.

An absorhin1.! material. c.c .. boron-IO. has a nccati\c elTect on the central~ ~ ~
reactivity. whercas fissile materials produce a positive chang.e. The effect of a
fertile nuclide. e.g .. thorium-23:! or uranium-:!38. ",ill include a positive contri-
bution due to fissions caused by hig.h-energy neutrons and a negative contribu-
tion from the absorption of neutrons of lower energy. For thorium-:!3:!. the net
effect is negati\ e for all the assemblies under consideratilm. '" hercas fl.1r the
more readily fissionable uranium-238 the net effect is positi\e in all the metal
(very fast neutron) systems, but is neg.atl\'e in the somewhat slower neutron
spectrum of ZPR-II t 48.



For the weakly absorbing lighter nuclides, such as hydrogen, deuterium,
beryllium, carbon, and sodium, the central reactivity effects are largely due to
moderation, by elastic scattering, whereby the energies of the neutrons are
reduced. The positive or negative character of the net effect depends on whether
the importance (adjoint) of the neutrons decreases or increases, respectively,
with energy. From Table 6.1 it is evident that in assemblies with uranium-233
or -235 as the fuel, the central reactivity change caused by an elastic scatterer is
positive, i.e., the importance of the scattered neutron (of lower energy) is gener-
ally greater than for the incident neutron (of higher energy).

For Jezebel and ZPR-III 48, which are fueled with plutonium-239, the central
reactivity effects of deuterium, carbon, and sodium are negative, indicating a
greater importance for the neutrons of higher energy. The chief reason for this
behavior is that, in comparison with other fissile nuclides, there is a marked
decrease in the capture-to-fission ratio, Ct, for plutonium-239 with increasing
neutron energy (Fig. 6.4). In addition, there is a slight increase in the fission
cross section at an energy of about I MeV.

The reactivity effects of beryllium and hydrogen in Jezebel are seen to be
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positive, in contrast to those of the other light elements. For beryllium the main
cause is the (n, 2n) reaction which takes place to a significant extent in a fast-
neutron spectrum such as that of the Jezebel assembly. The reactivity change
produced by hydrogen is a special case; the positive effect in Jezebel is the result
of the large neutron energy loss in a collision with a hydrogen nucleus. In ZPR-
111 48, however, a small negative effect is to be expected.

The negative reactivity effect of sodium is of considerable significance in the
design of fast reactors having plutonium-239 as fuel. If some of the sodium
coolant is removed from near the center of the core of such a reactor, the conse-
quent shift of the neutron spectrum to higher energies may result in an increase
in the reactivity. Hence, if a fast-reactor excursion, i.e., a significant increase in
reactivity. causes a loss of central sodium coolant. the excursion will be aggra-
vated. This situation would not be expected to arise if uranium-235 or, especially,
uranium-233 is the fuel. since the reactivity would decrease.

The foregoing discussion has referred to the effects of samples at the center of
the reactor core. If the sample is not at the center. however. there will be positive
reactivity contributions from the transport (or reflecting) properties of the
material. This problem was considered for the one-speed model in §6.3b, and
the only difrerence in the energy-dependent situation is. as before. that allowance
must be made for the neutron energy changes in scattering.

Any nuclide. even the strong neutrl)n ahsorher boron-IO. may thus be ex-
pected tl) ha\ e a positive reactivity effect near the edge of a bare core. The
\\eakly ah~orhing (moderating) elements of ~ow mass number \\'ill have positive
effects o\er much of the core. away from the center. In a plutonium-239 fast
reactl)r. fl)r example. the reactivity effect of sl)dium would tend to be negative
In the central part of the core. as seen abl)ve. but it would be positive near the
lluhide \)1" the core (and in the surrounding blanket). Whether the net reactivity
ellel.:t \\auld he p\)siti\c m negative will depend on the core size. composition,
ctc. A "mall (I)re \\ Ith considerable neutrl1l1 leakage, fl)r example. would favor
~l pO"ltI\L' reactl\lty elrect of sodium. This would represent a safety feature of
"mall fa ...t-reactllf cores al!ainst accidents resultinl! in loss of coolant.~ -

VariatIOnal methods ha\e been found to be useful in neutron transport theory
in at lea ..•t t"ll dlfTerent ways. In the first. relatively accurate values of certain
quantities are obtall1ed by evaluating integrals involving relatively inaccurate
\alues of-the flu~ and adjoint. For c).ample. in a subcritical system with a source,
described by the time-independent inhomogeneous transport equation, a flux-



weighted integral is obtained from relatively inaccurate values of the flux and
adjoint. By a flux-weighted integral is meant a quantity such as

f f f oAr, E)<I>(r, Q, E) dV dQ dE,

which represents an interaction rate specified by the cross section ux' This use of
variational methods is somewhat analogous to perturbation theory where, for
example, a perturbed value of a, good to the first or.der, is obtained from equa-
tion (6.64) by using an unperturbed flux that is good only to zero order. Simi-
larly, in applying a variational method to an inhomogeneous problem, i.e., a
problem with a source, an accurate flux-weighted integral, e.g., absorptions in a
fuel rod caused by a source in the moderator, is to be obtained from approximate
values of the flux and adjoint. Perturbation theory may be regarded as an
application of such variational methods.

Another. somewhat similar, application of variational methods, which will be
described later. is to determine the eigenvalue for a homogeneous, i.e., source
free, problem. Furthermore, in treating the transport of thermal neutrons, it is
often required to evaluate the ratio of absorptions in the fuel to absorptions in
the moderator. Variational expressions have been developed for such relations.16

Variational methods have also been used to analyze the flux near a free surface,
e.g .. in deri,,'ing the extrapolation distance.17

A somewhat difTerent use of the variational approach is to construct approxi-
mations s)stcmatically to exact solutions. An example of this type of application,
which is considered in ~6.4i, is the self-consistent derivation of the group
constants that can be used for the multigroup calculations discussed in Chapters
4 and 5.

Consider a time-independent inhomogeneous problem, namely, a subcritical
system \\ nh a source. Suppose the exact angular flux. <1>0' satisfies the equation

v.here L is the transport operator. Alternatively. L may be an integral operator
(~I.2a ('/ Jcq.) or an approximation, such as a Pl operator; in the latter case $0

\\ ould be a two-component vector having the total flux and the current as the
components. An adjoint equation to (6.84) will be

where Q+ is the adjoint source.
It will no\\ be shown how variational theory can be applied so as to use

appro'imate \'alues of the neutron flux and adjoint to obtain an accurate value
of the inner product (Qt. <1>0). that is. of the flux-weighted integral f Qt$o dE,



where t represents the variables. The adjoint source is then specified in accord-
ance with the problem under consideration. Suppose, for example, it is required
to determine an accurate value of the fission rate, J a/Do dt, due to the given
source Q for a situation in which only an inaccurate estimate of <1>0 is available.
In this case, the appropriate choice of the source in the adjoint equation (6.85)
would be Qt = at(r, E), the fission cross section, as will be seen in due course.
Alternatively, an improved estimate of the flux itself could be obtained by letting
Qt be a delta function.

For the present, it will be assumed that <1>0 and <Db satisfy the usual free-
surface flux and adjoint boundary conditions, and that they are both continuous
functions of space. If L is the transport operator then, as seen earlier, (<1>b, L<1>o)
= (<1>0' V<1>b). (It will be shown later that if the boundary and continuity con-
ditions are not satisfied by <1>0 and <1>b, this result will not hold.) In order to
obtain an accurate value of (Qt, <1>0) from an inaccurate value of the flux, <1>, use
will be made of the functional J,18 defined by

where <1> and <1>t are estimates, often called trialfuncliol15. of the exact angular
flux <1>0 and the exact adjoint <1>6, respectively. so that

In addition. it is postulated. for the present. that the trial functions <t> and <Dt
satisfy the boundary and continuity conditions. The modifications in the
treatment required for discontinul)us trial functillO~ are described in a later
section (~6.4f).

By suhstituting equations (6.87) intl) equation (6.~6). it is found that

J = (Qt, (1'0) + (1>~, Q) + (Il'~. LIllo)

+ (~Itlt, Q) ..•..(~(l". Lll,o)

-r (Q',bll') + (II'~.L~II')
+ (bll". L «'llll}.

In thl~ equation. the thrcc tcrms on the nght of the tir~t line arc equal to the
c\al"t \atuc Ilf the functil'nal. III be denotcd h~ 10. \10rcO\cr. these ter'n1s are all
equal In magnitude ~ince. in \ie" l,f equations (6.84) and (6.85) and the defini-
tion of Lt.

The t'-'l) terms on the secl'Od line of equation (6.88) cancel, by equation (6.84),
and 5.0 also do the t"o terms on the thIrd lanc. a\ may be ~n by u)ing equation
(6.85) and the identity



which holds because 8<1> satisfies the required boundary and <:;ontinuity condi-
tions. Hence, equation (6.88) reduces to

From this result, it is seen that the estimate, J, of the functional, based on the
inaccurate flux. is equal to the desired exact value, Jo, with a correcti.on propor-
tional to the product of 8<1>t and L '8<1>. If these quantities are small, the correc-
tion would be second order in small quantities, and then J would be a very good
estimate of Jo, i.e., of (Qt, <1>0)' In particular, J would be expected to be a better
estimate than could be obtained, for example, from the inner product (Qt, <1»,
since this would have an error (Qt, 8<1», which is first order in small quantities.
If the fission rate (af,<1>o) is desired, then from equation (6.89) it is evident that
Qt should be chosen equal to af.

For the special case of one-speed theory with isotropic scattering, the fore-
going expectations can be confirmed rigorously, but for more general transport
problems there are some difficulties, as will be seen below. The reason why
variational methods are so powerful in one-speed theory is that, as already
shown. the transport operator is then almost self-adjoint. Indeed, for one-speed
prohlem" \\ ith i~l)(ropic scattering, it is fruitful to use the integral form of the
transport equatit'n (*1.2c). which involves the total flux and a self-adjoint or
symmetric Integral operator.

An e\ampk tlf this approach is given in §6.4d, where it is seen that~ because
a sclf-adjllint prcratllr is involved, the correction term must be positive. Hence,
the c\act \:.llue. Jo• of the functional is a minimum value, and a systematic
appfllach tll Imrn)\ ing. J is indicated. A trial function is used for <1>. which is
here identICal \'. ith <lIt, \\ ith several free parameters; these are varied until a
minimum \alue fllr J is found. At the minimum, the derivative of J with respect
tl) each llf the frt:c parameters is zero. This minimum is the best va1ue and a
clear prl)(,.-edurc i~~l\ailablc for determining whether one trial function is better
than anllther.

hlr ~eneral. cnerg)-Jcpendcnt problems, the situation is less satisfactory. In
the hr ••t plal'c. the sign of the correction term is not generally known, so that,
althllUl!h J ma) ~J\C an accurate estimate of Jo, there is no clear way of deciding
\\ hlch 1\ the ~\t lJf the trial functions. Nevertheless, trial functions with free
parameter\ are \-,ftcn u~d in energy-dependent problems 19 and the parameters
are \aned until a s.tationary value of J is found, i.e., a value of J for which the
den\atl\e of J "Ith respect to each of the free parameters is zero. In other words,
If f. reprC\Cnh each of the i free parameters, a stationary value of J is one for
\\hich (J (fl = 0 for all i. There is no assurance, however, that the stationary
\alue. if it e,i~h at all, is a good one. An exception arises in connection with
IhermaJization problems.. where the transport operator can be made almost
~elf-adj'Hnt (*7.2c): the situation is then similar to that in one-speed theory.



It should be noted, too, that the correction term in equation (6.90) contains
L 8<1> rather than just 8<1>. Smallness of 8<1> does not necessarily guarantee that
L 8<1> will also be small. The reason is that the neutron transport operator, e.g.,
in equation (6.5), is not a bounded operator, since. it contains derivatives 20;

thus, if 8<1> is small but V 8<1> is large, then L 8<1> will be large. Nevertheless, it is
usually found that if the estimates of <1> and <1>t are good, the functional J is
quite accurate.

There is a simple manner in which the functional J can sometimes be im-
proved upon. It can be seen from equation (6.90) that J will depend on the
normalization of <1> and <1>t. If, for example,

<1> = (l + a)<1>o and <1>t = (l + b)<1>t,

so that <1> and <1>t are in error only by being incorrectly normalized, it follows
from equa~ion (6.90) that

J = Jo(l - ab).

By using an alternative functional, this dependence on the normalization of <1>
and <1>t may be removed.

One such functional is obtained by letting

<1> = C¢l and <1)t = Ct<t>i,

and determining the normalizing factors C and ct by making J stationary with
respect to these factors. Thus, if dice = 0, it follows that

ct = (Qt, eDd
(<1)I, L<1>l)

e = _ (Q, <1>1) .
(¢1, L<1.>d

If the results obtained above are substituted in equation (6.86) for J to obtain
the modified functional. J5, it is found that the three terms on the right all have
the same value; since two appear with minus signs and one with a plus sign, the
final result is

Js = (Qt. t1>d(Q. ¢I> (6.91)
«1.>1, L<1>d

This is sometimes called the Schwinger variational expression and is represented
by the symbol H; the symbol J5 is used here, however, to emphasize that it is
equivalent to J. As it is for J, the error is formally of the order of SeDt S<1>. By the
use of trial functions for <1>1 and <1>1 a stationary value for Js can be found; this
is a good estimate of.Jo and hence of (Qt. <1>0), as before. The functional in
equation (6.91) and several others have been treated in the literature.:21 In some
one-speed problems it is possible to obtain both upper and lower bounds to
J,s.12

r'![, ..,.' .:

I
I

I
I
i'



In summary, it may be stated that the functionals J and Js in equations (6.86)
and (6.91) may be used to obtain estimates ofa desired quantity, Jo, by inserting
trial functions in these equations. Frequently, free parameters are included in
the trial functions and they are varied to make J or Js stationary. However,
except for one-speed and thermalization problems, there is no guarantee that the
stationary value is the best value.

6.4c Determination of Eigenvalues

So far, the functionals have been considered for estimating weighted integrals of
the flux in inhomogeneous problems. The procedure for the homogeneous
(source-free) eigenvalue problem is similar. For example, if the fundamental
eigenvalue u is being sought, Q may be replaced formally by - (ulr)<t> and Qt
by -(u:r)<t>t. With these substitutions, equations (6.84) and (6.85) would become
the equations for the eigenvalue u. Let the same replacements 'be',made in the
functional J,\ of equation (6.91). Consider, first, the result that would be ob-
tained if <1>1 and <1>1 were exact, i.e., <1>0 and <1>b, respectively; the exact functional,
denoted by Jo, would then be

Jo == - aGo <I>b, <Po).
Upon equating the two expressions for Jo, the exact value of u is found to be

«t>b, LIllo)
u == . ,

[(II r)<l>b, <1>0]

and the required functional for estimating u is

(<l>t, L<I»
u ::: [(I!l" ) <II t, <I> (

This expression for u is reminiscent of perturbation theory; for example, in
equation (6.63), both a and a* can be regarded as having been derived from the
variational equation (6.92).

6.4d Applications of Variational Methods to One-Speed Problems

It was mentioned earlier that variational methods are especially useful in one-
speed problems because the operators for the angular flu., are almost ~f-
adjoint; in the integral transport equation for the total flu:<with isotropic



scattering they are truly self-adjoint (§6.1 h). Historically, variational calcula-
tions proved of great value in providing the most accurate critical dimensions
for simple systems; these served as standards of comparison with other pro-
cedures for many years.23 Two examples are given below of criticality calcula-
tions and one of an inhomogeneous problem with a source.

Consider a uniform slab, infinite in two dimensions. Let the units of distance be
chosen so that a = 1, and let the thickness of the slab be 2a. The average number
of neutrons emerging (isotropically) from a collision with a nucleus is c, as in
§2.1 b. It is desired to find the critical thickness of the slab for fixed c or, alterna-
tively, the critical value of c for a fixed thickness. The method of solving the
latter problem will be described here.

By combining equation (1.38), with the energy variable removed, and the
considerations in S2.lc, the required one-speed integral equation is obtained,
namely,

Since there is no independent source in the criticality problem, Q(x') = 0;
hence, the integral equation is

It is desired h) find the eig.em'alue c. actually the smallest eigenvalue c, for
fixed a.

Thcn~ arc at least t\\O reasons for using. integral transport theory in this
prnhlcm. First. hccau'le the integral equatil)n iml)lves the tl)tal neutron flux. and
the (\pCrall1r is truly self-adjoint. And second. the tntal flux is a function of only
one \ariahlc. and so is simpler to work with than the angular flux.

In llrder to apply the theory developed in the preceding scctilH1, equation
(6.9~) may he \\flttl.:n a~

I- eP = 1.4,
c

, .J.. I fa E (' . ·'1 \.J.. .' J"~ = 2 _g 1 1·\ - .\ IN'('\) .\: •
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Hence, by analogy with the variational equation (6.92) for CL, it may be expected
that lie could be found from the corresponding equation

I (1)t, L1»
- "" ---e - (1)t, 1»

(1), L1»
- (1),1>)

since the total flux and its adjoint are now equal (*6.1 h). Upon introducing the
explicit form of L from equation (6.96), and the values of the inner products,
which in this case are integrals over x from - a to a, it is found that

-! J:J:a £l(\X - x'j)1>(x)eP(x')dx' dr

J: a 1>2(X) £Ix

Equation (6.97) is the required variational expressi'-Hl for I c: it will now he
shown that the \ aluc of 1;<, derived from this equation is less than or equal tl) the
exact \alue for all trial functions. rh. Consider equation ((L94) a~ an eigcl1\aluc
equation for the eigenvalue (', and the eigenfunction 1>1' i.e ..

1>1(X) = ~ J:ll £\(!.r - .\·'!)4>,(x') dr'. '

This is a linear integral equation with a symmetric (and [ll)ndegcncrate) kanel.
I.e.,

E( ") E(' i).1 .r - .\"i = l!·r - .\"I •

\\ hich i~ :-.il11pl~;}[1l)ther \\a~ 1)1' ~a~ ing that the integral operatl)r is scll'-adjl)int.
From thc ~ent.:ral thCl)fY PI' ~ueh e4uatillns.~1 it is k[1l)\\n that theft.: exist all
infinite numhl.'f llf rl.'al pp~iti\e eigel1\alues;c1: with oftllllgl)llal eigcnl'ullctil)IlS
1.1 I

\(lJI' •

Let the l.'l~en\ allH:'" hI.' l)fdl..'fed :-'1) that Co < ('1 < C2' ...• etc.: then c'o is the
fundamental t.:1~t.:rl-\.t111I.'\\ hleh i:-. hcillg sl)ught. In addltlllll .• IIlY \\cll-hch;l\t.:d
trial flllh.:tll'l1 flU\, ht.: c\pandl:d ~l'"a ~efie~ l)f clgenfuIKtil)Il'l: thus.

J'Cr) = " h1?,(.\").---
t 0

"oJI ePl(X~J\') dr = 1511,

• - 01

~here c\. i, the Kroned;er delta. If the e\pansion of equatil)n (6.99) is inserted
IOto equat"'fl (o.tJ7) and u~ I' made of equation (6.100>. it is found that

• •
,~ 1. bf/ " b~ ~ 2-.
- c. --- Co
.·0 .- 0



The inequality on the right arises from the fact that Co is the smallest eigenvalue.
It follows, therefore, that the value of lie obtained from equation (6.97) is

always less than the desired value, Ilea. Hence, a trial function with some free
parameters may be introduced into equation (6.97) and the parameters varied
so as to maximize lie. For example, with a simple trial function

having f3 as a variable parameter, it is possible to obtain values of c accurate to
three or four significant figures.25 The procedure is to insert this trial function
into equat.ion (6.97) and find the value of f3 for which the derivative with respect
to f3 is zero. In addition, it should be verified that the stationary value is a
maximum and not a minimum.

For a sphere of radius a, the integral equation corresponding to equation (6.94)
is derived from equation (1.41) as

where 4>(r) = 4>( -r). The variational expression for l/e, analogous to equation
(6.97) for the slab, is then

1 1ta I:a £l(lr - r'\)r'4>(r')r4>(r) dr' dr

c '" J:a [r4>(r)]2 dr .

As before, Ilea will be the upper limit of values of Iie calculated from equation
(6.102). By using a fourth-order trial function of the form

with f3 and f3' as adjustable parameters, very accurate values of lie have been
found. These formed the basis of the ••e:\act" entries in Table 5.3 except for
c - I « I. The accuracy could be judged by the \ery small effect on lie of
variations in f3' .26

6.4e An Absorption Probability Problem

Another example of the application of variational methods is to a classical
problem in one-speed theory. Suppose there are two uniform regions with an
isotropic and uniform source in one region. e.g., a moderator; it is required to
determine the absorptions in an adjacent region. e.g .• a fuel element. This is the
situation in computing the disadvantage factorn in a one-speed treatment of
thermal neutrons. On the basis of the results in t2. Th. however. the source can



be taken in either of the two regions, since the reciprocity relationship of equa-
tion (2.101) shows how PF ...•M can be determined if PM ...•F is known, and vice
versa. The calculation given below will, therefore, be concerned with the evalu-
ation of PF ...• M' the probability that a neutron born in the fuel region will be
absorbed in the surrounding moderator.

In §§2.8b, 2.8c, the foregoing considerations were used to describe collision (or
absorption) probabilities in purely absorbing media. In the present treatment,
this restriction is not necessary. The main objective here is to show that even
when the original one-speed problem is not obviously self-adjoint, some ele-
mentary manipulations may serve to make it so.

Suppose, for simplicity, that the fuel region is a slab located within an infinite
moderator region(Fig. 6.5). The total flux then satisfies the relation [cf. equation
(6.93)]

cP = ~J~Q)£l(lx - x'l)[c(x')cP(x') + Q(x')] dx',

where Q(x') is constant in the fuel and zero in the moderator; the values of c
are c,. and CM in fuel and moderator, respectively. Distances are measured in
units of the mean free paths which are not necessarily the same in the two regions.
Since all the neutrons must be absorbed either in the fuel or in the moderator, it
follows that

P,....•M = I - (1 - cF) ~ ,

where ~r is the average value of the flux in the fuel region, so that (1 - c,.)cp,./Q
is the probability of neutron absorption in the fuel region. Hence, the problem
will be solved if ~f' can be determined.

There are two unfavorable aspects of equation (6.103): first, the integral
kernel is not symmetric, since it contains c(x'), and second, Q appears III a



\...
THE ADJOINT EQUATION j.

complicated manner. These difficulties can be avoided by intr~ducing a sym-
metric function. Let !...

~..
i· .1

!flex) = V [c(x)p(x) + Q(x)]
c(x)

j '.

1
Sex) = _~ Q(x),

v c(x)

and the symmetric function K(x, x') is then defined by

K(x, x') = Sex - x') - vic(x) HE1(lx - x'l)v c(x")].-~~.;
If equations (6.105), (6.106), and (6.107) are introduced into equation (6.103),
the r-esult may be written as

J~00 K(x, x')t{J(x') dx' = Sex).

This equation is of the general form - 14(x) = Sex), as in equation (6.84),
where Sex) is constant in the fuel and zero in the moderator. ~rom equation
(6.104), together with the average of equation (6.105) over th~!"fuel region, it
follows that c· .

p = ~ [I - (I - c ) «PF]..
F-M F SCF

Consider the variational functional. Js, of equation (6.91), in tHe form
"\,.; '-~~
~: ./[J~00 t{J(x)S(x) dXJ2]

Js = ------------f~00 J~<Xl !fl(x')K(x,x')t{J(x) dx' dx

J' dx ~ x,..
hel

It can be shown 28 that Js will always be less than Jo; hence. a trial function may
be chosen and variations made so as to maximize Js, and thu.~yield the best
estimate of .p,. By using fairly simple but realistic trial functions, e.g., a constant
in the fuel region and a diffusion theory solution in the moderator, and varying
their relative magnitudes it is possible to obtain an accurate value for P,._ ••
from equation (6.109).29



It should be mentioned that a problem like the one treated above can be
solved very easily by using a computer code based on the discrete ordinates
approximation. It is of interest, however, to see how the variational method can
provide an alternative and accurate solution.

6.4f Discontinuous Trial Functions

In the foregoing, the admissible trial functions <I>and <I>t have been restricted
to those satisfying the boundary and continuity conditions, for only then will
(<I>t, L<I» = (<I>,Lt<I>t); otherwise boundary and discontinuity terms will remain as
will now be seen. Since it is frequently convenient to permit trial functions which
do not satisfy the boundary and continuity conditions, although the exact func-
tions do, the consequences must be considered.30 Such a situation might arise if
a PI flux estimate were to be used with the exact transport operator L, or if a piece-
wise flux estimate were made that could not satisfy the continuity condition.

The time-independent transport operator, L, and its adjoint Lt are defined by
equations (6.5) and (6.7), respectively, as

- L<I>(r, Q, E) = Q. V <I>+ a<I>- J J af(r; Q', E' -+ Q, E)

x <I>(r, Q', E') dQ' dE' (6.110)
and

-Lt<t)t(r,Q.E) =·-Q·V<I>t + a<I>t- JJaf(r;Q,E-+Q',E')

x <I>t(r, Q', E') dQ' dE'. (6.111)

If trial functions. with discontinuities assumed to exist at some interior surfaces
AI' are inserted into equations (6.110) and (6.111), the derivative terms become
infinite at these surfaces. When L<I> is integrated in an inner product, the integral
of the derivati\e then contributes a jump (or discontinuity) condition on AI'

In order to see this. multiply equation (6.110) by <I>t and equation (6.111) by
<1).subtract and integrateo\er the range of variables; all terms on the right, with
the e\ceptil)n of the gradient terms. will cancel, as shown in §6.lc. Because the
boundary and clmtinuity conditions used before are not applicable, the gradient
terms w ill remain and the result is

To convert the last two terms to a surface integral, the volume integral in the
inner product may be interpreted as a sum of integrals over each of the volumes,
V" within \\ hich <I>and <I>tare continuous. For each such volume

fv, dJ'If (<I>ts}. V<I> + <I>s}. V<I>t) dQ dE

,. Iy,e/vil (V.s}<I><I>t)d~dE= lA, dA If n·Q<I><I>tdndE. (6.113)



By adding the contributions for each volume, a contribution is obtained from
each surface Ai equal to fi· Q multiplied by the discontinuity (or jump) in <1><1>t,
which may be denoted by

Discontinuity = [<1><Dt( +) - <1><1>t(- )],

where the plus ( +) side has Ii as an outward normal and the minus ( - ) side as
an inward normal. Use of equation (6.113) for each individual volume in
connection with equation (6.112) then gives for the whole volume with a bound-
ing surface AB,

(<I>t, -L<I» = (<1>, _Lt<1>t) + IA
B

dA If Ii·Q<1><DtdQdE

+ 2. rot, dA fI fi· Q[ <1><1>t(+) - <1><1>t(- )] dQ dE. (6.114)
t

Equation (6.114) is a generalization of equation (6.6) for trial functions <l> and
<1>t which do not satisfy the boundary or continuity conditions. It should be
recalled, however, that in evaluating the volume integrals in the inner products,
the integration is carried over each of the volumes in which <1>and <l>t are con-
tinuous and the results are then summed. The At surfaces of discontinuity then
appear only as surface terms. Alternati\ ely. the surface terms could be included
in the prescription for evaluating (<1>\ - L<t».

To allow for trial functions of the type under consideration, it would appear
that the surface terms could be suhtracted from the functional in equation
(6.86). Although this would give an error to (Qt. <I» equal to (8el)t, L 8<1» plus
surface terms proportional to ()<l>t 8(1), it \\ould not yield (Qt, $) = (<I>t, Q) to
this order of accuracy. A more symmetrical functional can be found by using the
identity

<1>'( + )el>( +) - ct>'( - )<l>{ -) == ij)t[<l>( +) - <1)( -)]

+ et>[<t>'( +) - <l>t( - )], (6.115)
where ij) and (fi' are the average flux and adjoint. r~pecti\'ely, at a surface of
discontinuity. i.e.,

if, = -![<1I{+) + <t>( -)} and fi)' == ![<lJt
( +) + <1>'(- )].

If equation (6.115) is substituted into equation (6.114), it is found that

(<t>t, -L<1» - L dA . If dQdE(A·n,<b<l>t
II .·0< 0

-l L JA f f dn d£(ii· n)$t[<1>( +) - <1>(-)]
I I

= (C\>, - L'<lJ') + L.dA ~jf.dn d£(6- n)<lJ<lJ'

+ 2J dA If dQ J£(i·Q)(J)[4P'( +) - ct-t( - )]. (6.116). '"



l' = (Qt, <1» + (<1>t, Q) + (<1>t, L<1» + 1 dA II dQ dE(fi·Q)<1><1>t
~ 0·'1<0

+ L fA
I

dA f f dQ dE(fi· Q)<1>t[<1>( +) - <1>(-)] (6.117)
i

is derived, which gives

l' = 10 + (0<1>t, L 0<1» + surface terms proportional to o<1>t 0<1>, (6.118)

even for trial functions which are discontinuous and do not satisfy the boundary
conditions. In obtaining equation (6.118), it has been taken into consideration
that the exact solutions <1>0and <1>tdo satisfy the boundary and continuity con-
ditions. From equation (6.116), it can be shown that the functional l' is identical
with

J' = (Qt, <1» + (<1>t, Q) + (<1>,Lt<1>t) - L dA If dQ dE(fi·Q)<1><1>t
B 1i.'1::'0

- L fA
I

dA I I dQ dE(D' Q)<1>[<1>t(+) - <1>t(- )]. (6.119)
I

For applications of the functionals under consideration, the literature should be
consulted.31

6.4g The J Functional as a Lagrangian

An entirely different use of variational functionals is based on the fact that the
J functional can be considered as a Lagrangian function for the system, in the
sense that if it is required that the functional be stationary for small but arbitrary
variations of <1>and <1>t, then equations can be found which are satisfied by <1>
and <1>t. It will be seen that this procedure leads to a systematic way of deriving
approximations to the neutron transport equation.32

According to Hamilton's principle in mechanics, the time integral of the
Lagrangian function. between fixed end points, should be stationary when the
trajectory of the system is varied about the actual trajectory by small but
arbitrary amounts. From this principle, equations can be derived that must be
satisfied by the system along the actual trajectory. These are called the Euler
equations which, for a simple mechanical system, are simply Newton's laws of
motion.33

Consider the J functional, given by equation (6.86), for the inhomogeneous
problem, i.e.,

J = (Q\ <1» + (<1>\ Q) + (<1>t, L<1»,

where the trial functions <1>and <1>tare well behaved in the sense that they satisfy
the boundary and continuity conditions. If smaU but arbitrary variations arc



made in <1> and <1>+, with the varied functions still being well behaved, then, ,to
the first order in small quantities, oj, the variation in J, is given by

Since 0<1> and 0<1>+ are arbitrary, it is apparent that oj can be zero, i.e., J made
stationary or independent of the variations 0<1> and 0<1>+, only if

which are the transport and adjoint equations satisfied by the exact values of <1>
and <1>+. These are, in the calculus of variations, the Euler equations. Thus, the
requirement that J be stationary can be satisfied only if <I> and <1>+ are solutions
of the transport and adjoint equations, respectively.

It is possible to relax the requirement that <I> and <1>+ are well behaved and
thereby allow discontinuous trial functions which do not satisfy the boundary
conditions. The functionals given by equations (6.117) and (6.119) are used and
in order to make oj = 0, the trial functions should not only satisfy equations
(6.122) wherever they are continuous, but they should also satisfy the boundary
conditions and be continuous on every surface Ai' To show that this is so, oj' is
obtained from equation (6.117) and then the expression for the term (<1>+, L 0<1»
is derived from equation (6.116). By setting all the coefficients of 0<1> and S<1>+
equal to zero, equations (6.122) are obtained plus the boundary and continuity
conditions on <I> and <1>+.

The conclusion to be drawn, therefore, is that the requirement that the func-
tional be stationary for small but arbitrary variations in <1> and <1>+ is equivalent
to the transport and adjoint equations (6.122), together with the boundary and
continuity conditions. Of course, only the exact flux <1>0 and adjoint <1>b can satisfy
all these requirements. Nevertheless, the result is useful because it is possible to

. insert approximate functions for <I> and <1>+, and then to employ the Euler equa-
tions to deduce. in a systematic manner, approximate equations which should
be satisfied by the flux and adjoint. When approximate values of the flux and
adjoint are used. however, the possible variations are no longer completely
arbitrary but are restricted to those allowed by the particular functional forms
assumed for <I> and <1>'.

The general philosophy underlying the foregoing approach, which will be
illustrated below, is as follows. If the functional J is made stationary with respect
to all small variations of flux and adjoint, then the corresponding values of <I>
and <1>' must be the exact solutions to the transport problem. On the other hand,
jf J is made stationary with respect to a limited class of variations, then <I> and
<1>'may be the t. best" with respect to that class of variations. In one-speed
theory, this concept of a "best" solution can be made precise since, as seen
earlier. the exact value of J is an upper or lower limit to the estimated value;
hence, the most accurate estimate of J is always a stationary (maximum or
minimu",) value. For more general (energy-dependent) problems the mathe-

% ,.'
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matical qualification is less clear. Nevertheless, the variational method is
intuitively attractive, and it has been found to be useful in practice.

Finally, it is of interest to note that the equation containing the approximate
<l>t will indeed be adjoint to that for the approximate <1>, a result which is fre-
quently not true for the equations derived in a more straightforward way.

6.4h Variational Derivation of Multigroup Equations

To illustrate the procedure outlined above, the variational principle will be used
to derive the P1 multigroup equations. It will be seen that the equations satisfied
by the group fluxes and adjoints have the expected form, but that the group cross
sections are defined in terms of a bilinear weighting by both flux and adjoint,
instead of by the flux alone as in Chapter 4. Moreover, once the multigroup
equations have been solved for the group fluxes and adjoints, the same varia-
tional expression can be used to find the flux and adjoints as functions of energy
within a group. The group constants can then be recomputed, so that the
within-group spectra, group cross sections, and group fluxes can be found by
iteration in a self-consistent manner.

For plane geometry, consider the tria~ functions
<I>(x, fL, E) ~ ePo.ix)tPo.g(E) + 3fLeP1.g{X)tP1.g{E) (6.123)

Eq ~ E ~ E9-1,
so that g is a group index which changes as the energy changes across a group
boundary. The trial functions are seen to be of P1 form in their dependence on
fL [cf. equation (3.42)], whereas those parts of the trial function that represent
the total flux (4rrePoqtPog) and current (4rreP19tP19)are taken to be separable func-
tions of position and energy within a group. It is assumed, for the present, that
ifi and ifit are known functions of the energy; they may be obtained, for example,
from infinite medium or B1 calculations (§4.5c). These within-group spectra will
often be functions of space in a multiregion system, but for simplicity such
explicit dependence on the region will not be included. The normalization of
these spectra is somewhat arbitrary and a convenient system is the following:

flo.g(E) dE = 1

J,tPo.g(E)cPb.I1(E) dE = 1

J/1 rfo.I1(E}/11.I1(E) dE = 1

I/1 .p~./1(E}/11./1(E) dE = 1·



From equation (6.125), it is seen that by this normalization CPo,g(x) is simply 4
IJ47T times the total flux of neutrons in group g. If the t/J and t/Jt functions do not'
vary greatly with energy within a group, it follows that

,p' t/J 1,.., ,.., -
0,11 - 1.11 - t1E

II

.J.t ,.., .J.t ,.., 1
<PO.II - <Pl.11 - •

If the within-group spectra~ t/J and t/Jt, are assumed to be known, the equa-
tions satisfied by the group fluxes and adjoints can be determined from the_
variational principle, i.e., by inserting equations (6.123) and (6.124) into
equation (6.120) for J and requiring that J be stationary for small but arbitrary
variations in CPo,g, CPl.g, cpt.g, and CP1,g, as will now be shown.

For plane geometry, the transport operator is

-L = f-L ,8 + a(x, E) - 27Tff alex; f-L', £' -+ p., £) df-L' dE',ex

so that by equation (6.123),

-L<1> = [f-L :\. + a(x, E)] [cp(}q(x)t/Jo.Q(E) + 3p.cpl,g(x).pl,Q(£)]

- L L. [ao(x; £' -- £)</>o.Q,(x).po.Q·(£)
1/'

where 0'0 and 0'1 are the usual Legendre compc.ments of the scattering cross
section [cr. equation (4.4 n. If equations (6.123) and (6.129) are substituted into
the definition or the inner product (<D', L<D), i.e.,

(<1>t,L<1» = J dx f dE J~1 (1)' L<D dJ4,

the integ.rationsover 11.. can be performed immediately to give

!(<1>t, L<D) = - I dx J dE{ t/>~.,(X}lf~ .• (E)[ ~x. E)t/.o.,(x)41o.,(E)

+ :r: {<!>l,Q(X).pl.,(£)} - ~ L. ao(x; E' -- E~o.,·(x)4Jo.f,(E') dE']

"



In addition, the integration can be performed over each energy group since
l/Jo.iE), l/Jl.iE), l/Jt.iE), and l/J1.g(E) are assumed to be known functions of the
energy.

If this result is inserted into the functional J, as defined by equation (6.120),
the functiofls cPt.g(x) and cP1.g(x) may be varied arbitrarily and the Euler equa-
tions obtained by setting the coefficients of ocPb,g and ocP1.g equal to zero. By
using the normalizations in equations (6.125)-(6.128), the results may be written
in typical multigroup form [compare, for example, equations (4.30) and (4.31)];
thus, by setting the coefficient of ocPt.g equal to zero it is found that

:x [cPl.9(X)] + ao.gcPo.ix) = 2 ao.g· ..•g{x)cPo.g·(x) + Qo.g(x) (6.131)
g'

and by setting the coefficient of ocPLg equal to zero,
d :

dx [cPo.g(x)] + 3al.gcPl.ix) = 3 2 al.9· ..•g{X)cPl.9·(X) + 3Ql.ix),
g'

Qo.g(X) = ~L l/Jt.g{E) dE I~1 Q(x, j.L, E) dj.L

Ql.9(X) = tr
g

l/J1.g(E) dE I~1 j.LQ(x, f-L, E) dj.L

and the group constants are defined by
,

al.g(X) = L a(x, E)l/Jt.g(E)l/JI.g(E) dE

al,g'_g(x) == f dE r at(x; E' ~ E)l/Ji,9·(E')lft.g(E) dE'
g Jg'

Comparison with the results in Chapter 4 shows that equations (6.131) and
(6.132) are identical in form with the multigroup PI equations, but the group
constants are now defined with both flux and adjoint (importance) weighting.

By returning to the functional J and varying cPo.gand cPl,g, the adjoint equations

- ~~ [4>~.,,(x)] + ao."cPt,g(x) = 2 ao.g_g·cPb,g·(X) + Qt.g(X)
g'

- :l: [4>~.,(x)] + 3a1.94>L,,(x) = 3 L al." ..•g·4>L,.(x) + 3QL,(x)
g'

may be obtained; QL, and Q1.g are defined as in equations (6.133) and (6.134).
with each Q being replaced by its adjoint Qt and each .pt by the corresponding';.
The group constants are the same as in equations (6.135) and (6.136). Thus.



equations (6.137) and (6.138) are clearly adjoint to equations (6.131) and (6.132),
respectively (cf. §6.2c). For a generalization to time-dependent problems (with
delayed neutrons), see Ref. 34.

Some comment should be made concerning the boundary conditions in connec-
tion with the use of equation (6.130) for (<1>t, L<1» in the derivation of equations
(6.137) and (6.138). A partial integration over x was required in order to transfer
the dftlx operation from the flux in equation (6.130) to the adjoint. Although this
leaves an integral, which may be reduced by the normalization conditions in
equations (6.127) and (6.128), i.e.,

fg [cPb.g(X )!f6.ri E)cPl.9(X )!{Jl.i E) + cP1.g(x )!{J1.iE)cPo.g(x )!{JO.9(£)] dE

= cPb,g (x) cPl.g (x) + cPLg (x) cPO.9(x), (6.139)
to be evaluated at the boundaries, it has been omitted in obtaining equations
(6.131) and (6.138). This omission could be justified, however, if the boundary
condition cPo.1} = cPb.9 = 0 were used; such a boundary condition for the flux is
familiar from Chapter 4. Further reference to this matter is made below.

Relatively little use has yet been made of bilineariy (flux and adjoint) averaged
group constants, primarily because the group adjoints must be estimated in
addition to the group fluxes. When the brlinear averaging has been used, however,
it seems to be superior to simple flux averaging, at least for problems involving
only a few groups.35 When a large number of groups can be employed, the adjoint
weighting is less important, because the adjoint function will not vary significantly
across a group .
. The trial functions in equations (6.123) and (6.124) do not satisfy transport

theory boundary conditions. If they are used in the functional J' of equation
(6.117), it is found that more requirements are placed on the functions than can be
satisfied. For example, the boundary condition requires that

(1 . f1
JofL<1> dfL = Jo fL:l<1> dp. = O.

For the one-speed problem, this redundancy in boundary conditions can be re-
moved and an excellent value for the extrapolation distance can be obtainerl by
restricting the trial functions to those for which

~o(x) = _ ~~(x) (6. 139a)
4>1(.\') .1<-,,)

at the boundary.36 For the energy-dependent case, use of equation (6. 139a) for
each group would make the boundary terms in equation (6.139) equal to zero
and is therefore a natural choiq:.

6.4i Self-Consistent Determination of Group Constants

As just seen. multigroup equations have been obtained (rom equation (6.130) by
considering the .p(£) functions to be knoy,1\. integratina over • group. and then



deriving the Euler equations satisfied by the cp(x) functions. Once the multigroup
equations have been solved, however, so that the functions CPo.g{x), cPl."(X),
cpt,g{x), and cpLix) are known, the procedure can be reversed. Starting with
equation (6.130) again, the c/>(x) functions can be treated as known and integra-
tion carried over a space region, which need not coincide with the original choice.
The Euler equations satisfied by the tP(E) functions can then be determined;
from these, the within-group spectra, i.e., the tP(E) functions, can be obtained.
This process could be iterated to obtain within-group spectra, group constants,
and group fluxes in a self-consistent manner. Moreover, during the iteration the
dependence of the results on the number of energy groups and space regions,
within which the tP(E) functions are defined, could be explored.

For example, suppose that tPt,g(E) and tP1.g(E) in the functional J are varied
and, using equation (6.130), the coefficients of the variation are set equal to
zero. Upon integration over some space region R it is found that

Qo.g{E) - uo(E)tPo,g{E) - Yl,9tPl,iE)

+ 2: i, uo,g·(E' -+ E)tPo,g·(E') dE' = 0 (6.140)
g'

3Ql,,,(E) - 3u1(E)tPl,9(E) - Yo,gtPo,g(E)

+ 3 )' f ul,g·(E' -+ E)tPl.9·(E') dE' = 0, (6.l41)
~ g'

g'

w °1.,,(E' - .• E) .= I. 4>:,,,(X)aI(X; E' -+ E)c/>i,9'(X) dx

)'1., == Iii 4>6.,,(X) ;'1; [4>l.g(X)] dx

)'0" == f.c/>L,(x) :'( [CPo,ix)] dx.

From equations (6.140) and (6.141), it is seen that !/Jo.,,(E) and -PI.t/(E) are the
solutIons of t\\O coupled integral equations. Except for the coupling term con-
taining )'1.,' equation (6.140) is similar to an expression for the neutron energy
spectrum in an snfinite medium. In fact, since the cross sections will, as a rule. be
independent of .T. throughout anyone region R, the cross sections cJo and 60,.'



will have their infinite medium values, except for normalization constants which
are related to the choice of normalization in equations (6.125)-(6.128). The
integral equations (6.140) and (6.141) can be solved numerically to yield the
within-group spectra «p(E) to any desired accuracy, and so a self-consistent
method is available for determining them from the group fluxes.

To appreciate the significance of the Yl,g term in equation (6.140), the con-
servation relation of equation (1.17) may be written, for the time-independent
situation, as

Q(r, E) - aep(r, E) - V· J(r, E) + I a'/ep' dE' = O.

If this is integrated over the space region R, there is then a precise correspondence
between the first, second, and fourth terms of the resulting expression with the
corresponding terms of equation (6.140). The third term in equation (6.142)
becomes

f V ·J(r, E) dV = f fi·J(r, E) dA = net leakage out of R.
R JSUrfB.ce

of R

Hence, the term Yl.9«Pl.9(E} in equation (6.140) is an approximation to the energy-
dependent leakage of neutrons out of the region R. An analogous, but more
complicated, interpretation may be given to the coupling term Yo,g«Po.g(E) in
equation (6.141). Applications have been made of these considerations.37

6.4j Other Applications of Variational Methods

It has been seen that variational methods provide a means for obtaining ap-
proximations to the neutron transport equation in a systematic manner. The
same general approach can be used to study a number of physically plausible
approximations to the neutron flux that would otherwise be difficult to formu-
late. Four situations of interest are outlined below.

First, it may be possible to express the flux in a three-dimensional system as a
product of solutions for one- and two-dimensional systems.38 Second, an
attempt could be made to expand the angular flux near boundaries by means of
specially tailored functions or by unusual combinations of expansions. 39 Third,
near a temperature discontinuity, the thermal flux might be expanded as the
sum of two infinite medium distributions appropriate to the hotter and colder
regions, respectively, and then the spatial dependence of the coefficients of the
two spectra may be determined.tO, Finally, solutions to time-dependent prob-
lems could be synthesized, using different space-dependent functions in different
time intervals. 41 These and other applications of variational methods are re-
viewed in Ref. 42.

The solution of geometrically complicated two- or three-dimensional prob-
lems, such as often occur in reactors, by direct multigroup methods is hardly



possible at present. The synthesis of such solutions as products or other super-
positions of more elementary solutions is, therefore, of great practical interest.
The procedure will be illustrated by considering the simplest case.43

Suppose it is required to solve a one-speed, diffusion theory, criticality prob-
lem in two-dimensional rectangular geometry by combining one-dimensional
solutions. If the coordinates are taken as x, y, the diffusion equation may be
written as

with the flux and all trial junctions assumed to be zero on some rectangular
boundary. It can be shown from equation (6.143) that, as expected for a one-
speed problem, L is self-adjoint, and that

(4), L4» = J dx J dy[D(x, y)(V4»2 + a(x, y)4>2(X, y)].

4>(x, y) = 4>1(X)eP2(y),

so that equation (6.144) becomes

Suppose 4>1(X) is varied and the coefficients of (5<PI(x) are set equal to zero; an
Euler equation to b~ satisfied by 4>1(X) is obtained. In a similar manner an Euler
equation can be derived for 4>2(X). These equations are

Di(x) = I <f>~(y)D(x, y) dy and D2(y) = J 4>r(x)D(x, y) dx

alex) = I ~~()')a(x. y) dy. and a2(Y) = f 4>r(x)a(x, y) dx

Dl(x)B~Cx) = f DCx. y) [d~;;.Y)]:2 dy

and

D:z<y)BJ(y) == f D(x.y)[d~d.~X)]2 dx.



The equations (6.145) are seen to have the' simple form of one-dimensional
diffusion equations with the added terms DB2 which may be interpreted as
representing neutron leakages in the suppressed direction. In simple cases, Br
may be related to the buckling associated with the Y dependence of the flux.
Suppose, for example, that all the cross sections are constant and

)
2 7TYtP2(Y)= - cos-,

Yo Yo
so that the flux vanishes at y = ± Yo/2, and the normalization is such that

fll0/2

tP~(y) dy = 1.
-110/2

D1B? = D (§"J 2,

indicating that B't is the buckling associated with the y direction. Similarly, B~ is
the buckling associated with the x direction.

The equations (6.145) and (6.146) have been solved in arecursive manner. A
value of 4>z(Y) is postulated or, more simply, 01, D1, and Bi are postulated, and
a solution is obtained for 4>l(X); this is then used in the equations (6.146) to
derive 02, D2, and D2B?. By utilizing these quantities, 4>2(Y) can be found, and
the procedure is repeated until conver~ence is attained, usually in only one or
two iterations. It is of interest to mention that expressions similar to equations
(6.145) have been used for some years to derive approximate solutions to two-
dimensional problems. but the values or 0, D, and B2 were usually obtained in
an ad hoc manner, rather than in the systematic way described above.

Generalizations to multigroup problems with various trial functions are to be
found in the literature. H The physical principles involved have been described
in preceding sections. but it is often quite complicated to keep track of them in a
detailed multigroup calculation. Derivations of discrete ordinates equations
from \'ariational principles have also been suggested. U

I. For a constant source in a subcritical system, usume an expansion as in equa-
tion (6.42) and derive the expansion coefficients aA.I).

2. Verify that if the inner product (41t, L~) is for~ with cJ)t and cJ) in one-speed
P1 form (§6.2b), the result is the same. e~pt for a constant (471') of normaliza-
tion, as is obtained upon multiplyina the left side of equation (6.49) by cPt and of
equation (6.SO) by Jt. and intearatin, o~r volume.

3. Verify that the one-speed diffusion theory operator is self-adjoint .
••. Verify that the muJtigroup P1 equations (6.S6)and (6,") are adjoint to equations

(6.$4) and (6.'S).



5. Suppose that a small, purely absorbing spherical lump is introduced into a
cavity in a system. It is desired to use perturbation theory to estimate the change in
k, but the neutron flux is depressed appreciably within the lump as a result of
absorption. Use collision probability methods to estimate the flux depression
and thus obtain an expression for I:::1k taking into account the flux depression in
the absorbet.46

6. It is desired to find the change in a due to the addition of a small amount of
material to the surface of a spherical system. Instead of considering perturbed
and unperturbed systems with different boundaries, boundary conditions can be
imposed at a radius large enough to enclose either system and then apply the
theory of §6.3b. Find expressions for l:::1a resulting from the perturbation referred
to above in energy-dependent transport theory and in multigroup diffusion
theory.

7. Verify that equation (6.92) gives a value of a for which the error is proportional
to the product of 0<1> and 0<1>+.

8. Show that equation (6.118) is valid.
9. For a one-speed problem in a spherical system, compare the effects on a of a

perturbation as given by transport theory (§6.3b) and by diffusion theory. Make
the comparison for purely absorbing and purely scatteriI1g perturbing samples,
as a function of the radius of the sphere.

10. Derive equation (6.93) from equation (1.38) and the considerations in §2.1 b.
11. Derive equation (6.36). noting that for the final condition on (;t a delta function,

rather than unit importance, must be used.
12. Derive equations (6.140) and (6.141).
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7. NEUTRON
THERMALIZATION

7.1a Introduction

The slowing down of the fission neutrons in a thermal reactor is conveniently
treated in two parts. If the neutron energy is in excess of a value of the order of
I eV, the thermal motion of the scattering nucleus may be neglected and the
nucleus can be assumed to beat rest in the laboratory system. Furthermore, the
nucleus (or atom) may be treated as being free, i.e., unbound, because the bind-
ing energy in a molecule is not significant in comparison with the energy in-
volved in the neutron-nucleus interaction. Hence, for neutrons with energies
greater than about I eV, i.e., in the slowing-down region, it is possible to use
simple slowing-down theory, involving elastic scattering with known cross
sections.1 The elastic scattering formulas used in Chapter 4 are based on this
consideration. Except for fine structure in the resonance region, the neutron
flux at any energy is then, to first approximation, inversely proportional to the
energy.

The slowing down of neutrons with energies below 1 eV, i.e., in the thermal
region. is called lhermalizQlionL because the neutron energies are comparable
with the thermal energy of the scattering nuclei and the latter can no longer be .
regarded as being at rest. If the scattering nucleus is in motion, neutrons may
gain energy. by up-scattering. as well as lose energy in collisions. Hence, up-
scattering. which can be ignored in the slowing-down region, must now be
taken into comicteralion. In 'addition, allowance must be made for the binding
of the nuclei in molecules or in a crystal lattice. If the nucleus is in a bound



state, it cannot recoil freely in a collision; instead there is an interaction between
the scattering nucleus and its neighbors in the molecule or solid. Finally, the
possibility of interference effects in the thermal region must not be overlooked.
Since the de Broglie wavelength (§1.1b) of a neutron of very low energy becomes
comparable with the separation of the nuclei in a molecule or a crystal, inter-
ference can occur between the neutrons scattered from different nuclei.

As a consequence of the three effects just outlined, the scattering cross sections
required for use in the transport equation in the thermal energy region are com-
plicated functions of the energy. The cross sections depend on the physical and
chemical forms and temperature of the scattering material and, in some cases,
also on the orientation of the material relative to the direction of the neutron
motion. Because of the complexity of the -scattering cross sections in the thermal
region, most of the data are not yet available from experimental measurements,
although considerable progress is being made in this connection (§7.4g). Conse-
quently, for a satisfactory treatment of the thermalization problem, it is generally
necessary to use scattering cross sections computed according to various models
of the scattering process.

Absorption cross sections, on the other hand. can be taken to be the same as
for the free nuclei, since the binding and interference lead to negligible changes
in absorption.1&

Since these models are not exact, it is important to have some physical under-
standing of the approximations involved and of their range of validity. Unfor-
tunately, to explain the situation completely would require the use of quantum
mechanics and solid-state theory. In order to avoid this, some of the important
results are introduced without derivation. Nevertheless, it is hoped that the
reader will be able to acquire some comprehension of the main ideas, if not of
all the details involved.

Before proceeding with a discussion of the problems of thermalization, some
indication may be given of the situations for which the methods described in this
chapter are or are not important. In some reactors, notably fast reactors, for
example, thermalization is of no concern. Furthermore, in a large, homogeneous
(uniform temperature). well-moderated reactor. it is probably a good approxi-
mation to treat all the thermal neutrons as having a Max.wellian energy spectrum
at a temperature close to or somewhat abo ••'e that of the moderator (§7.6f),
without being concerned with the precise method of thermalization.

In a heterogeneous reactor with large temperature gradients. however, or in
any system with only partial thermalization. i.e .• where many of the neutrons are
absorbed before they are completely thermalized. a detailed treatment is essential.
In such cases, the energy spectrum of thermal neutrons is not simple and calcu-
lations based on appropriate scattering models are required. Realistic calcula-
tions of this type are particularly important for predicting temperature
coefficients. i.e., the effect on criticality of temperature changes in various
components of the reactor. such as fuel. moderator. reflector. or coolant
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It is apparent that any motion of the scattering nuclei will affect the kinematics
of a collision with a neutron. In any material at temperature T, a free atom (or
molecule) has an average kinetic (thermal) energy of jkT, where k is the Boltz-
mann constant, 8.617 x 10-5 eVrK. Thus, whenever a neutron has energy
comparable with kT, i.e., about 0.025 eV at normal room temperature, the
kinematics of its collision with a nucleus will be strongly affected by the thermal
energy of the nucleus.

The actual energy distribution of the· scattering nuclei will depend on their
chemical binding, if any, because of the interactions between the atoms in the
scattering material. Consequently, a realistic treatment of the kinematics of
scattering for actual materials requires a consideration of the chemical binding
problem. The simplest model for thermalization is, therefore, one in which there
is no chemical binding in the moderator, i.e., a monatomic gas. In this case, the
energy distribution among the atoms is simple, namely, the Maxwell-Boltzmann
distribution, and it is possible to derive an accurate expression for the inter-
change of energy of a neutron with the gas atoms. The procedure will be de-
scribed in §7.3c in order to gain some physical insight into the thermalization
process and also because the ideal monatomic-gas model resembles the actual
behavior of liquid and solid materials at high temperatures.

To examine the effects of chemical binding, it is useful to distinguish between
elastic and inelastic scattering. According to convention, a scattering is said to
be inelastic if any of the internal quantum states of the scatterer are changed as a
result of the collision with a neutron, and to be elastic if there is no such change.
In considering the scattering of neutrons having energies of the order of I MeV,
for example, the scattering is inelastic if the nucleus itself is in an excited (higher
energy) state after the collision, and elastic if the nucleus remains in its ground
state.

For neutrons of low energy, e.g., of the order of 1 eV or so., excitation of the
nucleus as a whole is, of course, impossible in a scattering collision. A nucleus
(or atom) bound in a molecule is, however, in a system which has discrete
quantum energy states associated with the vibration of the atoms in the molecule
and with the rotation of the molecule as a whole. In the collision of a neutron,
even one of low energy, with a nucleus bound in a molecule or with the molecule
as a whole, there can then be a change in the vibrational or rotational (or both)
quantum states due to a loss or gain of energy. Such a collision would thus be
described as inelastic scattering. In elastic scattering of a low-energy neutron, the
vibrational and rotational energies of the molecule are unaffected, but the
molecule as a whole will recoil so as to conserve energy and momentum. Because



the molecule has kinetic (thermal) en~rgy, however, it is possible for the neutron
to gain energy in an elastic scattering ..

In a nuclear reactor, molecular gases, e.g., carbon dioxide coolant, may be
present; the considerations indicated above will then be directly applicable. Of
greater practical interest, however, are liquid moderators, such as light and heavy
water, which are composed of molecules. These substances cannot be treated
accurately as collections of independent molecules since there is continuous
interaction between them. Nevertheless, it has been found useful to start out by
considering the scattering from individual molecules and then to impose
modifications based on some model of the molecular interactions in the liquid
state.

At a higher level of complication is the scattering of a neutron by a nucleus
(or nuclei) bound in a crystal lattice, such as beryllium or graphite. In inelastic
scattering., the vibrational excitation of the crystal will be changed as a result of
the collision with a thermal neutron. A quantum of vibrational energy in a
crystal is called a phonon, and inelastic scattering of the type under consideration
is said to be accompanied by the emis,sion or absorption of phonons. In elastic
scattering from a crystal, the crystal as a whole recoils so as to conserve momen-
tum with the neutron, but the resulting change in the neutron energy is negligible.
It is of interest to note that a theory of the recoil of the whole crystal, which is an
essential feature of the Mossbauer effect in the emission and absorption of
gamma rays, was first developed for neutron scattering.2

In order to compute energy transfer between a neutron and the nuclei in a
crystal lattice it is the practice to employ a more-or-Iess detailed model of the
crystal. Such models, however, are quite approximate and the results of the
calculations must be tested by comparison with experiment when possible.

In conclusion, there is a general feature of chemical binding that should be
noted, namely, that the scattering cross section of a tightly bound nucleus is
larger than that of the same nucleus in the free state.· The reason for this will be
evident from the following considerations. For a free atom, the neutrons are
scattered isotropically in the center-of-mass coordinate system where this
system consists only of the neutron and the single scattering atom. If the atom is
bound in a molecule, so that the molecule as a whole recoils in elastic scattering,
and there is no inelastic scattering, the neutron scattering will again be isotropic
in the center-of-mass system. But the latter system now consists of the neutron
and the whole molecule containing the scattering atom. If the mass of the mole-
cule is relatively large compared with that of the neutron, the center-of-mass
system is then essentially identical with the laboratory system. Thus, scattering
by a tightly bound atom may be regarded as being isotropic in the laboratory
sys.tem, whereas for a free atom it is isotropic in the neutron-atom center-of-
mass system.

• In some 5ituation~ the scattering cross section may be smaller for the bound nucleus
as the result of interference effects (d••§7.ld). .



. 1 In general, therefore, the differential cross sections for the free and bound
atoms will not be the same. The relationship between them may be derived in the
following manner. Let UCree(JL') be the differential cross section for scattering
from a free atom through a scattering angle having the cosine JL' in the center-of-
mass system. Similarly, let Ub(JL) be the differential cross section for scattering
from a bound atom with JL the cosine of the scattering angle in the laboratory
system. Since, as stated above, both kinds of scattering will be isotropic, it
follows that

( ') UCree
UCree JL = constant = 41T

II where Urree and Ub are the respective total scattering cross sections. Furthermore,
f in general,

. , ucree(JL') dJL' = ucree(JL) dJL

Ub(JL') dJL' = Ub(JL) dJL.

If the neutron ;s scattered in the forward direction, i.e., JL = JL' = 1, so that
the nucleus does not recoil, the mass of the nucleus is immaterial and the differ-
ential cross sections in the laboratory system will be the same for bound and
free atoms, i.e.,

Urree(JL = 1) = Ub(JL = I).

Upon combining the foregoing relations, it is found that

O'b = 41TUb(JL = I) = 41TUcree(JL = 1)

By using the familiar expression 3 relating the cosines of the scattering angles in
the laboratory (JL) and center-of-mass (JL') systems, i.e.,

I + AJL'

JL = vI + 2AJL' + A2'

ab = (I + ~)2Ucree, (7.1)

where A is the mass of the scattering atom relative to that of the neutron. Since
equation (7.1) givcs the ratio of Ub to aCree, the cross sections may both be either
macroscopic or microscopic valucs.

It is evident that a~ the scattering cross section for a tightly bound atom,
must be larger than the value atree for the free atom. The ratio ab!atree is seen to



be greater the smaller the mass of the scattering atom; thus for hydrogen,
A z 1 and Ub should be approximately 4urree. This is in agreement with experi-
ment; for neutrons of low energy, the microscopic cross section Ub ~ 80 barns
whereas Urree ~ 20 barns. When the neutron energy approaches the binding
energy of the atom in the molecule, however, Ub decreases and tends to become
equal to Urree•

7.1d Interference Effects: Coherent and Incoherent Scattering

When particles (or waves) are scattered elastically or inelastically from a regular
system of scattering centers, the possibility must be considered that the scattering
contributions from the various centers will interfere with one another. This
interference may become important when the (de Broglie) wavelength of the
particles is of the order of the distance between the scattering centers. The actual
(not reduced) wavelength of neutrons of energy E eV is given by the de Broglie
equation as

\ 2.86 X 10-9 (7.2)
" = VE cm.

Hence, for neutrons of O.Ol-eV energy, the wavelength of 2.86 x 10-8 cm is
comparable to the spacing between atoms in a molecule or a crystal. Inter-
ference effects will therefore often be important in the scattering of thermal
neutrons.

In computing neutron interference effects, it is not sufficient merely to add the
scattered intensities from the various scattering centers; it is necessary to add the
amplitudes with due regard for the phase differences between the scattered
waves. The general procedure is identical with that used in connection with the
scattering of light. For slow neutrons the interference phenomena form the basis
of neutron diffraction which, like x-ray diffraction, is used for the study of
crystal structure."

Interference effects are manifestations of coherent scattering, i.e., scattering in
which the amplitudes of the scattered wa\'es are to be added in a coherent
fashion with definite phase relations. In the clastic scattering of slow neutrons
from crystals, this addition gives rise to the Bragg scattering peaks, i.e., scattering
occurs preferentially in certain directions.

For a crystal with a spacing d between lattice (scattering) planes, there will be
strong reflections whenever

n.\ = 2d sin 8, n == 1. 2, . . . (7.3)

where 8 is the angle between the neutron direction and the lattice planes (Fig.
7.1). Upon inserting equation (7.2) into (7.3), it is seen that the condition for
strong reflection is

_r::.E n 0.143
v r.. - d sin 8 t



where E is in eV and the spacing d between lattice planes is in angstroms.
If neutrons with a continuous energy spectrum are incident on a single crystal

at a fixed angle, 8, then only those neutrons satisfying equation (7.4) will be re:..
flected strongly. In this manner monochromatic (or monoenergetic) neutrons
can be obtained. Suppose, on the other hand, the neutrons are incident on a
polycrystalline material, such as ordinary beryllium or graphite, in which large
numbers of microcrystals, with dimensions small in comparison with a mean
free path, are oriented at random. Then for any sufficiently high neutron energy
there will always be- some crystals for which equation (7.4) is satisfied. The
elastic scattering cross section, as a function of energy, then shows pronounced
structure. as seen in Fig. 7.2 for beryllium.s

If the neutron wavelength A is greater than 2dmax, where dmax is the largest
distance between lattice planes in the microcrystals, then equation (7.3) can no
longer be satisfied, and there can be no Bragg scattering. The maximum neutroR
wavelength, equal to 2dmax, at which such scattering can occur is called the
Bragg cutoff. The corresponding neutron energy, below which there can be no
Bragg scattering. is then given by equation (7.2) as 0.0204/(dmax)2 eV, where dm&%.

is in angstroms. In Fig. 7.2, the cutoff is seen to occur at a neutron energy of
about 0.005 eV: hence, for beryllium the spacing dmax is ~ 2A. Incidentally, the
break seen in the cross section curve just above 0.005 eV, indicates that there are
important scattering planes in beryllium with a spacing somewhat less thaft
dma:r.·

A complication arises in the coherent scattering of slow neutrons because not
all nuclei in a given material scatter in the same manner. Clearly, nuclei of dif·
ferent elements will scatter differently and so also will the various isotopes of a
given element. In addition, if the nucleus has a spin, the scattering will depend
upon whether the neutron (spin 1) and the nucleus (spin l) combine to scatter in
a state of spin 1+ -}or 1- 1.

To a good approximation, the elastic scattering of a low-energy neutron by a
tightly bound nucleus, in a definite spin state, can be described by a real scalier·
Lngamplilud~ (or scattuing J~nglh), Q; having the units of length, which may be
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325).

positive or negative.6 The corresponding microscopic bound scattering cross
section, O'b, is then

In order to describe the coherent scattering from the nuclei of a nuclide with
spin, the average scattering amplitude must be used. If a + is the amplitude for
scattering in the 1 + ! spin state of the neutron-nucleus system, which occurs
with probability (l + 1)/(21 + I), and a _ is the amplitude for scattering in the
1 - 1 spin state, which occurs with probability 1/(21 + I), then the average
scattering amplitude, called the coherent scattering amplitude, acob, is

I + I 1
aoob = 21 + I a + + 21 + I a - .

- _ A_( I + I 2 I 2)
O'b ...,. ..-rr 21 + I Q + + U + 1 Q - •
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The difference between Ub and CTcohis called the incoherent scattering cross
section, CTlnc;hence,

_ 1(I + 1) ~
CT1nC= CTb- CTcoh= 41T (21 + 1)2 (a+ - a_) .

For a combination of isotopes, the foregoing results may be written in the
general forms

CTcoh= 41T( a)2
Ub = 47Ta2

CT1nC= Ub - CTcoh= 47T[a2 - (a)2],
where the bars over the a terms denote averages with respect both to the spin
and the relative abundance of the isotopes.

It will be seen in §7.3d that the coherent and incoherent cross sections enter
into the general cross sections for elastic and inelastic scattering from bound
nuclei in crystals (and other materials). For materials with nuclei having ran-
domly oriented spins, it has been shown that the proper value of the coherent
cross section to be used in calculations is CTcoh,as defined above. If the spins of
adjacent (or nearby) nuclei are correlated or if there are other correlations be-
tween such nuclei, the situation is more complex.7

An examination of the cross sections of the most important moderating
materials shows that, within experimental error, scattering is entirely coherent
for beryllium, carbon, and oxygen. For the latter two elements this is to be ex-
pected as the predominant isotopes, carbon-12 and oxygen-l 6, have zero nuclear
spin. Scattering is largely coherent (CTcoh= 5.4 barns and Ub = 7.6 barns) for
deuterium, and almost entirely incoherent for hydrogen (CTcOh= 1.8 barns and
ab = 81.5 barns). The foregoing values are for nuclei with randomly oriented
spins. The incoherence of the scattering in hydrogen is a consequence of the
strong spin dependence of the neutron-proton forces. It is of interest to mention
that this dependence has been partly determined by observing the difference in
the coherent scattering of neutrons from molecules of orthohydrogen, i.e., H2

with parallel nuclear spins, and parahydrogen, with anti parallel nuclear spins.8

It will be seen in due course that the coherent and incoherent contributions
enter into the general cross sections for elastic and inelastic scattering from vari-
ous materials. The variations of cross sections with energy in the thermal region
are, however. quite complex, as may be seen from an examination of Fig. 7.2
(see also Fig. 7.12). The reason for the complexity, as will become apparent
later in this chapler, is that the elastic and inelastic scattering cross sections
depend not only on the constantsab' CTlnc,and CTcoh,but also on the dynamics of
the scattering system.

7.28 The Maxwell Distribution
When neutrons are moderated in a large medium with little (or no) absorption,
they may attain approximate thermal equilibrium with the moderator at the



existing (uniform) temperature. In thermal equilibrium the neutrons will have a
Maxwellian spectrum 9; in terms of neutron density, this requires that at
temperature T,

neE) dE = 2nth 1£ e - EileT dE,
Y;kT~kT

where n(E) dE is the number of neutrons per unit volume having energy in the
range between E and E + dE, and nth is the total density ofthermalized neutrons.
In practice, as is well known, the actual spectrum of so-called thermal neutrons
generally departs from a Maxwellian distribution, and the extent of such
departure is of considerable importance.

The energy dependence of the neutron flux, cP(E), for a Maxwellian spectrum
can be obtained by multiplying equation (7.5) by to = ,/2E/m; the result may
then be expressed as

4>(E) dE = ~Af(E, T) dE, (7.6)
where

E (7.7)J"f(E, n 5i (kT)2 e-~·lcr,

so that

foe M(E, ndE - 1,

and

J~:;.,. - ;;;,..



It is of interest to note that v8kT/7Tm is the average speed in a Maxwellian dis-
tribution. If equation (7.7) is differentiated with respect to E and the result set
equal to zero, it is found that a maximum in the flux occurs when the neutron
energy is kT (Fig. 7.3). Thus, kT is referred to as the most probable energy for
the thermal neutron flux.

7.2b The Transport Equation for Thermal Neutrons

It was mentioned in Chapter I that for some neutron transport problems, e.g.,
in rapidly flowing fluids or single crystals where the direction of flow or crystal
axes define preferred directions in space, the total cross sections for slow neu-
trons depend significantly on the direction of neutron motion. These special
situations will not be considered in this text, because they are not usually sig-
nificant in nuclear reactors. In' most polycrystalline materials, for example, the
neutron mean free path is usually large in comparison with the crystallite dimen-
sions; hence, with a random orientation of the crystallites, there is no' preferred
direction on a macroscopic scale. * Consequently, the ordinary transport equa-
tion will be used in the treatment of neutron thermalization. It is convenient,
however, to adopt a somewhat different notation for the cross sections.

As long as attention is confined to thermal neutrons, with energy ~ 1 eV, for
example, collisions may be divided into two categories: those from which
thermal neutrons emerge and those from which such neutrons do not emerge.
The former category involves only scatterings, both elastic and inelastic, in the
general sense described in §7. lc; the corresponding macroscopic cross section is
denoted by a.(r. E). The collisions in the category from which thermal neutrons
do not emerge include all absorption reactions, such as (n, y) and (n, ex) reactions,
and also fission. because essentially all the neutrons produced have high ener-
gies. In the present context, all such reactions, including fission, will be called
absorptions, and the corresponding macroscopic cross section will be denoted
by aa(r, E).

For neutrons in the thermal energy range, the quantities a, and a'f which
appear in the neutron transport equation (1.14) are then given by

a = a(r, E) = as(r, E) + aa(r, E),

a'f = a(r, E')!(r; n', E' ~ n, E)

= a.(r, E')f.(r; n', E' ~ n, E).

Since the function J. now describes scattering only, it is normalized to unity
(§1.1b). so that

f f J. (r; n', E' ~ n, E) dn dE = 1.

• For ~n kinds of Jr&pbite, such as extruded graphite and pyrographite. the crystal-
lites ma)' be partiall)' alianed and then the preferred direction should be taken into account.



For neutrons in the thermal energy region, the transport equation (1.14) then
takes the form

1 8<1>--;- + n·V<1> + [u,(r,E) + ua(r,E)]<1>v ut

= f f u,(r, E')f,(r; n', E' 4- n, E)<1>(r,n', E', t) dn' dE'

+ Q(r, n, E, t). (7.9)

As stated earlier, for a large moderating system at uniform temperature with
little or no absorption, the energy distribution of the thermal neutron flux will be
approximately Maxwellian. In fact, for the limit of an infinite, source-free
medium at constant temperature and zero absorption it is possible to have a
neutron population which-is strictly Maxwellian, independent of time and space.
This means that M(E, T) must satisfy the thermal neutron transport equation
with no time dependence, i.e., 8$/8t = 0, no space dependence, i.e., V<1> = 0,
no absorption, i.e., aa = 0, and no source, i.e., Q = O. Hence, in these circum-
stances, the transport equation (7.9) for thermal neutrons may be written as

a.{r, E)M(E, T) . f f a,(r,E')f,(r; n', E' ~ n, E)M(E', T) dn' dE'. (7.10)

The constraint represented by equation (7.10) must be satisfied by any scat-
tering cross section. It is actually an aspect of the general principle of detailed
balance which is applicable to a system at thermal equilibrium.1o In the present
case of scattering of neutrons by nuclei in thermal equilibrium at temperature
T, the detailed balance requirement is that

M (E, T)a.(r, E)f,(r; - n, E -+ - Q', E')
= M(E', T)a,(r, E')I.(r; n', E' -+ n, E). (7.11)

This equation states that, in a system in thermal (Maxwellian) equilibrium, the
rate of scattering collisions with nuclei by neutrons of energy E from which
neutrons emerge with energy E' is equal to the rate of such collisions by neutrons
of energy E' from which neutrons emerge with energy E. Upon integration of
equation (7.11) over-Q' and E', and using the normalization relation ofequa-
tion (7.8). the result is equation (7.10).

The detailed balance equation (7.11), which is more restrictive than equation
(7.10), is useful in thermalization problems. In the first place, most scattering )
cross sections used in thermalization calculations are computed from some
theoretical model and contain many approximations. It is importan~ however,
that they at least admit the Maxwell distribution as a solution in the limit of
large volume and weak absorption. This can be assured by requiring that the
cross sections satisfy the detailed balance condition of equation (7.11). It will
be seen in §7.3d how this condition may be imposed systematically by using
certain symmetry properties of scattering functions.



,'r: 7.2c Reciprocity Relation·for Thermal Neutrons

Even more important is that the condition of detailed balance, applied to a
medium at a uniform temperature, implies a reciprocity relation. It will be re-
called that in Chapter 2 such a relation, known as the optical reciprocity theorem,
was derived for one-speed theory, and was represented succinctly in terms of the
Green's functions by equation (2.99), i.e.,

which relates the neutron flux at fl due to a source at f2 with the flux at f2 due to
a source at fl'

For general energy-dependent problems, however, this simple relation does
not hold, but there is a reciprocity relation between the flux and the adjoint
Green's function [equation (6.13)]. The reason for the difference in behavior is
that the energy-dependent transport operator is not self-adjoint, but the trans-
port operator for the one-speed problem is almost self-adjoipt, where" almost"
means that it is necessary only to change the sign of the direction of neutron
travel, i.e.-,the sign of n and of t (§6.lf).

It will now be shown that the thermalization transport operator can be made
almost self-adjoint by an elementary transformation and that this is the reason
for the existence of a simple reciprocity relation. Consider an inhomogeneous,
time-independent transport problem [cf. equations (6.4) and (6.5)], represented
by

-L<1> = n·V<1> + (ua + us)<1>

- f f ulr, E')fs(r; n'E' ~ n, E)<1>(r, n', E') dn' dE'

= Q(r, Q, E).

The corresponding adjoint equation [cf. equation (6.7)] is
_Lt<1>t = -n·V<1>t + (ua + us)<1>t

- f f u,(r, E)J.(r; n, E ~ n', E')<1>t(r, n', E') dn' dE'

- Qt(r, n, E), (7.14)

where the symbols have the same significance as in Chapter 6. The usual free-
surface conditions are implied for the angular flux, <1>,and its adjoint. <1>'.

The functions .p and .pt are now defined by

1
.p(r, n, E) = --=== <1>(r,n, E)

VM(E,n

'Il(r, n, E) E VM(E, n<1>t(r,n, E),

where T is the temperature of the medium which must be uniform.



If these expressions are substituted into equations (7.13) and (7.14), respec-
tively, it is found that

Q. Vl/J+ (aa + as)l/J - Ifa~f(r; n', E' -+ Q, E)

x JM(E', T) .I·(r Q' E') dQ' dE' =.JL (7.15)
M(E, T) 'Y" . VM

and

-Q. Vl/Jt + (aa + as)l/Jt - f f asf(r; Q~ E -+ Q', E')

x J M(E, T) ./.t(r Q' E') dQ' dE' = VM Qt (7.16)M (E', T) 'Y , , ,

. where a; is i:7s(r, E') and as is as(r, E).
If the variables in equation (7.16) arc changed from Q and Q' to -Q and

- Q', respectively, the result is

Q·Vl/Jt(r, -Q, E) + (aa + as)l/Jt - II aJ(r; -Q, E-+ -Q', E')

x J ::(c:;, f) l/Jt(r, - Q', E') dQ' dE' = VM Qt(r, - Q, E). (7.17)

According to the condition of detailed balance, i.e., equation (7.11), the factor
multiplying !/Jtin the integrand of equation (7.17) is identical with that multi-
plying!/J in the integrand of equation (7.15). Thus, the left side of equation (7.17)
is the same as that of equation (7.15), with !/Jt(r, - Q, E) substituted for
!/J(r,Q, E). It follows, therefore, that the operator which acts on l/J is almost
self-adjoint, i.e., it is self-adjoint except for the sign of Q.

Suppose that
Q = Qt = oCr - rd o(Q - Ql) o(E - E1),

so that ¢(r, Q. £) and <1>t(r, Q, E) are Green's functions, i.e.,

<1> = G(r!> Qit E1 -+ i, n, £)

<1>' = et(rh nh £1 -+ r, n,E),

and the equivalent functions corresponding to ap and apt are

ap = ap(rh nlt £1-+ r, n,£)

apt = .p'(rlt nh £1 -+ r, n,E).

By considering equations (7.15) and (7.17), it is seen that the sources for .p and
,,' now differ by the factor M(£h T). It follows, therefore that

M(£h 7)P(rh nh £1 -to- f, n,£) - ,,'(rit - nh £1 -to- f, - n,E), (7.18)



where the change from Q1 to - Q1 on the right results from the difference in the
source directions in equations (7J 5) and (7.17), and the change from Q to - Q
from the correspondence between ¢J(r, Q, E) and ¢Jt(r, - Q, E). Upon, intro-
ducing the definitions of ¢Jand ¢Jt on page 327, equation {7.18) becomes

M(Eb T)G(rb Qb E1 -'? r, Q, E) = M(E, T)et(rb - Qb £1 -'? r, - Q, E),
(7.19)

which is the desired reciprocity relation between the Green's functions for the
flux and its adjoint for thermalization problems.

If the general relationship, equation (6.13), between the Green's functions is
combined with equation (7.19), the result is

M(£l' T)G(rIt QIt £1 -'? {, Q, E) = M(E, T)G(r, -Q, E -'? rIt -Q1, E1)·

(7.20)

This is similar to equation (7.12) of one-speed theory, except that each side is
weighted by the Maxwellian of the source. Thus, as in one-speed theory (§2.7b)
the solutions of various simple thermalization problems may be related to each
other.

The basis of the reciprocity relation of equation (7.20) is that, by using the
detailed balance condition, the thermal transport operator can be made almost
self-adjoint by an elementary transformation. It is important from the theoretical
standpoint that the transport operator can thus be made almost self-adjoint
because self-adjoint operators are understood much better than are operators
which are not self-adjoint. Thus, for thermalization problems, conclusions can
be drawn concerning the existence of eigenvalues and other properties of the
solutions that are not possible for more general energy-dependent problems.ll

. The foregoing results indicate a similarity between thermalization problems
in a medium of uniform temperature, but otherwise of arbitrary complexity, and
one-speed problems. If, however, the temperature of the medium is not uniform,
the reciprocity relations do not hold. The reason is, formally, that in the trans-
formation to the ¢J equations when T is a function of r, the factor M(E, T(r»
will not commute with the gradient operator, i.e.,

7.3a Scattering from a Monatomic Gas

In this section, consideration will be given to some neutron sC&ttering laws, that
is, specifications of the quantities a, and f, to be used in the transport equation
in the treatment of thermalization problems. The discussion will begin with the



simplest of scattering models, in which the scatterer is a monatomic gas. It will
then be extended to more realistic moderator systems, including molecules and
crystals. As in nearly all portions of this book, the symbol u is used to represent
macroscopic cross sections.

The problem of the thermalization of neutrons in a monatomic gas is simple
enough for the scattering laws to be derived explicitly.12 Although there are no
important moderators that are monatomic gases, it seems worth while, never-
theless, to develop the scattering laws for the simple case because (a) they
exhibit qualitative features which are of general applicability and (b) they form
a useful standard for comparison with more realistic but more complex laws for
scattering in other media. In addition, these laws are all based on approximate
models, and so it is reasonable to start from the simple (exact) model of the
monatomic gas since it is, at least, qualitatively useful.

Consider a collision between a monatomic gas atom, having velocity V, and
a neutron with velocity v. The relative velocity, Vn between the two particles is
then

and if p. is the cosine between the velocity vectors, i.e., p. = v· VJvV, the relative
speed, Vn is

t'r = Vv2 + V2 -2v Vp..

If P(V) dV is the probability that a nucleus (or atom) has velocity V within
dV about V, the probability that a neutron will collide with such a nucleus is

where UsO is the (energy-independe~t) macroscopic cross section for a free (or
isolated) atom at rest, i.e .. the microscopic cross section of the atom multiplied
by the number of atoms per unit volume of gas.· The total collision (scattering)
rate for a neutron of velocity v is then found by integrating equation (7.21) over
all atom velocities V. The corresponding macroscopic scattering cross section,
Us(l"). is obtained upon dividing this rate by t'; hence,

U,(l') = u'.o f l'rP(V) dV.v

If A is the mass of the nucleus relative to that of the neutron, i.e., M = Am,
where M is the actual mass of the nucleus and m is the mass of the neutron, then
for an isotropic Maxwellian distribution of nuclear velocities



where the v direction has been chosen as the polar axis of a spherical coordinate
system. If this expression is inserted into equation (7.22), integration over the
azimuthal angle, ep, yields 27T, and hence .

aiv) = aso J1 [to vr(~)3/2e-MV2/2kT27TV2 dV dp..
V -1 Jo 27TkT

Upon evaluating the integrals, the result is

as(£) = ;s; [(132 + t) erf f3 + ~ f3e-02],

where £ = tmv2 is the kinetic energy of-the neutrons, f32 = A£lkT, and erf
stands for the error function·(see Appendix).

The limiting behavior of as(£) for small and large values of the neutron
energy is of some interest. When £ is small, erf f3 is proportional to f3~ equation
(7.24) then reduces to

as(E) oc a~o oc a~o for £ small. (7.25)

Consequently. when the neutron energy, E (and hence its speed, v), is small, the
scattering cross section is proportional to I Iv.

The physical significance of this result may be seen by noting that when v is
very small. I', is almost equal to V; the collision rate (or probability), as given by
equation P.:! I ) is then independent of the neutron speed and depends only on
J " the speed of the atoms. This collision rate is then simply the rate at which the
moving atoms collide ••••ith (or bump into) the neutron. Since the scattering cross
section is the collision probability per unit distance of neutron motion, it is llv
times the constant scattering collision rate. Hence, the scattering cross section
for \cry slow neutrons is proportional to IIe

At high energics,erf f3 -. I. and since f32 is large, equation (7.24) leads to
a.(E) = a,o, the Single atom scattering cross section. As expected, at high
neutron energies, the scattering cross section is independent of the thermal
motion of the gas atoms. The same limiting behavior of a:s(E) at low and high
energl~ also follows from the scattering laws for more realistic systems.

7.3b The Scattering Function for a Monatomic Gas

In order to calculate the sC'Qlleringfunction (or scallering kernel)

(1,(£')/.(£' ~ £, p.o),

~ here f'-fj is the cosine of the neutron scattering angle, it is necessary first to
determloc the probabthty p(r' - r, 140) that a neutron of speed v' will emerge
~'ith 5p«d ,. from a collision with an atom of velocity V in a monatomic gas.·

• The term ••free PI" 11commonly used in the literature in connection with scalierin, by
• monatonuc: pi; the tatter ICf'minoloo is preferred here, however, as it is more specific.



Once this has been done, the result is multiplied by vrP(V)asolv' and integrated
over all atom velocities, i.e., all V and p., to obtain ash. The derivation is lengthy
and so only the result will be given here.13

The quantities € and K are defined by

IiK = mlv' - vi = momentum change (or momentum transfer) of a neutron.

= mvlv'2 + v2 - 2p.ovv',

where Ii is the reduced Planck constant (§1.1b).
The result of the derivation referred to above can then be ~ritten as

(7.26)

It is apparent that viE' lEash, for scattering by a monatomic gas with atoms
of mass Am, is a function only of (. and K, i.e., the change in energy and
momentum of the neutron. It will be seen later that this is true, in general, for
other scattering laws, although the vector )( may be involved rather than its
magnitude, K.

In the limit as T -- 0, i.e., when ElkT and E'lkT are large, equation (7.26)
reduces to the familiar slowing down relationship for energies above the thermal
region, given in Chapter 4. Thus, when T is small, the exponential in equation
(7.26) will be very small unless

If the expressions for ~ and K given above are inserted, this condition implies the
well known result (§l.lb)

,.. = ~ [(.4 + \)jf - (.4 - l)J~l

• Some writen represent the energy change. _, by "01, but this leads to confusion with
another common use of the symbol QI (17.4<1).
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angular range, which includes this value of 1-'0, it is found that, for T small, the
normalization leads to

J27T:;2K2 exp - [U:~K2 (E - ~:~r]
= 2~ ~/L' - 4 [(A + 1)J:, + (A - l»)il}

If this substituti.on is made in equation (7.26), it is seen directly that, at low
temperature (or E large relative to kT),

u,(£')[.(£' -+£;1'0) = 2,,(1 u..:.'a)£' s{/Lo -.4 [(A + l)J:, - (A -.o)i]}
as in equation (4.5).

7.3c The Energy Transfer Function for a Monatomic Gas

Since the scattering function (or kernel) just considered involves both the energy
and momentum changes of the neutron, it is not easy to display its dependence
on temperature. The situation is easier to understand if the scattering funct\on
is integrated over all scattering angles, 1-'0, to obtain the energy transfer function
a,(E')/,(£' ~ E), i.e.,

a,(£')/,(£' ~ E) = 27T f~1 oiE')f(E' ~ E; 1-'0) dl-'o.

The energy transfer function can be derived by integrating equation (7.26) over
1-'0, but an alternative approach is of interest.

Consider, once again, the collisions between neutrons. of speed v' and gas
atoms or speed Vand direction cosine I-' relative to v', for which the collision rate
is given by equation (7.21). It is required, first, to determine the probability
g(t" ~ 1') dt, that the neutron will have a final speed between v and v + dv
without regard to the scattering angle, 1-'0. For this purpose, it is convenient to
transform to the center-or-mass coordinate system; the velocity, Vc, of the
center or mass in the laboratory system is then given by

V _ ." + AV
C - A + 1 '

where .,' and V refer to the laboratory system.
The scattering in the center-of-mass system is isotropic, and the initial and

final speeds of the neutron in this system are

A
~ = Vc = --Vr•. A + 1



Let fJ denote the angle between Vc and vc, the final neutron velocity in the
center-of-mass system (Fig. 7.4), then the final neutron speed, v, in the laboratory
system is

J (A )~: (A)v = V; + A + 1 Vr . + 2Vc A + 1 Vr cos fJ. (7.27)

For a collision with an atom having fixed values of V and p., Vc and Vr are
fixed. Furthermore, since the scattering is isotropic in the center-of-mass
system, the probability of a neutron emerging from the collision with direction
cos fJ is proportional to d cos fJ. But, from equation (7.27),

v dv = Vc(-4. ~ 1 Vr) d cos fJ.

Hence, the probability for v to lie in the interval dv is proportional to v dv, and
g(v' ~ v) ex:: v.

The value of v may range from a minimum, Vmln, when cos fJ = - 1, to a
maximum, Vmax, when cos (J = 1; then, from equation (7.27),

Vm1n = IVc - A ~ 1 Vrl
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It follows, therefore, that

g(v' -+ v) = 0

2v
= 2 2vmax - vmln

Upon multiplying the collision rate between an atom of speed V and a
neutron of speed v', as given by equations (7.21) and (7.23), by the probability
g(v' -+ v) that the neutron will have final speed v, dividing by v', and integrating
over all atom velocities, it is found that t~e velocity transfer cross section is

u,(v')/,(v' -+ v) = us,a roo J1 vrg(v' -+ V)27TP( V) dfL dV.
v Jo -1

This is the probability, per unit distance of neutron motion, that the neutron is
scattered from v' to v.

Since

dE_. =mv
dv '

u,(E')/,(E' -+ E) = _1 us(v')/'(v' -+ v).
mv

When this result is set into equation (7.29) and the integrals are evaluated, as in
deriving equation (7.24), it is found that

u,(£')/;(E' _ E) = U,O TJ'J {exp (£' _ ~) [erf (71 IF _ p IE)
• £' 2 kT kT ~kT ~Fi

where '1 and p are defined by

A+I A-I
..,. 2VA and p = 2VA·

The upper signs in equation (7.30) are to be used if E' < E and the lower signs
if E' > E.
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FIG: 7.5 ENERGY TRANSFER FUNCTION IN A MONATOMIC GAS WITH A = 1
(AFTER K. H. BECKURTS AND K. WIRTZ, REF. 14).

The dependence of the energy transfer function on the gas temperature is
shown in Figs. 7.5 and 7.6,14 as a function of £1£'; the ordinates are given rela-
tive to the atom at rest. Figure 7.5 is for a gas of free protons (A = 1) and Fig.
7.6 for a gas of oxygen atoms (A = 16). It is seen that at high neutron energies,
i.e., £' » kT, the scattering is very much like that from nuclei (or atoms) at
rest; in these circumstances, down-scattering in energy, i.e., £1£' < 1, is more
important than up-scattering. As the energy approaches kT, however, up-
scattering becomes important and a neutron is likely to gain energy in a collision
with a gas atom. The up-scattering effect is evidently more important for light
nuclei (protons) than it is for the heavier n.uclei.
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FIG. 7.6 ENERGY TRANSFER FUNCTION IN A MONATOMIC GAS WITH A - 16
(AfTER K. H. BECICURTS AND K.. WIRTZ. REF. 14).



It may be noted that for a proton gas, TJ = 1 and p = 0; then equation (7.30)
takes the particularly simple form

(E').f(E' E) O'so E' - E rf fF ror E' < E
0'. Js --+ = E' exp kT e ,J IT J.I

= ~~ erf Jlr for E' > E.

The foregoing expressions for O'.!. can be used to treat the monatomic gas
model in general transport problems. Such calculations are frequently employed,
as indicated earlier, for comparison with more complicated scattering models.
These models are found to be equivalent to the monatomic gas model at high
temperatures.15 Furthermore, this gas model has often been used with the mass
of the scattering atom not equal to its actual mass but to some higher (semi-
empirical) mass chosen to simulate binding effects in the realistic system.16

7.3d The General Scattering Law

A quantum-mechanical theory of neutron scattering from a system of bound
nuclei, first proposed. by E. Fermi,17 using the Born approximation and what is
now called the Fermi "pseudo-potential," has been refined by others.18 A
number of essentially equivalent theoretical expressions have been derived 19and
some of the more useful formulations will be discussed here.

Suppose neutrons are undergoing scattering in a medium containing bound
atoms of a single element; the scattering may be dependent on the nuclear spin
and different isotopes, as in §7.ld, but the difference in mass of the isotopes is
neglected. It has been shown 20 that the scattering function may then be written
as the sum of double differential coherent and incoherent macroscopic cross
sections, i.e.,

O',(E')f,(n'. E' -+ n. E) = O'COh(n', E' --+ n, E) + 0'1nC(n', E' --+ n, E) (7.33)

where the terms on the right of equation (7.33) are given by

O'coIl(Q'. E' -+ n. E) = :;~ ~ 2~ f~U)f ef(x.r-dltl)G(r. t) dr dt (7.34)

O'1¥(n. E' -+ n, E) = ;"h ~ 2~f~co f ef(x.r-dlll>G.(r, t) dr dt, {7.3~

and the integration over r extends over all space.·

• The aymbol * is used when the integration is over all space. instead of over a finite
volume wbcD dV is employed (see 11.lb).



In these equations, Ucoh and UiDC are the bound coherent and incoherent cross
sections defined in §7.1d, except that here (and in what follows) they are macro-
scopic cross sections; n is the reduced Planck constant. As before, € = E' - E is
the energy change of the neutron or the energy transfer to (or from) the scattering
nucleus. The quantity nx is now the neutron momentum change vector, defined
by

nx = mev' - v).

The functions G and G" which are not Green's functions, will be considered
presently.

Before proceeding, attention may be called to a number of features of equa-
tion (7.34) and (7.35). First, it is seen that the nuclear aspects of the scattering
are entirely contained in the quantities Ucob and UiDC; that is to say, these cross
sections are sufficient to characterize the nuclear interaction between a neutron
and a nucleus (or atom). The dynamics of the scattering system and, in particu-
lar, the interactions between the scattering atoms on the other hand, are con-
tained in the G functions. This separation of the scattering function into two
factors, one containing the neutron-nucleus interaction information and the
other the binding information, is a consequence of the uSe of the Born approxi-
mation and the Fermi pseudo-potentia1.21 In addition, it should be noted that the
integrals involve only changes in the neutron momentum and energy.

The functions G and G5 are known as pair distribution functions" 22 and in the
absence of quantum effects they may be interpreted in the following manner. If
a scattering atom is at the origin at time zero, then G(r, t) is defined as the
probability that a second atom will be present within a unit volume at position
r at time f. The function G(r,1) may be written as the sum of two parts: one,
GIl(r, t), where s stands for "self," applies when the second atom is the same
(identically) as the first, and Gd(r, f), where d is for "distinct," refers to different
(or distinct) atoms. Hence,

G(r, t) = G.(r, t) + Gd(r, 1),

where G. is the probability that an atom \\ hich is at the origin at the time zero
will be at r at time t, whereas GIS is the probability that another atom will be at
r, t. These interpretations of the G functions are useful in suggesting approxi-
mations, as will be seen in due CoUfSC.

The scattering laws expressed by equations (7.34) and (7.35) are often written
in slightly different forms. Thus, using the definition

Sex, f:) E 2~I:.f r<-·r-d'·)G(r. t) dr dr,

equation (7.34) may be written a5

0cob(n', E' -. n,E) - ::: ~ SeX, ~),



and if Ss(x, E), which is also sometimes represented by Slne(X, E), is defined in. an
analogous manner with Gs(r, t), there is an expression similar to equation
(7.37) for Ulne(Q', E' -+ Q, E), namely

ume(Q', E' -+ Q, E) = ::h ~ Ss(x, €). (7.38)

The detailed balance condition, expressed by equation (7.11), can be written
in terms of the functions Sex, €). This condition would relate a collision having
momentum and energy changes Fix and € with the inverse collision having
changes -Fix and -€. If equations (7.33), (7.37), and (7.38) are substituted into
equation (7.11), the result is

IFM(E, T)A/ E [UeohS( -x, -€) + UlneSs( -x, -€)]

IE :
= M(E', T)A/ F [UeohS(K, €) + UlneSs(K, €)]

This equation must be satisfied by both the coherent and incoherent parts
separately; upon making this separation and introducing equation (7.7) for the
Maxwell distribution, M(E, T) it is found that

S(K, €) = e(;/kTS( - K, - €) (7.39)

Sa(K, €) = e(;/kTSs( -K, -€). (7.40)

In view of the importance of the detailed balance condition, calculations of
the scattering functions are often set up so that the equations (7.39) and (7.40)
are satisfied automatically. In particular, equation (7.39) may be written

so that e-(:2IrTS(x,~) must be an even function of €.

It will be seen that in many scattering models, including those for poly-
crystalline solids and molecular liquids, S(K, €) is a function of K2 and €, and not
of the vector x directly. When this is the case, it is convenient to define new
dimensionless variables 23

_ 1i2~ E' + E - 2p.oV£E'
a = 2AmkT = AkT

-~ E - E'
fJ == kT = . kT . (7.43)

If S( a~/J) is now defined by

Sea, fJ) == kTe'/2S(X, .€), (7.44)

it is seen that the detailed balance condition [equation (7.41)] requires that.
S(~ fl) be an even function of fJ.



Experimental scattering cross sections are frequently interpreted in terms of
the function Sea, fJ), as will be seen in §7.4g. If this function can be determined
experimentally for negative values of fJ, i.e., for down-scattering, it can be
extended to positive values, i.e., to up-scattering, by imposing the detailed
balance condition. From the equations in this section, the scattering cross
section is given by

us(E')!s(fl.', E' ~ fl., E) = 4rr~kT ae-~/2[uCOhS(a, fJ) + UlncSS(a, fJ)],

where Ss(a, fJ) is defined ina manner similar to equation (7.44).
Reference may be made to another form of the scattering law that is frequently

employed. It includes a function x(x, t) that is intermediate between G and S,
and is therefore called the intermediate scattering function. The coherent and
incoherent forms are defined by

XCOh(X, t) = J ej()(·r>G(r, t) dr

(n' E' n E) - Ucoh 1£ I JIX) -l£tlfl ( ) d
Ueoh .:Jc. , -+ ~c., - 47Tn A./ E 27T _ cc e Xeoh X, t t

(n' E' n E) UIDC 1£ I JIX) -lft'fI ( ) d
U1ne ~c. , -+ ~c., = 47Tn A./ If' 27T _ <Xl e 'X1nC X, t t.

In view of the interpretation given above of the pair distribution functions, the
•.distinct" part of G, i.e., GI1(r, t), contains all the interference effects of
the scattering. The reason is that interference is the result of the addition of the
scattering amplitudes from different, i.e., distinct, atoms, and the correlations
between such atoms are entirely contained in GI1• It was seen in §7.1d that these
interference effects are important in elastic scattering, giving rise, for example,
to Bragg peaks at particular angles with single crystals and to scattering cross-
section peaks in polycrystalline materials, as in Fig. 7.2.

For in~Jastic scattering, however, especially in polycrystalline solids and in
liquids, the interference effects are much less important,24 Consequently, in
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considering inelastic scattering, it is a good approximation to set Gd = 0; then
equations (7.34) and (7.35) can be combined to give

Gs(E')h(n', E' -+ n, E)

= Geoh + Glne J E _1 f <Xl f et()(·r - d/MG (r t) dr dt (7.49)
47Tn E' 27T _ <Xl S , ,

in accordance with equation (7.33). This result is known as the incoherent ap-
proximation, but it is important to recognize that both Geoh and Gine are included.
All that has really been done is to neglect the "distinct" part of the pair distri-
bution function that gives rise to interference effects. Since Gd is complicated,
the incoherent approximation represents a substantial simplification over the
original form of the scattering function.

Because interference effects are usually significant for elastic scattering, par-
ticularly from crystals, it is evident that the incoherent approximation will not
generally be satisfactory for treating elastic scattering. There are some situations,
however, when elastic scattering is unimportant. For example, ina large homo-
geneous thermal reactor, the spectrum of thermal neutrons will be determined
mainly by the competition between neutron thermalization and absorption. The
thermalization or. more correctly, the energy transfer is determined to a great
extent by the inelastic scattering. Thus, although the elastic scattering will affect
the neutron transport properties, it will have little influence on the energy
transfer in a large system. The incoherent approximation is then permissible.

Another situation of interest in which the incoherent approximation can be
used is for scattering by hydrogen. It was seen in §7.ld that for randomly
oriented proton spins, neutron scattering by hydrogen is almost entirely in-
coherent. In these circumstances, the neglect of Gd in equation (7.34) for the
coherent scattering will cause very little error.

Detailed calculations of the neutron scattering law in bound-atom systems
usually begin with the intermediate scattering functions, x(x, t) and X1DC(X, r)
defined by equations (7.45) and (7.46). These functions can be calculated from a
quantum-mechanical description of the dynamics of the scattering system. In
particular, it has been shown 25 that for sca~tering for a system of N nuclei of one
kind that

N

Xoob(X, I) == ~ L L Pt(T)<tPtle-Pc'P,<O)elX'P,.(t)I;t)
1.1'.1 l



N

XlnC(X, t) = ~ I I PtOl<,ptle-tX.J'/(O)etX.J'/(t>!tf;l),
1=1 t

where the symbols <II> indicate that a quantum mechanical expectation value
is to be computed by integration over the variables of the wave function ,pt. In
these equations the indices I and l' refer to the various scattering atoms present,
whereas i labels the quantum mechanical state of the system. The quantity
Pl(T) is the probability that the system is initially in the quantum state repre-
sented by ,pt with energy Eh so that, according to statistical mechanics,

P,(D = .-E,lkT /2,- e-E,IkT.

From equations (7.50) and (7.51) it IS possible to derive the intermediate
scattering function for any system in which the quantum states are known. For
example,26 in considering a molecular gas in its electronic ground state it is often
a good approximation to write the wave function, ,ph as the product of the
known translational, rotational, and vibrational wave functions, Le.,

tPl ~ tPlmtfl<R)tPt<V)'

For realistic scattering systems, such as crystalline solids and molecular liquids,
the quantum states are not known in detail, and it is then the practice to apply
an approximate model for calculating the scattering function. In order to under-
stand the features such a model should have, it will be useful to consider a few
relatively simple scattering systems.

For scattering from a monatomic gas with atoms of mass Am, the intermediate
scattering function is found 27 to be

[
K2 JXlnc(x, 1) = XCOb(X, t) = exp - Um (kTt 2 - ilir).

In this casco XtDC = Xcob since there is no interference between the various scat-
tering atoms; that i.s to say, there is no contribution from the J i= /' terms in
equation (7.50). By substituting the results of equation (7.52) into equation
(7.47) or (7.48), and using equation (7.33), it is possible to derive equation (7.26)
for the scattering function.

It is worth noting that for small times, equation (7.52) reduces to

X1DC ~ exp (2~:;1) for 1 small. (7.53)

This result applies more generally than for a monatomic gas; it is usually the
correct limiting form for small values of t in other systems.
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7.4c Isotropic Harmonic Oscillator

In the isotropic harmonic model, the scattering atom of mass Am is considered
. to be bound to other atoms by an isotropic harmonic force; the atoms oscillate,

as though they were connected by springs, and the restoring force at any instant
is proportional to the displacement of the atom from its equilibrium (or refer-
ence) position. This model was used in the first attempt to represent neutron
scattering from bound nuclei.28 It is sometimes referred to as the Einstein
crystal model, because it is similar to one used by A. Einstein for computing
specific heats of solids.29 If the energy quantum of oscillation is !iwo, where Wo
is the angular oscillation frequency, then for incoherent scattering the isotropic
harmonic model leads to 30

x••,(><. t) . exp {2:;~o [(;; + I)(e'ooo'- I) + ;;(0-'000' - I)l}.

where n is the average number of oscillator quanta excited at the existing
temperature, T, i.e.,

1n=----eflwolkT - 1

If the atom were weakly bound in the crystal, the vibrational energy quantum
liwo would be small in comparison with the thermal energy kT; then since
Iiwo/kT« I. the expression for n reduces to n = kT/liwo. If this value for n is
inserted into equation (7.54) and the exponentials are expanded and the limit is
takt:n for Wo - O. the result is the same as equation (7.52) for a monatomic gas.
Thus the scattering atom behaves as if it were free in a gas, since the weak
binding has essentially no effect on neutron scattering. Although· this result has
been derived for a particular model, it is true in general when the vibrational
energy is small in comparison with kT 31; thus, the monatomic gas model
represents the high-temperature limit for scattering from bound systems. In
practice. \ibrational energies are often in the vicinity of 0.1 eV; hence the tem-
peratur~ ,",ould have to be very high, e.g., »lOoooK, for the limit to be realized.

The limIt of strong binding or low temperature, i.e. whenlievo/kT» I, is
wmev.hat more: anteresting; then n :::::0, and equation (7.54) becomes

Xlac;(K. t) = exp {2::~o(e1wot _Ol)} (7.55)

This zero-temperature form of X1DC would apply to a situation in which the
neutron could only IOj~ energy in a scattering collision, since the oscillating
atom is initially in its lowest energy state.

If the bound (macroscopic) scattering cross section, Ub' is represented by

theft in theincohcrent approximation, i.e., using equations (7.47) and (1.49), the



zero-temperature isotropic harmonic oscillator equation (7.55) gives the scattering
function as

Upon expanding the exponential as

exp {_liK_2_cetCJJot _ I)} = exp ( __ liK_2_) ~ ..!- (_liK_
2
_)n etnCJJot,

2Amwo 2Amwo ~ n! 2Amwo
n"'O

and using the representation of the Dirac delta function (see Appendix)

1 f<Xl- ettx dt = o(x),
27T - <Xl

asCE')fs(Q', E' -+ Q, E)

J
- co

ab E nK2 I nK2 n
= -4 E' exp (-2A ) 2 , (1A ) 0(£ - nnwo},

7T mwo . n . _ mwo
n-O

which is the form derived by E. Fermi.32

It will be noted that the nth term in the expansion contains 0(£ -nnwo) and
thus corresponds to the excitation of n vibrational quanta of the oscillating
atom, with an energy loss of nnwo by the neutron. The expression of equation
(7.58) is consequently known as the phonon expansion since the nth term repre-
sents the creation of n phonons in the crystal (§7.1 c).

The energy transfer cross section may be found by integrating equation (7.5&)
over all scattering angles. /-Lo: the total scattering cross section is obtained by
integrating over all final energies, E. If the total scattering cross section is
denoted by a,eE'), i.e., .,

a,(£') - :2 a.(£').

then, from equation (7.58),

. , ab i~'{£f ( ,,~-\ I (.,,~_\11
a",(£ ) = 4rr 0 .~ E exp - 2A.mUJJ n! lAmUJJ &(~ - MWo) dn dE. C7.59)

In this equation, « and Ie'- are functions of E. E', and of the scattering angle,
11-0, given by

trKJ - 2m(E' + E ..•..2,A.o V"EE')



as in '§7.3b. The dQ in equation (7.59) is replaced by 27T dJLo, and the variable
changed from JLo to x, where

IdJLo I = ~ Idxl·2 EE'

Upon integrating equation (7.59) first over E, the delta function requires that

E = E' :- nliwo,

and introduction of the variable x leads to

(v'E' ± VE' - nliwO)2x 2: = ---------.
Aliwo

In particular, the cross section for no phonon excitation, i.e., n = 0, is given by

, Ub Aliwo [ (4E' )]uo(E) = - --, I - exp --.- .
4 E· Aliwo·

At low neutron energies, there is not sufficient energy available to excite phonons,
so that the total scattering cross section is

a.( £') = ao( E') for E' small.

It follows from equation (7.61), therefore, that

as expected. At higher energies, however, it is seen that ao(£') decreases as I/E'.
The phonon expansion developed above, in equations (7.56) through (7.62), is

for a zero-temperature oscillator. A similar phonon expansion can be made for
finite temperatures. but the results are more complicated.33 For oscillators at
finite temperature. the scattered neutron may gain energy by absorbing phonons
from the ~olld as well as lose energy by the creation of phonons, i.e., absorption
of energy by the solid.

To return to the zero-temperature phonon approximation, it is of interest to
eumine the resulb for the scattering of neutrons by bound protons, i.e.,
hydro,en atoms. for which A-I. The curve in Fig. 7.734 shows the calculated
ratio of (I.(E') '(1.0. where (110. defined in §7.3a, is the scattering cross section of



free gaseous hydrogen atoms, as a function of the neutrop. energy relative to the
phonon (vibrational quantum) energy, i.e., E' /nwo. The value of Uso for hydrogen
is taken to be Ub/4, in accordance with the arguments in §7.1c. Hence, from equa-
tion (7.62) for E' = 0, it follows that us(E')/uso = 4. As E' increases, it is seen
that the scattering cross section ratio decreases approximately as 1/E', provided
E' < nwo and no phonons are excited. When E' /liwo is 1, one phonon can be
excited, and there is a sudden increase in the scattering cross section due to the
contribution of ul(E'); there are subsequent jumps at E'/nwo = 2 when two
phonons can be excited and contribute to the total scattering, and so on.

It is seen from Fig. 7.7 that at the higher neutron energies the scattering cross
section approaches the monatomic gas value, i.e., u,(E')/uso = 1. It can be
shown 35 that, at such neutron energies, the energy transfers are about the same
in scattering from monatomic hydrogen gas, i.e., free protons, as from oscillator
(bound) protons with the same average kinetic energy. Thus, at high neutron
energies, e.g., E' > lOnwo, the scattering is not significantly affected by the
chemical binding of the scattering atoms. On the other hand, it is clear that, in
the phonon model, there will be no energy transfer at all from the neutron to the
bound atom when E' < nwo, and the transfer will be small for E' ::::;nwo.

The theory described above, of neutron scattering by protons bound by an
isotropic harmonic potential, is of interest for several reasons. In the first place,
the model exhibits the effects of· chemical binding in' an especially simple and
clear manner. Second, it furnishes an introduction to methods for treating more
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realistic scattering solids. Furthermore, it turns out to be a good first approxi-
mation to the scattering in some actual moderators, particularly zirconium
hydride.3ti

In the crystal lattice of zirconium hydride, each hydrogen atom is at the center
of a tetrahedron formed by four zirconium atoms. Because of the large mass
ratio. Azr' AH ~ 91. and the symmetrical environment of the protons, the bind-
ing is quite well approximated by considering the protons to be harmonically
bound. as in an Einstein solid. with IiwQ = 0.137 eV. The (microscopic) scattering
cross sections of hydrogen in zirconium hydride, obtained by subtracting the
cross section for zirconium from the experimental values for the hydride, are
shown in Fig. 7.8 as a function of neutron energy.37 The resemblance to Fig. 7.7
is striking: the rounding off of the curve in Fig. 7.8 at neutron energies of liwo,
2!rwo. eIC.• is due to thermal motion of the bound atoms.

A discrepancy between the isotropic harmonic model and an actual crystal
ariSes from the possibility that a neutron hav1ng energy less than IiwQ may lose
energy even at low temperatures. The reason is that, in the crystal, the neutron
can excite other \ibrational modes, namely, the so-called acoustical modes, with
energies less than neuQ. the energy of the Einstein oscillator.38

7.4d Scattering by Real Crystalline Solids: Cubic Crystals

In the theory of the solid state38 it is well known that the Einstein crystal
represents only a crude approximation to the phonon spectrum, i.e., the spectrum



of vibrational frequencies, of a real monatomic crystal. For the Einstein solid,
the vibrational frequencies are required to be multiples of Wo, but in actual
situations they do not have this simple relationship. For scattering from a simple
cubic crystal it is possible, however, to devise a scattering law, not much more
complicated than that for an Einstein crystal, which has been widely used for
treating inelastic scattering from crystalline moderators.

In making this derivation, the following approximations and assumptions are
involved: (1) The incoherent approximation is used; that is, as in §7.3e, inter-
ference effects are neglected. (2) It is assumed that atoms of only one kind are
present in the solid; they are bound by harmonic interatomic forces in a crystal
with cubic symmetry having one atom per unit cell in the crystal lattice. (3) The
possible vibrational modes (or quanta) are described by a continuous spectrum,
f( w), normalized so that

LCD few) dw = 1,

where few) dw is the probability that the lattice will have normal modes of
vibration between wand w + dw. In practice, there will be an upper limit,
Wmax, to the frequency spectrum, and this is allowed for by settingf(w) = 0 for
w > wmax.

Under these conditions, the intermediate scattering function may be written
as40

{
nK2 }Xtnc(><, I) = exp 2Am [y(l) - y(O)].

y(l) = Jooc {coth (;kwT)cOS wI + isin wI }f~) dw. (7.64)

The function y(O) is obtained from equation (7.64) by setting I = 0; thus,

y(O) = LeG coth (~wT) f~) dw.
By extending f(w) to negative frequencies by defining f( - w) = few), it can be
shown that

J~ f( w)e - A",!2kr
y(t) - y(O) = _""2w sinh (nwj2kT) (e -Iul - 1) dw. (7.65)

Upon combining equations (7.47), (7.48), and (7.49) with (7.63) and (7.65), the
double differential scattering cross section is given by

(E')J(Sl' E' ~ Sl E) = ~ {£_1 Jco -tdila. J., , 47Th ~ £i 21T _ Cl e

[
hKJ JtC I( w )to -lklll:lJrT - taJC ]

X exp 2Am _ co 2w sinh (hw/2kT) (e - 1) dw dr. (7.66)



This expression has been used extensively for obtaining inelastic scattering cross
sections in thermalization studies, and appropriate computer programs have
been developed.41 In these codes, the function few), as well as the temperature
and the mass number, A, of the scattering material specify the problem.

Some comments may be made concerning equation (7.66). First, if only one
mode of vibration is allowed, then this expression reduces to equation (7.54) for
a harmonic oscillator (or Einstein crystal). In verifying this, allowance must be
made for the inclusion of both positive and negative frequencies in .equation
(7.66)~f(w) for a single mode of vibration must then be represented by

few) = sew - wo) + sew + wo),

thus permitting frequencies of Wo and - woo
A phonon expansion may be made for the scattering, just as in §7.4c, by ex-

panding the exponential as a power series, i.e.,

[
Ii/(2 ] ~ I [Ii/(2 ] n

exp 2Am y(t) = ~ n! 2Am yet) .
n=O

The nth term in this expression can then be shown to correspond to the excitation
or absorption of n phonons. In practice, if few) is know~, then the first few
terms in the expansion may be evaluated numerically, but the higher terms are
so complicated that they are usually approximated.

It has been found that equation (7.66) gives reasonably accurate values for
inelastic sC3ltering cross sections even when the conditions assumed in its
deri\ atil)n are not satisfied. Thus, it has been applied to solids in which the crystals
do nol ha\e cubiC symmetry, the interatomic forc€s are not harmonic, and there
is more th3n one atom per unit cell. In performing the computations for such
materials. the function j(w) is usually taken from some model of the crystal
dynamics from" hich the normal modes of vibration can be evaluated. As an
e,ample. scattering by graphite will be discussed in §7.4h. It is also possible to
den'" apprll\lmate values ofj(w) from measured scattering cross sections, as
"ill he seen in PAl!... ~

T~ plc311~. \ alues of the double differential cross section calculated from
equatll)n (7.~) agree "Ith those obtained experimentally. There may be marked
dl~repancle, at some \ alues of energy and momentum transfer. but the over-all
trends arc rea~onable. Moreover. for reactor calculations. the main concern is
the effect of the scattering cross sections on the neutron spectrum in the system.
Erro~ in detailed aspects of the cross sections can often be tolerated because
they ha\e Itttic effect on the neutron spectrum. It is important to note, however,
that If the model used for computing aJ, is not firmly based on the physics of the
scattertn~ medIum. then experimental checks must be made on the validity of the
calculated ~pectrum.

Etrom are contJOually being made U to assess or remove the approximations
in\"ohed an the derivation of equation (7.66). Nevertheless, it appears that the



inelastic cross sections derived from this equation are adequate for a variety of
neutron transport problems.

Since equation (7.66) makes use of the incoherent approximation, in which
interference effects are neglected, it is evident that it cannot be applied to
elastic scattering, for which interference effects are important. For systems in
which transport of thermal neutrons is significant, the coherent elastic scattering
should be taken into account. This involves the evaluation of Xcoh, given by
equation (7.50), using the techniques of solid-state theory; the details are,
however, beyond the scope of this book.43

7.4e Liquids: Model of the Diffusing Atom

A simple and suggestive classical model has been proposed for treating the
scattering of neutrons by monatomic liquids.44 An atom is considered to be
diffusing in ·the liquid, and the pair distribution function, Gs(r, t), can then be
found by using its classical interpretation as the probability that an atom
present at the origin at time zero will be at r at time t. If the position probability
of the atom is governed by the diffusion equation

8G
_s == DvV2G (7.67)ot 5'

with D a diffusion coefficient, together with the condition

Gs(r,O) = S(r),

It will be observed that equation (7.68) is similar to the expression derived from
Fermi age theory for the slowing down of neutrons from a point source.45 More
generally. the result is familiar in heat conduction.46

By using equation (7.68), the incoherent intermediate scattering function may
be obtained from equation (7.46). Upon performing the Fourier transforma-
tion,47 the: result is

In more accurate theories of scattering by liquids, the coefficient of K2, i.e., Dvt,
is replaced by more general functions of the time.48

7.41 The Gaussian Approximation

In all the scattering models considered above, the intermediate scattering
function in the incoherent approximation can be written in the form

X1Ae(X, t) == exp {~~ [y{t) - Y{O)]}.
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For the simple cubic crystal, this actual expression was used in equation (7.63);
it is also applicable to the Einstein crystal and the free monatomic gas, which
have been seen to be special cases of the cubic cryst~al (§§7.4c, 7.4d). Moreover,
the classical model of an atom diffusing in a liquid, i.e., equation (7.69), is of the
same form with

2DvAm
Ii t.

According to equation (7.65), the function y(t) - y(O) is negative for t > 0
for the cubic crystal, and it is also negative for the diffusing atom. It follows,
therefore, that equation (7.70) is a Gaussian function of K for any t > O. Thus,
insofar as the dependence of Xlnc on K, the momentum transfer, is concerned,
equation (7.70) is Gaussian for all the cases considered.

Because of its considerable generality, equation (7.70) has been used ex-
tensively for determining scattering from systems, such as liquids, for which
accurate theoretical treatments are not available. Under these circumstances, it
is known as the Gaussian approximation. In applying this avproximation, y(t)
must be known and it is often derived from equation (7.65) withf(w) estimated
from physical considerations. An application of this procedure in connection
with the scattering of neutrons by water is described in §7.4h.

The function y(t) - y(O) may be given a simple classical interpretation by
more or less reversing the derivation for the diffusing atom. It can be shown
that the Fourier transform of Xlnc(><, t) gives the pair distribution function,
G!I(r. t). Thus. the Fourier inversion theorem 49 applied to equation (7.46) yields

-a2 = y{t) - y(O) Ii
2Am '

exp ( - r2f4a2)
G.(r, t) = (47Ta2)3/2 •

It should be observed that G. is properly normalized as a probability, i.e.,

I G.(r, t) dr = 1,

and that the mean of r2 is given by

r2 == I r2G.(r, t) d.r = 002•



Thus, the expected mean square displacement of the atom during the time I,
i.e., r2, is proportional to a2 and hence to .y(f) - y(O). This is the required
physical significance of the latter function.

Since the foregoing is based on a classical interpretation of Gs(r, f), it should
be employed only with classical forms of y(f). These may be found from ex-
pressions derived earlier by considering the classical limit of Ii -+ O. For example,
in the case of a monatomic gas, equation (7.52), together with equations (7.70)
and (7.72), gives, in the limit Ii -+ 0,

kTa2 = -- f2 (monatomic gas).2Am
Similarly, for the other models:

a2 = AkT roo f(~) (l - cos wf) dwmJa w

a2 = kT I - cos waf (harmonic oscillator or Einstein crystal)
Am w5

a2 = DVf (diffusing atom).

The values of a2, i.e., one-sixth the mean square displacements, for these models
are plotted in Fig. 7."9as functions of time, with arbitrary scales.5a The vibra-
tional frequency spectrum of the crystal was assumed to be of the Debye form
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FIG. 7.9 VALUES OF THE QUANTITY ~ AS FUNCTION OF TIME FOR VARIOUS
MODELS (AFTER G. H. VINEYARD. REF. ,u).



few) = 3w2jw~ax.51 A conjectured behavior for an atom in a liquid is indicated
by the broken curve; at short times thisis like the one for a monatomic gas (or
simple crystal) and at long times it parallels that of a diffusing atom.

7.4g Experimental Determination of Scattering Laws

As noted in §7.1a, scattering cross sections in the thermal region are complicated
functions of the neutron energy; it is thus not practical to measure these cross
sections over the full range of neutron energies and scattering angles. Such·
scattering cross sections as have been determined experimentally are useful,
however, in at least two respects. First, they may be compared with the predic-
tions of theoretical models, thereby confirming or indicating deficiencies in the
theory, as in §7.4c. Second, the experimental cross sections may be used to
determine some parameters or a function in a semiempirical expression for the
scattering cross sections. Once this determination has been made; the cross
sections for other neutron energies and scattering angles may be computed from
the given expressioa.

To illustrate the latter application, suppose that an inelastic scattering cross
section has been measured and that it is desired to fit it to the form of equation
(7.66), which applies to a simple cubic crystal. Thus, the functionf(w) is to be
determined. First, the function Ss(x, €) is derived from the experimental cross
sections by means of equation (7.38) using the incoherent approximation.

Furthermore. according to equations (7.38) and (7.66),

J fX' [IiK2 fa: !(w)e-Il.W/2kT ]
SlI(X. €) = 2rr. _ a:: e - !d,fl exp 2Am _ <Xl 2w sinh (liwj2kT) (e - twt - I) dw dt.

(7.74)
For small values of K2• i.e., small momentum transfer, the exponent in the square
brackets in equation (7.74) may be expanded. By using the representation of the
delta function in equation (7.57), it is thus found that if € = -liw, then

. [SlI{X. E)] Ii e-ll.w/2kT

~~ K2 = 2Am 2w sinh (nwj2kT) few),

which can be solved for few) if SlI(X, €) is known for small x. Thus, by extrapo-
lating results derived from the measured scattering cross sections to low momen-
tum transfers, it is possible to derive an empirical frequency function, few), for
use in the scattering law. Once few) is available, us!' can be computed for all
neutron energies from equation (7.66). In practice, the function SII(<<' fJ), defined
by equation (7.44), is generally used rather than SII(X, €) for extrapolation pur-
poses. U In this case. it is found that the frequency function is given as a function
of f3 (:= hwlkT) by

f(fl) == 2fJ sinh HfJ) lim [SII(<<' fJ)].
«-0 «



It should be mentioned that there are a number of difficulties in determining
the semiempirical scattering laws in the manner indicated above. In the first
pla<;:e,substantial corrections may have to be made to the experimental data to
correct for multiple scattering 53 and for elastic and coherent scattering. In
addition, it is necessary that the scattering law should be both reasonable
physically and simpl~ enough to be determined from the experimental data. In
the next section, mention will be made of some semiempirical scattering
calculations.

7.4h Applications to Actual Moderators

The considerations of the preceding sections will now be applied to actual
moderators, graphite and water, in particular. Some reference will also be made
to the results for other moderators.

The crystal structure of graphite is somewhat unusual. The carbon atoms are
arranged in a hexagonal pattern in planar sheets; adjacent atoms in each sheet
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FIG. 7.10 PHONON SPECTRA FOR GRAPHITE DERIVED FROM TWO DIFFERENT
MODELS (AFTER J. A. YOUNG AND J. U. KOPPEL. REF. 55).



are bound strongly, but the atoms in different sheets interact only weakly. Thus
graphite is highly anisotropic; the thermal conductivity, for example, is quite
different in the directions parallel and perpendicular, respectively, to the sheets
of atoms.,Nevertheless, values in good agreement with the measured double .
differential inelastic scattering cross sections of polycrystalline graphite have
been obtained by using equation (7.66) for a cubic crystal in the incoherent
approximation. 54For these calculations, the phonon spectra,f(w), in Fig. 7.10,
were derived from models of the interatomic forces in graphite; the values for
two slightly different models are shown.55 The details of either spectrum are not
to be taken too seriously because they result from specific features of the calcu-
lational model used. The general characteristics of the phonon spectra in Fig.
7.10 are believed to be reasonable; thus, they give fairly good agreement with
the observed specific heat of graphite.

Simpler frequency spectra have been derived by the semiempirical method
described in §7.4g.56As an example, the spectrum,fCS), extrapolated from scat-
tering measurements on graphite is given in Fig. 7.11,57together with one of the

•calculated spectra from Fig. 7.10, also expressed as f(fJ). It is apparent that the
frequency distributions are similar although they differ considerably in detail.
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FIG. 7.11 COMPARISON OF PHONON SPECTRA FOR GRAPHITE CALCULATED
AND EXTRAPOLATED FROM SCATTERING MEASUREMENTS (AFTER F. CARVALHO,
REF. 56). .



For most practical purposes, anyone of the phonon spectra in Figs. 7.10 and
7.11 could be used; the resulting neutron spectra would be very similar.

In addition to the inelastic cross sections for graphite obtained from equation
(7.66) and the Young-Koppel frequency spectrum in Fig. 7.10, the elastic
scattering cross section has been computed without using the incoherent ap-
proximation.58 The total scattering cross sections obtained in this way are in
good agreement with observation, as can be seen from Fig. 7.12; this shows the
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! it
r[, calculated inelastic, elastic, and total scattering cross sections for graphite as

functions of the neutron energy, compared with the experimental points. The
almost vertical line at the left represents the Bragg cutoff in the coherent (elastic)
scattering, followed by fine structure due to interference effects (§7.1d).

For comparison with experimental data, the thermal neutron energy spectrum
has been calculated for graphite using scattering cross sections determined from
(a) the crystal model and (b) the monatomic gas (A = 12) model. The sources
from slowing down from higher energies were obtained by the procedure de-
scribed in §7.7a, and allowance for leakage was made on the basis of diffusion
theory by writing

for the leakage term in the conservation equation (1.17). Since the experimental
medium was large, a simple diffusion theory approximation to the leakage was
justified.

The results of the calculations are given in Figs. 7.13 and 7.14, for tempera-
tures of 323°K and 81OoK, respectively. 59 The experimental points were obtained
with a large block of graphite poisoned with boron so that the microscopic
absorption cross section for a neutron of 0.025 eV energy is 0.4 barn per carbon
atom. A pulse of fast neutrons was generated in the block and the spectrum of
thermal neutrons was measured by the time-of-flight method.60 The extent of the
boron poisoning was chosen so as to maximize the sensitivity of the spectrum to
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binding effects. For much less boron, the spectrum would be close to Max-
wellian no matter what the mechanism of thermalization, whereas for much
more, relatively few neutrons would reach thermal energies.

From the figures, it is apparent that the effects of atomic binding in the graphite
are substantial at (or near) normal room temperature, whereas they are much
less at high temperature. Moreover, the effect of binding becomes less significant
for higher neutron energies; as noted in §7.4c, the monatomic gas model is then
a good approximation. At both ordinary and high temperatures the experi-
mental data are seen to be well reproduced by the crystal model.

It is evident, therefore, that the scattering cross sections derived from a
relatively simple binding model are sufficiently accurate for computing the
thermal neutron spectrum in a reactor. There still remains, of course, interest in
improving the theoretical approach and in understanding more clearly the
importance of the various approximations made.81

The scattering of neutrons by individual water molecules, as in water vapor,
could be calculated from first principles. The energy of the molecule can be
described in terms of three degrees of freedom of translation, three of rotation,
and three of vibration. A quantum mechanical formulation of each type of
motion has been made." By using available data from molecular spectra to



derive the Pi(T) values, the intermediate scattering function could then be com-
puted from equations (7.50) and (7.51). Water vapor is, however, of no great
interest as a moderator.

For liquid water, the situation is much more complicated and no complete
theory is available. It is believed that the atomic vibrations are much the same in
the liquid as in water vapor, but the rotational motion is strongly hindered and
the translation is completely changed. In an early model, called the Nelkin
model,63 to be considered below, the hindered rotational motion was approxi-
mated by a torsional oscillation. Although later models have a somewhat better
physical content and give better agreement with measured double differential
scattering cross sections, the over-all results are essentially equivalent.64

For the calculation of scattering in liquid water by the Nelkin model, the in-
coherent approximation is used to treat the scattering by the hydrogen; as seen
in §7.3e, this should be a good approximation for uncorrelated proton spins. In
addition, the Gaussian approximation is employed, with a spectrum, f(w),
representing a set of discrete oscillator frequencies; this is equivalent to the use
of equation (7.66) with
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FIG. 7.15 EXPERIMENTAL AND CALCULATED DIFFERENTIAL SCATTERING CROSS
SECTIONS IN lIQUIO WATER AT VARIOUS INCIDENT NEUTRON ENERGIES (AFTER
J. R. BEYSTER. REF. M).
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where Aim is a somewhat arbitrary effective mass of the ith quantum state. The
first term in this summation is chosen to represent the translational motion of
the free gas molecules, i.e., with A1 = 18 and W1 = 0 (§7.4c). The second term
was taken to represent the hindered rotation (torsional oscillation) with IiW2 =
0.06 eV, whereas the remaining two terms were for vibrational modes with
IiW3 = 0.205 eV and IiW4 = 0.481 eV. The masses associated with these motions
were taken to be A2 = 2.32, A3 = 5.84, and A4 = 2.92.

The single differential scattering cross section, af(E'; Q' ~ Q), which is the
integral of af(E', Q' ~ E, Q) over E, computed in the manner indicated above,
is compared in Fig. 7.15 with experimental data and the results of free (mon-
atomic) gas model calculations.55 Agreement of the ;Nelkin model with experi-
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ment is seen to be good. Somewhat less satisfactory agreement has been obtained
bet\\een calculated and observed values of the double differential cross section.66

Many comparisons have also been made of computed and experimental
thermal neutron energy spectra in light water with various added poisons. The
calculational procedure was the same as described above for graphite. An
example of the results obtained, in which the observations were made with a
pulsed neutron source in conjunction with time-of-flight measurements, is
shown in Fig. 7.16.67 The bound (Nelkin) scattering model is seen to represent
the actual spectrum quite accurately, whereas the gas model is less satisfactory.
It may be mentioned. however. that various semiempirical treatments of water
as a free gas \\ ith a particle mass depending on the neutron energy have been
appreciably more successful than indicated in Fig. 7.16.68

A number of('lmpro\'ements of the Nelkin scattering model for liquid water
have been proposed and compared with experimental data.69 In addition, the
semiempirical method has been used to develop better treatments of hindered
translation and rotation. The results of some determinations of the phonon.
spectrum.f(p). for water are shown in Fig. 7.17, where the vertical lines indicate
the discrete frequencies of the simple Nelkin mode1.70

Models ha\'e also been developed for treating the scattering of thermal neutrons
by other moderators. including heavy water (deuterium oxide), beryllium, and



zirconium hydride.71 These will not be discussed in detail, but some comments
are of interest.

The dynamics of a D20 molecule in liquid heavy water is similar to that of the
H20 molecule in ordinary (light) water. Thus, three vibrational modes together
with hindered rotation and translation characterize the behavior of the atoms in
the D20 molecule. By using the incoherent approximation, a model has been
developed for scattering in heavy water, similar to that described above for
ordinary water, except that the quantities Wi and At differ in the two cases.72

There is, however, a further problem in connection with neutron scattering by
heavy water. It was pointed out in §7.1d that the scattering from protons, i.e.,
light hydrogen nuclei, with randomly oriented spins was almost entirely in-
coherent. But this is not so for scattering from deuterons with random spins, for
which the microscopic aeob = 5.4 barns and atoe = 2.2 barns. Consequently, the
effects of interference in the scattering from the two deuterons in the D20
molecule must be considered. In addition, the oxygen atom contributes rela-
tively more to the scattering term in D20, and this contribution may interfere
with that from the deuterons. These interference effects have been taken into
account in a refinement of the model referred to above.73

Scattering models for beryllium are similar in principle to that already de-
scribed-for graphite. The main difference, as far as inelastic scattering is con-
cerned, is that a different phonon spectrum must be used in the incoherent
approximation.74 The coherent effects, which are important for elastic scatter-
ing, depend upon the crystal structure (§7.ld), and so they will, of course, not be
the same for beryllium as for graphite.

It has been already noted (cf. Fig. 7.8) that neutron scattering by the hydrogen
atoms in zirconium hydride is remarkably well represented at high energies by
the isotropic harmonic oscillator model. For further refinements in treating this
and other moderators. the literature should be consulted.75

From the examples considered above. it is evident that the simplified models
of bound scattering systems. with appropriate modifications, can be used to
furnish the thermal neutron scattering cross sections required for reactor calcu-
lations. In particular, the incoherent Gaussian approximation has been found to
have a wide range of applicability.

7.58 Introduction
In the preceding sections, various methods have been described for calculating
the scattering of thermal neutrons by bound nuclei. Such calculations are an
essential aspect of nuclear reactor physics because the cross sections have not
been measured, at least not for the full range of parameters required to specify
the scattering. The calculational models may thus be regarded as techniques for



interpolation and extrapolation from the measured cross section data. In
addition, however, the models have much intrinsic physical content.

Once a model is available for computing the double differential scattering
cross section, osher; Q', E' ~ Q, E), as a function of neutron energy, it may be
used to generate multigroup constants by the methods described in Chapters 4
and 5. In practice, this is usually done by setting up a fine energy mesh, contain-
ing a hundred or so energies to span the range 0 < E :s 1.0 eV. The cross
sections at these mesh points are then used to generate the group cross sections.

In all the scattering models discussed in the preceding section, osh turned out
to be a function of K

2 and € only, and not of the vector >c. Such was the case for
all the inelastic cross sections, based on the incoherent approximation, and for
the elastic cross sections for polycrystalline solids and molecular liquids, al-
though it is not so for single crystals. This means that the double differential
cross sections are usually functions of the initial and final neutron energies and
of fl-o = Q'. Q, but not of Q' and Q separately. Consequently, the required
Legendre components of the scattering between any two energies, E' and E, of
the mesh may be computed, e.g.,

f p/(fl-o)os!s(r; E' ~ E, fl-o) dfl-o,

from the scattering model. These values are then used in the numerical integra-
tion over group energies to determine the group constants for the thermal
neutrons.

As in any problem of the evaluation of group constants, the number of groups
required depends on the available knowledge of the neutron energy spectrum
within each group. H the energy dependence of the neutron flux in the thermal
range is known accurately, then all the thermal neutrons might be treated as a
single group. Thi~ could be done. for example, in a large homogeneous reactor
." here the thermal energy spectrum could be computed by the B...•method
(§4.5c). The group constants could then be calculated for a single group, using
cross ~ectl\.lm \lbtalned from an appropriate scattering model. Of course, if the
spectrum i~ kno" n to be very nearly Maxwellian throughout the system, then
detailed calculatwnl) of the scattering cross sections would be unnecessary.

h'r more complicated ca~s. such as heterogeneous systems with marked
temperature gradients. the neutron spectrum will not be known. A substantial
number of thermal groups. e.g., ten or so, will then be required and the results
"Ill not be \ery ~nsiti\'e to the flux weighting within the individual groups.

Any or the methods de\"elopcd in Chapters 4 and 5 may be used for treating the
trans~wrt of thermal neutrons by the multigroup method. A particularly im-
Pi'rtant thermahlation problem is that for a lattice with temperature gradients;
the S ••method can then be employed for cell geometry with reflecting (or white)
boundaf') condiliom. If the lattice geometry is sufficiently complex. it may be
nc'CC'SSary to U~ the Monte Carlo approach. Another procedure, based on



collision probabilities, will be described here; it has been used extensively for
treating neutron thermalization problems in heterogeneous systems.

The method of collision probabilities is derived from the integral transport
equation (1.29) with isotropic scattering; the time-independent form of this
equation is

eP(r, E) = I K(r, r', E)[f Df(r'; E' ~ E}ef>(r', E') dE' + Q(r', E)] dV', (7.76)

where the kernel K is defined by

K( , E) = exp [- T(E; r' ~ r)]
r. r., - 4 I '127Tr-r

at:ld T is the optical path length (§1.2b), i.e., the number of mean free paths be-
tween the points r' and r. It should be noted that it has been assumed that the
source, as well as the scattering, is isotropic.

The energy variable in equation (7.76) may be converted into multigroup form
by integrating over an energy interval in the usual manner; the result may be
written in the form

ePir) = I Kg(r, r')[2 Gg._g(r')ePg·(r') + Qg(r')] dV',
g'

where the group-averaged quantities are defined in much the same way as in
Chapters 4 and 5.

Suppose it is desired to solve the equations (7.78) for the thermal neutrons in
a lattice cell represented in cross section in Fig. 7.18. In treating the thermal
groups alone. Qg can represent the neutrons which are slowed down into thermal
groups from higher energies; an estimate of Q, can then usually be made easily



(§7.7a). The lattice cell is now divided into a large number, I,of subregions, such
that within each of these regions the flux and source in any group may be taken
to be constant. Within the ith subregion (i = 1, 2, ... , I), let

and let the flux be /Jg'.i and the source Q9,i'
The equations (7.78) may now be rewritten, with the volume integral ex-

pressed as the sum of I volume integrals over each of the I subregions; thus,
1

epir) = 2 [2 U9'-9.i/J9'.i + Q9.i] Iv Kir, r') dV',
1= 1 g' I

where VI is the volume of the ith subregion. If this expression is integrated over
the jth subregion, the left-hand side of equation (7.79) becomes Vj~9.b and if
Kg•l_j is defined by

1 G

~g.1 = 2 [L Ug'_g,lePg'.1 + Qg'l] Kg,I_I'
I g' -= 1

Once the transport coefficients, Kg,I_I' have been determined, this set of alge-
braic equations can be solved for the values of ePg.j'

The transport coefficients are closely related to the collision probabilities
which were treated in §2.8, as can be seen in the following i'mlnner. If the cross
sections in group g are assumed to be constant, it follows, from the definition i"n
equation (7.77), that

K ( ') = K( , E) = exp [- T(Eg; r' -+ r)].
g r, r r, r, g 4 I ' 127Tr-r

Then, from equation (7.80),

K ] f i exp [-T(Eg; r' -+ r)] dV' dV
11.1-/ = -V I '12 •1 VJ VI 47T r - r

From the considerations in §1.2c, however, it is known that the quantity

( ) exp [-T(Eg; r' -+ r)] dV (7.84)
u, r . 47TJr _ r/12

is the probability that a neutron born at r/, with energy Ell' will have its next
collision within the small volume element dV about r; uII(r) is the total cross
section for a neutron of energy E, at r. It follows, therefore, that the average
probability for a neutron born in Vi to have its next collision in VJ can be found



by averaging the expression (7.84) over r' in Vt and integrating over r in VJ' If
the result is denoted by Pg,t-b in the notation of §2.8b, then

P _ CTg(j) f r exp [- "'(£g; r' -+ r)] dV' dV.
g,t-J - Vi VI JV

1
47rlr - r'12 .

Upon comparing equations (7.83) and (7.85), it is seen that

Vi
Kg,t-J = VfTg(j) P9•t-b

which is the required relation between the transport coefficient and the collision
probability in the gth group. _

The coefficients Kg,l-f can be determined in several different ways including,
in appropriate cases, (a) analytic or numerical evaluation of the integrals in
equation (7.83), (b) by high-order SN methods, or (c) by Monte Carlo techniques.
If the second or third of these procedures is used, then it is probably easiest to
compute the collision probabilities and then to obtain the transport coefficients
from equation (7.86).

The system of equations (7.81) can be solved by iterative methods, starting
with a guess of the flux distribution, similar to those described in Chapter 4. A
computer code, known as THERMOS, based on this technique has been em-
ployed to a considerable extent.76 The method is most useful for small lattice
cells where the number of subregions, I. is not very large. The reason is that in
integral transport theory each subregion communicates directly with all other
such region~; that is to say, Kg•1_! is finite for all values of i and j, and so the
number of coefficients will be [2 for each group. In the PN or SN method, how-
ever, based on the ordinary (differential) form of the neutron transport equation,
each space point communicates only with adjacent space points with a simple
coefficient. Hence. when I must be large. the P}Ii or S.,,! approach is preferable to
that involving collision probab!lities.

It should be recalled. in conclusion. that in the foregoing treatment the
scattering has been assumed to be isotropic. This restriction is not easily re-
moved, although in principle it would be pouible to work with the integral
equation (1.31) for anisotropic scattering and such scattering has been incor-
porated into collision probability codes." In practice, however, good results
can often be obtained by using the transport approximation described in §5.4b,
or in other ways.78

7.6 EIGENVALUES AND THERMAUZATION PROBLEMS
7.68 Introduction

,

In preceding chapters. the eigenvalues « and k were treated with special emphasis
on their relation to criticality. In these problems, the presence of fissile material
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was essential, since fission was responsible for neutron multiplication and for the
possibility of criticality. Moreover, only in fission could the neutrons gain sig-
nificantly in energy; hence, fission was required in order that the energy spectrum
could be self-regulating in the range up to around 10 MeV.

In thermalization problems some eigenvalues are also of interest; this is not
because they are associated with criticality but because they can be measured
and related to energy transfer and neutron transport properties of the thermal-
izing medium. The eigenvalue problems in thermalization arise from considering
a medium which contains no fissile material but in which there is a neutron
source. The character of the source will be seen to define the eigenvalue problem.

After the neutrons from the source are slowed down into the thermal energy
range, they can either gain or lose energy in scattering collisions with the nuclei in
the thermalizing medium. Such scatterings will tend to bring the neutrons into
thermal equilibrium with the nuclei, i.e., into a Maxwellian energy.spectrum
(§7.2a). On the other hand, absorption and leakage will, in general, tend to
prevent the neutrons from attaining complete equilibrium. As a result, the actual
spectrum will deviate from the Maxwellian distribution. By studying these
deviations, especially as they appear in certain eigenvalues, information can be
gained concerning those properties of the medium which were mentioned above.
For example, scattering models may be confirmed or modifications may be
indicated.79

Among the more interesting neutron sources are those with a simple time de-
pendence, namely, a short pulse or a sinusoidal time variation, or a simple space
dependence, e.g., a plane source. After a short neutron pulse, the neutron
population decays with time and it is of interest to consider the asymptotic time
behavior of the angular flux. This inquiry leads, as in §l .5a, to an a eigenvalue
problem in which solutions are sought of the time-dependent transport problem
represented by

where at is the appropriate time decay eigenvalue. For a system of thermal
neutrons, as is under consideration in this chapter, the transport equation (7.9)
for the eigenvalue at can then be written as

~ <1>,+ n· V<1>, + (O'a + 0',)<1>, = Jf 0',/,<1>; dn' dE'.

Since no fissile material is present, there is no possibility that «t can be positive.
Solutions to equation (7.87) may be expected, however, for various negative

values of ut and the least negative of these, Le., CIo, is of greatest interest. As



before (§1.5c), the associated eigenfunction, <1>0' will be nonnegative. It was men-
tioned in §1.5c that for sufficiently small systems there may exist no solution to
equation (7.87) for ao. In thermalization studies, the dependence of ao on the
size of the system can be measured and related to theoretical results using
various scattering models, as will be seen in due course.

Another simple source is a steady (time-independent) plane source in an in-
finite medium. Such a source may, for example, be approximated by the neutrons
leaking from the face of a reactor into an exponential column. The rate at which
the neutron flux falls off with distance from the source gives the thermal-
neutron relaxation length (§2.2b). If the plane source is at x = 0, then for large
positive values of x, asymptotic solutions of the form e-Kx may be sought.
Hence, by writing

- fLK<1>(p"E) + [aa(E) + as(E)]<1>(fL, E) = I I aJ,<1>(p,', E') dR' dE',

with K as the eigenvalue. *
It will be recalled that in one-speed theory with isotropic scattering (§2.2b),

one such value of K was found, namely, K = llvo. and it was associated with the
asymptotic solution of the transport equation. In thermalization problems, if
the cross sections were independent of energy and the scattering isotropic, l/vo
would also be the desired eigenvalue. But for realistic cross sections, which are
energy dependent, the situation is more complicated. In one-speed theory there
was a singular solution for any K > a, i.e., for •• < I (§2.2c); for energy-depen-
dent problems singular solutions also ex.istwhen K is sufficiently large, but they
are not of primary interest here.

A further possibility is a sinuso-idal (or neutron ware) source. located at x = 0,
varying as e1wt

• In this case, solutions of the wave form

<1>(x,fL, E, I) = et>(j.L, E)e - Xx + Iwt

appear reasonable.t The eigenvalues K could then be sought for a fixed w, and
they would satisfy the transport equationr:- p.K + a. + a.) <1>(j.L,E) = f f aJ,<1>(j.L',E') dR' dE'.

From neutron-wave experiments with modulated sources, an attempt can be
made to determine the dependence of IC. on CII.'O

• The eigenvalue K is frequently represented by c. but the latter is used earlier in this
chapter to indicate change in momentum. .,'

t Note that • refers to the i·mposed freq~ of the (sinusoidal) source; it is not related
in any way to the phonon frequencies in f7.4<1.



Parameter Eigenvalue

(1aOVO a
(1aOVO, B a -.

(1aOVO K
(1aOVO, -w K

Pulsed source in infinite medium
Pulsed source in large (finite) medium
Diffusion length measurement
Neutron wave experiment

o
iB
-K
-K

a + (1aoVO

a + (1aOVo

(1aOVO

iw + (1aOVO

Greater generality can be achieved by taking two other matters into considera-
tion. First, in a large but finite medium the spatial dependence of the neutron
angular flux may be well approximated by a sinusoidal function, e.g., <1> ex: efBx•

For a pulsed source in such a medium, the asymptotic solutions might be ex-
pected to be of the form eat+fBx; the equation for the eigenvalue ex is then

which is the same as equation (7.90) with a substituted for iw and is for - K.

Second. if the absorption cross section varies as l/v, then Ga in equation
(7.91) may be repla~ed by Gaovo/v, where Gao is the cross section at an arbitrary
reference neutron velocity, Vo' It is then seen that a/v and Ga may be combined
to give (a + Gaol'o)!r and the quantity a + GaOVO may be regarded as an eigen-
value. By considering various media which differ only in Gao, e.g., in their boron-
to content. it would be predicted from equation (7.91) that a + GaoVO should
remain constant.

All the equations presented above may be included in the general form

where a and b may be regarded as complex numbers; one of these may be fixed
as a parameter and the other sought as an eigenvalue, as indicated in Table 7.1.
It is thus apparent that the results_of various kinds of experiments can be related
to each other; an example of sueD a relationship, based on.diffusion theory, is
given in §7.6e.

7.6c Existence of the Eigenvalues

In the foregoing discussion, the eigenvalues being sought correspond to well-
behaved. i.e., positive and reasonably continuous, eigenfunctions. Thus singular
eigenfunctions., such as occur in one-speed theory, are not being considered. It
is possible, however, that under some conditions there will be no eigenvalues
with welJ-behaved eigenfunctions.

If, in equation (7.92), Q - b = 0, then it is apparent from equation (7.10) that
the Maxwell distribution C1> = M(E, T) is a solution. This means that if a == 0



and b is the eigenvalue or if b = 0 and a is the eigenvalue, then in either case
there exists a zero eigenvalue with a Maxwellian eigenfunction. Moreover, it is
generaJly found 81 that if either' a or b is fixed and small, then the eigenvalue
exists and may be determined by perturbation methods. If, however, a or b is
fixed but large, then it may be that no well-behaved eigenfunctions exist. It will
be seen later that this statement needs some qualification, but, in a rough way,
itis a useful summary of the situation.

Another point to bear in mind is that there are some limits which the various
eigenvalues may not exceed. Eigenvalues exceeding the limit belong to a con-
tinuous spectrum and are associated with singular eigenfunctions, much as in
§2.2c.* For the complete solution of a pulsed neutron source or a neutron wave
(sinusoidal source) problem, these singular eigenfunctions would have to be
taken into consideration, but for asymptotic solutions, in time or space, the
discrete eigenvalues are sufficient, provided they exist.

.The K Eigenvalue

The conditions for the existence of discrete eigenvalues may be derived in con-
nection with the neutron diffusion length experiment by rewriting equation
(7.89) in the form

[- p.K + u(E)]<1>(p.,E) = JJ uJ.<1>(p.',E') dQ' dE'. (7.93)

Since positive values of <1>are being sought, the right-hand side is posItIve;
hence, K cannot exceed u(E), for, if it did, - /-!K +u(E) would be negative for
p. = 1. If [U(E)]mln denotes the smallest values of the total cross section as a
function of neutron energy, then for discrete values of K to exist, the condition is

K ~ [U(E)]mlD. (7.94)

It has been shown 83 that real values of K larger than [U(E)]mln belong to the
continuous spectrum and are associated with singular eigenfunctions.

The experimental conditions under which a discrete eigenvalue, i.e., a relaxa-
tion length, mayor may not exist are of interest. According to equation (7.88), a
discrete eigenvalue implies that, at distances far from the source, the neutron
population will decay approx1mately as t-a., with the; same exponent for all
neutron energies represented in the spectrum. This asymptotic (or equilibrium)
spectrum is independent of the neutron wurce. Since neutrons of energy E
cannot decay faster than t-·(~l.lC. the spectrum as a whole cannot decay faster
than exp {- (u{E)mualx} and this imposes the limit in equation (7.94).

Intuitively, the asymptotic spectrum. independent of the source, implies an
efficient transfer of energy between the neutrons and the scattering nuclei, so
that an equilibrium spectrum can be estAblished. If wme strong effect opposes

• It is also possible that • point eiFJIvalue mipt be ••unbedded" in the continuous
spectrum, but this docs not aenera1ly seem to oc:cur in thnmaJization problcms.·2
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the attainment of equilibrium, then it is reasonable to expect that there will be
no equilibrium spectrum and hence no discrete eigenvalue. Three such effects
are noted below: (a) a direct contribution from the source at an energy for which
u{E) is small; (b) strong absorption, and (c) leakage in a finite medium.

For liquid and gaseous media, the minimum value of the total cross section,
i.e., [U(E)]mln> will occur at the highest neutron energy in the problem, as in
§7.3a. If this minimum value is too small, then well-behaved eigenfunctions may
not exist. Consider, for example, a plane source of fission neutrons in a modera-
tor.84 For this problem, the energy range will be 0 ~ E ;S 10 MeV, but it is
possible that, far from the source, there will be an asymptotic spectrum of ther-
mal neutrons and negligible numbers of fast neutrons. Such will be the case for
moderators of graphite, beryllium, and heavy water. In ordinary water, how-
ever, the distribution of neutrons far from the source is governed by those
neutrons of highest energy which have streamed from the source without
making any collision with nuclei. These high-energy neutrons represent a
singular population and no discrete eigenvalue K exists. For source neutrons of
lower energy [U(E)]mln is larger and K may then exist.85

For crystalline moderators, the minimum value of u(E) will occur for energies
just below the Bragg cutoff (see Figs. 7.2 and 7.12). At such energies, the elastic
scattering cross section is zero and the inelastic scattering will be very small,
especially at low temperatures. With such small values of [U(E)]mln, there may
again be doubts about the existence of the K eigenvalues.

Next, consider the effect of an absorber mixed with the moderator. Suppose
that, for the pure moderator, a discrete relaxation length exists. As absorber is
added, K will increase, i.e., the asymptotic neutron spectrum will decay more
rapidly with distance. It is of interest to know if, for a finite concentration of
absorber, K will reach the limit given by equation (7.94), so that, for higher
concentrations, there will be no asymptotic spectrum.

For the particular case of an absorber for which u(E) varies as l/v (or lIVE),
it has been proved that such a critical concentration does exist 86~ for higher
concentrations, the absorption is so strong that asymptotic spectra cannot be
established. It might appear, therefore, that for a sufficiently high concentration
of a Ilt'-absorber, there would not be an exponential relaxation of the neutron
flux far from the source. Nevertheless, it has been found, both theoretically87
and experimentally,88 that the decay is very nearly exponential with a relaxation
length greater than [u{E)]mln'

A somewhat similar vanishing of the discrete relaxation length is found in the
diffusion of neutrons in a finite medium, such as a prism, finite in .the. x and y
directions but infinite in the z direction and with a source at z = 0: Asymptotic
solutions, with approximately exponential decay with distance in the z direction,
are sought; as before, they must satisfy equation (7.94). It has been found that.
for a sufficiently thin prism, there is no discrete eigenvalue, Ie, Le., no solution
with exponential decay.le



Finally, in experiments with a modulated neutron source, there may be no
waves if the modulation frequency is sufficiently high. That is to say, when w is
too large, there will be no discrete eigenvalue K for equation (7.90). However,
when the response of a detector is examined, wavelike solutions may be found.
The study of modulated sources is attracting considerable interest and the
literature on this and related topics is expanding rapidly.90

The a Eigenvalue

The foregoing has concerned the K eigenvalue (or relaxation length); considera- .
tion will now be given to the a eigenvalue (or time-decay ·constant). As seen in
Chapter 1, these eigenvalues may not exist if the system is very small, i.e., with
dimensions of the order of a mean free path or less. Broadly speaking, a small
system corresponds to a large value of the buckling, i.e., large B in equation
(7.91). For small systems, however, the approximation of elBx for the spatial
distribution of the flux is a poor one; the transport equation should then be
solved with free-surface boundary conditions. When this is done it is found that
there is a lower limit for ao,91 and if the system is small there may be no values
of a above this limit.

The occurrence of this limit may be understood from a heuristic argument.
Consider the integral transport equation for the eigenvalue a with isotropic
scattering, in a homogeneous medium, i.e.,

eP(r,E) = I I exp {- [a~~?r+_(;!t;J1r - r'l} af(r'; E' -+ E)eP(r', E') dV'dE'.

(7.95)

This is the same as equation (7.76) except that T(E; r' -+ r) in the exponential
term has been replaced by [a(E) + all'llr - r'l. Since a homogeneous medium
is under consideration. the optical path length, T, would normally be replaced
by a(E)lr - r'l because both quantities represent the number of mean free
paths between rand r' (§1.2b). For the eigenvalue problem, however, it is neces-
sary to add all" to the total cross section, i.e .. all' appears as an absorption cross
section (§t .5f). For the present problem. Q = O. and solutions are being sought
of the form

Upon substituting this expression into equation (7.76), together with the value
of.,. given above, equation (7.95) is obtained.

It is reasonable to suppose that a must be such that the exponential in equa-
tion (7.95) never becomes both positive and infinite, for if such an exponential
were allowed, it would appear that f>(r, E) would be unbounded and, therefore,
singular and not well-behaved. If this view is accepted. then there are two cases
to be examined: (a) unbounded media and (b) bounded media.



For an unbounded medium, such as a slab (finite in thickness but infinite in
the two other dimensions), Ir - r'l can become infinite and hence it is required
that aCE) + alv ~ 0 or, in other words,

aD ~ - [va(E)]mln for unbounded medium, (7.96)

where [va(E)]mln implies the minimum value of va over the energy range under
consideration. All values of a < - [va(E)]mln belong to the continuous spectrum,
i.e., they are associated with singular eigenfunctions.92 It should be noted that
for one-speed theory (§1.5c), all discrete eigenvalues were constrained to have
a > - va, and a continuum of eigenvalues with singular eigenfunctions was
found for more negative values of a. Hence, the present argument is consistent
with rigorous one-speed results. It is known that aD always exists in one-speed
problems, but for the energy.,dependent situation, aD may not exist for suffi-
ciently thin slabs, as will be seen below.93

For bounded media, Ir - r'l will be finite, but aCE) + all' will diverge as
l' ---+ O. In particular, all absorption cross sections vary as IIv at low energies,
and, in most models, the inelastic cross sections, e.g., as in equation (7.25), also
show the same (l/v!£) dependence. In any event, to keep the exponent in equa-
tion (7.95) negative as l' ---+ 0, it is required that

aD ~ - lim [l'a(E)] for bounded medium. (7.97)
v-O

In practice the conditions given by equations (7.96) and (7.97) usually coincide
because the minimum value of ra is generally also the limiting value as the
neutron energy (or speed) approaches zero.

For a finite medium (Lo must then be not smaller than the limit in equation
(7.97) for the eigenvalue to be discrete. But, as smaller and smaller systems are
considered. it is to be ex.pected on physical grounds that aD will decrease mono-
tonically. Hence, there might be a size for which

aD = - lim [va(E)]
v ...•0

and for smaller sizes 00 would not exist. These expectations have been confirmed
by rigorous analysis for the monatomic gas scattering model94 and for idealized
modeb of ~altcnng by solids.95 It has been shown that there is a limiting value
of "0' equal to that gi\cn abo\c, i.e., -Iim [l'a(E)] as l' ---+ 0, and that this eigen-
\alue does ntH exist for small systems. It should be pointed out, however, that
proof of the e,istence of this limit for finite systems depends on use of the trans-
port equation in the limit of zero energy, where it is not strictly valid (§I.5c). If
the range of neutron speeds is artificially bounded away from zerot then no such
limit is found for finite systems.~6

7.1d Calculation of Eigenvalues and Eigenfunctions

In obtaimng the general features of eigenvalues andeigenfunctions. considerable
use has been made of approximate degenerate scattering functions.'? But when



fairly realistic models are used to describe neutron scattering from liquids or
crystals, such as the incoherent Gaussian approximation, the resulting as and
asls are so complicated that ·the eigenvalues (and associated eigenfunctions) can
be obtained only by numerical methods.98 An alternative approach is then to
apply multigroup procedures to the energy variable.

Consider, for example, the problem of computing the set of time-decay
eigenvalues {al} for a system in which the spatial dependence of the neutron flux
can be approximated by elBx• Equation (7.91) is then applicable and the scatter-
ing function can be expanded as a sum of Legendre polynomials, in the usual
way; thus,

ao

[~ + iBp. + aCE)] <I>(p., E) = L 2/; 1 P,(p.)a.,(E' -'? E)4>,(E'), (7.98)
'=0

as in equation (4.2). In this expression, B is regarded as known and a is the
desired eigenvalue (Table 7.1); alternatively, a could be known with B to be
determined. In either case, a solution could be found by expanding <I>(p., E) in
Legendre polynomials, as in Chapter 4, and introducing a multigroup repre-
sentation of the energy. Many groups could be used in the usual manner in
order to minimize uncertainties in the group constants.

If a PH expansion is used for <D(p., E), there would be obtained a set of
(N + I)G homogeneous linear equations for the N + I Legendre components
of the flux inG groups. A solution would be possible only if the determinant of
the coefficients were zero and this condition would lead to (N + I)G possible
values of a and thus (N + l)G eigenvalues. It is ex.pected, and confirmed by
experience,99 that the eigenvalue with the largest real part is real and is asso-
ciated with a positive eigenfunction; this is ao and it may be compared with ex-
perimental values. Once an eigenvalue has been determined, the associated
eigenfunction can be found by solving a system of (N + l)G linear homogeneous
algebraic equations for the (N + I)G components of the eigenfunction.

Since the (N + l)G values of a referred to above are found as roots of a poly-
nomial, they are all discrete. It is natural to consider, therefore, what has
become of the continuous range of eigenvalues. for which a < - [va(E)]mlD'
associated with the singular eigenfunctions. In practice. they show up as easily
recognizable discrete eigenvalues because the corresponding eigenfunctions have
a rapid and irregular dependence on energy. 100 In the multigroup problem these
discrete eigenvalues have a less than the minimum of ('(1 as it occurs in the multi-
group representation of v (or E) and a.

In the multigroup treatment, ao ex.ists even for arbitrarily small systems; that
is to say. the eigenfunction associated with the largest (least negative) real a is
possible for all values of B.101 Indeed, this is true not only when the spatial
dependence of the flux. is approx.imated by ~h. but also for the multigroup
thennalization problem for a 'lab with free·surface boundary conditions.102

When the theoretical treatment predicts that Clo should not exist for a continuous,



i.e., nongroup, distribution of the energy, but a value is found by multigroup
methods or by experiment (or both), it is sometimes referred to as a ••pseudo-
fundamental" eigenvalue. It is believed that although this ao is not the largest
time-decay constant for the neutrons in the system, it may approximate the rate
at which most of the neutrons decay.I°3

The experimental evidence concerning the existence of decay rates exceeding
the limit given by equation (7.97) is controversial. Experiments on such small
systems, typically with dimensions of the order of a neutron mean free path, are
difficult to perform and interpret. Although decay rates exceeding the limit have
been reported, it is not certain that they truly represent exponential decay.l04

In the approach described above, B and a could be represented as complex
numbers, so that the whole variety of eigenvalue problems considered in §7.6b
could be treated in the same way. Alternatively, an attempt could be made to
solve equation (7.98) by the BN method (§4.5c). This would have the advantage
of rapid convergence, but the disadvantage that the eigenvalues appear in a
much more complicated form. The procedure has been used to find funda-
mental eigenvalues, such as ao,105 but it is probably less suitable than the PN

method for treating higher eigenvalues.
Instead of using a multigroup representation of the energy, the energy de-

pendence could be expressed as a complete set of energy functions, such as the
Laguerre polynomials. Considerable work has been done along these lines,
generally with quite approximate scattering functions.10G

7.6e Eigenvalues in Diffusion Theory

In diffusion theory, the relationship between some of the eigenvalues noted in
§7.6b is especially clear. The source-free, time-dependent diffusion equation for
a plane homogeneous medium [cf. equation (4.18)] is

~ i'4>(x. E. f) _ D ~.24>+ (Uaot'o + U)4> = J U (E' __ E)4>(x E' t) dE' (7.99)
Z. Of e.\"'2 v s sO ",

where the absorption cross section has been explicitly taken to vary as 1lv, i.e.,
Ua = uaoroir. Consider. first. a problem involving a pulsed source of neutrons
with a spatial dependence of the flux approximated by etBx and the eigenvalue
ao to be determined. The equation for ao is then of the form

[aD + vaaoL'o+ DB2 + a,(E)]4>(E) = J a,o(E' ~ £)4>(E') dE'. (7.100)

Next suppose a diffusion length, i.e., the decay of the thermal flux with dis-
tance from a steady source, is being measured in a medium with varying amounts
of a I/v-absorber. Let

(E) _ aAO + SaGO
a. - ---- Vo,v



where UaOhas thesame significance as before and OUaO represents the effect of the
absorber. Since the source is a steady one, the flux will not depend on time and
it will depend on space as e-Kx

• Hence the equation for K, is

[UaO : ouao Vo - DK2 + ulE)]4>(E) = f u,o(E' -?- E)4>(E') dE'. (7.101)

Equations (7.100) and (7.101) are seen to be of the same form, with - K2 in
equation (7.101) replacing B2 in equation (7.100) and OUaO replacing ao. Since ao
must be negative, it follows that ouao and ao must be opposite in sign, assuming
that absorber is added, rather than removed, i.e., ouao > O. The similarity
between the two equations indicates that the pulsed neutron results may be
continued to negative B2 so as to connect with the diffusion-length results, as
shown in Fig. 7.19.107 In the pulsed neutron region, ao is the eigenvalue with B
as the variable parameter, whereas in the diffusion-length (or stati~) region K

is the eigenvalue and ouao is the parameter.
The following features of Fig. 7.19 are of interest: (1) The value of laol

cannot exceed (UV)mlm as noted in §7.6c. (2) When B2 = 0, i.e., for an infinite
medium, ao = - UaOVO; this situation is discussed further below. (3) When
ouaovo is zero, K is denoted by Ko; the quantity I/Ko = Lo is then the diffusion
length for thermal neutrons in the unpoisoned medium, i.e., the flux will vary as
e-x/Lo. (4) The maximum value of K cannot exceed the minimum value of u(E),
as shown by equation (7.94).

The expected correspondence between pulsed source and diffusion-length
experiments has been observed in practice. The results of measurements made

FJG.7.19 CONTINUITY OF DIFFUSION-LENGTH AND PULSED-NEUTRON REGIONS
(AFTER H. C. HONECK. REF. 105).

j"
L
1
,

':.'~ "'..'. '.,'J'

'ill
~~-:



eot10x EXPERIMENTAL

--- CALCULATED
--- LEAST SQUARES FIT

o
b':J

(;() 6.0

+
o
~

~
:lC PULSED

SOURCE

O.t 0.2
0"00 + 80-00, CM-l

FtG. 7.20 DIFFUSION·LENGTH (STATIC) AND PULSED-SOURCE MEASUREMENTS
IN WATER (AFTER P. B. PARKS, ET AI., REF. 108).

in water, for example, are given in Fig. 7.20108; the ordinates are K2/(aao + oaao)
and the abscissae are aaO + oaao, with the cross sections corresponding to
Eo = kT (T = 293"'K). For the pulsed-source region, aaO + oaao becomes
OaO + ao and K2 becomes - 82• The curve shown in the figure was calculated 109

for the pulsed region by using the Nelkin model (§7.4h) and extrapolated into
the static region.110

In the discussion of Fig. 7.19, it was noted that when 82 = 0, i.e., for an
infinite medium, ao = - o.ol·o for a system containing a Ilv-absorber ; it has not
been C\labli~hed, however. that - OaOl'O is a fundamental eigenvalue. If the fore-
going \alues of 82 and «0 are inserted in equation (7.100), the latter becomes

0,(£»(£) = I o,o(E' ~ E)4>(£') dE',

which is equivalent to equation (7.10) for the flux in an infinite, source-free,
nonabsorbing medium. As noted in §7.2b, the Maxwell distribution

is a IOlution or this equation. Hence, M(E, n is an eigenfunction of equation
(7.100) and - oJ. is the corresponding eigenvalue. Furthermore, it can be



shown 111 that - O'aOVOis indeed the fundamental eigenvalue ao, i.e., the one with
the largest real part. It follows, therefore, that for an infinite medium with a
I lv-absorber, ao = - O'aoVo and the fundamental eigenfunction is M(E, T), so
that the neutron flux has a Maxwellian distribution. Although this result was
derived from the diffusion theory equation (7.100), it is quite general, since for
a space-independent solution in an infinite medium there is no diffusion and no
net current.

In this final section, the manner in which the flux eigenfunctions associated with
the various eigenvalues deviate from a Maxwellian distribution will be ex-
amined. For the pulsed-source experi~ent in an infinite medium, i.e., B = 0 in
equation (7.91) or (7.100), ao = -O'aOVO, and the eigenfunction is Maxwellian, as
just seen. For a large but finite system, the diffusion equation (7.100) may be
used with a finite but small value of B in order to obtain the dependence of the
eigenvalue, a, and the eigenfunction, epeE), on the size of the system, i.e., on B.
For this purpose, it is convenient to rewrite equation (7.100) for a l/v-absorber
in the form

qep(E) = I O',o(E' -+ E)ep(E') dE' - O',(E}/>(E).

I O'.o(E' ~ E) dE = O',(E'),

f q4>(E) dE ::: 0

for any function q,(E).
For small values of B. a perturbation method may be used in which a and q,

are expressed as power series in B2; thus.

(7.106)

(7.107)
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Upon inserting these series- in equation (7.103) and equating coefficients of
equal powers of B, it is found that

0;0+vUaoVotP2(E) + [:1 + D(E)]tP1(E) + :2 tPo(E) = QtP2(E).

Equations (7.108), (7.109), and (7.110) are now integrated over all energies
and it then follows, from equation (7.104), that the right-hand side is zero in
each case. Equation (7.108) then gives, as expected,

tPo(E) = M(E, T).

Consequently, from the integrations of equations (7.109) and (7.110), it is found
that J D(E)M(E, T) dE _

-0; = ------- = D
1 J (ljv)M(E, T) dE

J [D(E) - (l5IV))ep1(E) dE
-0;2 = J (Ilv)M(E, T) dE =

where 15. the diffusion coefficient, and Cd' called the diffusion cooling coefficient,
are defined by equations (7.112) and (7.113), respectively.

By making use of equations (7.111), (7.112), and (7.113), equation (7.106)
may be written as

It will be noted thai 15 is determined, according to equation (7.112), by the
diffusion constant D(£) and the Maxwell distribution M(E, T). Hence, the first

• term in' equation (7.ii4) that involves deviations of the neutron flux from the
Maxwellian distribution is the "diffusion cooling" term, CltBt• The origin and
naming of this term can be understood from the following discussion.

A Ijr-absorber docs not perturb the Maxwellian distribution in an infinite
medium because the lifetime of a neutron against absorption by such an ab-
sorber. namely [a.(£)c] -t, is independent of the neutron energy. Hence, all

I neutrons are absorbed at the same rate and the Maxwell spectrum is not per-
i
'i turbcd by I/r-absorption. This explains why the first two terms on the right of

;;j equation (7.114) do not represent any departure from a Maxwellian distribution.



The lifetime of a neutron of energy E against leakage from a system, however,
is approximately [vD(E)B2] -1. For gaseous and liquid moderators, the quantity
vD(E) increases with neutron energy in the thermal region, so that neutrons of
higher energy leak (or diffuse) out faster than those of lower energy. The net
effect of this preferential leakage of the more energetic neutrons is to shift the
neutron spectrum to lower energies relative to a Maxwellian distribution at the
temperature of the moderator. If the shifted spectrum were to be characterized
by a ••neutron te"mperature," 112 the latter would then be lower than the modera-
tor temperature. This accounts for the use of the term diffusion cooling. Ac-
cording to equations (7.113) and (7.114), the diffusion cooling coefficient, Cd,
represents, in the term CdB4, the first-order effect of the shift in the spectrum on-
the time decay constant, ex, of the neutron population.

In crystalline moderators there is an additional effect arising from the very
large value of D(E) for neutrons with energies below the Bragg cutoff energy.
Thus, the leakage of these neutrons of very low energies is also favored.

The computation of the diffusion cooling coefficient, from equation (7.113),
requires a knowledge of the deviation, cPl' of the neutron spectrum from the
Maxwellian distribution. This can be obtained either- by numerical methods for
realistic thermalization models or analytically for simplified models.113 The co-
efficient, Cd' is found to be positive and to be larger for moderators with rela-
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tively poor energy transfer, e.g., graphite, than for those with good energy
transfer, such as ordinary (light) water.

The parameters 15 and Cd can be determined from experimental measure-
ments of time decay (or die-away) with a pulsed neutron source, by fitting the
dependence of a on B2 to an expression of the form of equation (7.114) or by
other means.114 The results are generally in good agreement with calculations
based on realistic scattering models. For small systems, where the diffusion
cooling effect is most significant, representation of neutron leakage by diffusion
theory, i.e., with a DB2 term as in equation (7.100), is, of course, not adequate.
A more accurate treatment of the neutron transport problem is then required to
yield reliable results. An example of such a calculation is given in Fig. 7.21.115

The experimental values of a, for small spherical light-water systems of various
radii, are indicated by the points: these may be compared with the curves com-
puted using the 54 approximation with 30 energy groups, based on either the
Nelkin scattering model or an improved (anisotropic) model.1l6 The agreement
is seen to be very good, especially in the latter case.

Perturbation expressions, such as those embodied in equations (7.106) and
(7.107), can be used in the treatment of other eigenvalue problems.117 For
example. it is found in diffusion-length measurements that there is a "diffusion
heating" effect analogous to the effect of diffusion cooling just considered, as
observed in pulsed, die-away experiments. In the diffusion theory of the diffusion-
length experiment, the neutron flux would be assumed to be time independent
and to vary as e - Xx with distance x from the source. The equation for the eigen-
value would then be, according to equation (7.103),

This ditTers from equation (7.103) in the respect that there is no a/t'term and
B2 has been replaced by - K2• For aaO = 0, equation (7.115) has a solution for
K2 = 0: then q4>(£) = 0 and the flux has a Maxwellian distribution, according
to equations (7.102) and (7.104). When acO is finite, the neutron flux deviates
from Max "ellian behavior and it is found experimentally that the distribution is
shifted to higher energies: this is the effect referred to as diffusion heating and
the neutron spectrum is said to be "hardened." The cause of diffusion heating is
that neutrons of higher energies diffuse into a given volume element more readi1y
than do those of lower energies. In diffusion cooling there is a net diffusion of
neutrons ouf of any volume element, whereas in diffusion heating the net diffu-
sion is into the volume element. The neutron energy spectrum is determined by
a balance between absorption occurring at a rate independent of energy in the
presence of a Iir absorber. and diffusion, which is energy dependent. Hence,
when the neutrons of higher energy diffuse preferentially into a given volume
element, the spectrum is shifted to higher energies.
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In addition to diffusion heating, there is a form of spectrum hardening due to
neutron absorption. It has been seen that, in an infinite medium, the Maxwell
distribution remains a valid eigenfunction for the eigenvalue ao, even when a
l/v-absorber is present. This means that long after a source pulse, the neutron
spectrum in a large (infinite) medium will be Maxwellian. The situation is quite
different in connection with the neutron energy distribution resulting from a
steady source of fast neutrons, constant in time and space. A slowing-down
spectrum will then join into the thermal distribution of neutrons, and the latter
will be shifted to higher energies than for a Maxwellian distribution. Figure 7.22,
for example, shows the spectrum for neutrons of low energy in water at 296°K
containing a llv-absorber, with aa equal to 5.2 barns per hydrogen atom.U8

Similar results are obtained for any finite concentration of an absorber with a
cross section that is related inversely (or approximately so) to the neutron
velocity. If, however, the absorber has resonances in the thermal region, the
energy variation of the flux is different (§8.1 f).1l9

In nuclear reactors, diffusion cooling, due to the leakage of fast neutrons, is
relatively insignificant except in very small systems, but hardening of the spec-
trum as a result of the absorption of thermal neutro~s is generally important in
thermal reactors. In early treatments, the energy spectrum of thermal neutrons
was often fitted, somewhat arbitrarily, to a Maxwellian distribution, with an
empirical neutron temperature, TN, which was higher than the actual moderator
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temperature, Tm. Studies have been made of the variation of (TN - Tm)JTm with
the concentration of absorber, and correlations of the form

TN = Tm(1 + C ;;:J
have been proposed,120 where C is a constant and g is the average (free atom)
logarithmic energy loss per collision (§4.7d). If 0aO is taken as the absorption
cross section oa(E) at E = kTm, then C is approximately 1.6 for all moderators
of interest, i.e., with small mass numbers.

The representation of the thermal neutron spectrum by a Maxwell distribution
shifted to a higher temperature than actually exists in the reactor is fairly
satisfactory provided there is little absorption, e.g., for oaoJ goso ~ 0.2. More
generally, however, it is not accurate. Nevertheless, the treatment does point up
the tendency for the thermal neutron spectrum to be hardened relative to the
Maxwellian distribution at the temperature of the moderator, Tm, arid indicates
the extent of the hardening in a qualitative manner.

7.7a Source of Thermal Neutrons from Slowing Down

The source, Q(E), of neutrons which are slowed down into the thermal energy
range can usually be derived from the following simple considerations. A neu-
tron energy. Eo, of the order of I eV, is selected and it is assumed that for higher
'energies a purely slowing-down spectrum is applicable (§7.la); that is,

epeE) = ~ for E > Eo.

The rate at which neutrons are scattered to energies below Eo can then be ob-
tained by using the appropriate scattering kernel as derived in the main part of
this chapter. If Eo is sufficiently large, it is satisfactory, however, to employ the
free-atom scattering kernel (§4.2b)

aJ",(E' -+ E) = (I _a~)E' if aE' ~ E ~ E'

= 0 if E > E' or E < aE'.
where a is (A - I )'J/(A + 1)2.

The source, Q(E), of neutrons scattered from energies E' above Eo to energies
E < Eo is then

Q(E) = f<IJ t$(E')aJ",(E' -+ E) dE'
Eo

_ a.cPo fEla dE' .
I - a JEo (E')2



Q(E) = us<Po (..l. _ a) if E ~ aEo
1 - a Eo E

The expressions derived above are for slowing down in a medium consisting of
a single atomic species; the results can be readily generalized to a moderator
containing two or more types of atoms.

When absorption or leakage is important during slowing down, as in heavily
poisoned or small systems, the neutron flux above the energy Eo does not vary
as lIE. Improved estimates can be made, however, by the use of age theory or
slowing-down theory,121 If the spatial dependence of the source is required, it
can usually be taken in some normal mode, e.g..,etBx (cf. §7.6d) for a reactor that
is not too small.

1. Derive equation (7.20) by considering the two transport equations satisfied by the
two Green's functions, multiplying each equation by the appropriate M x G and
integrating over all variables.

2. Show that equation (7.26) satisfies the detailed balance equation (7.11).
3. Use equation (7.52) to derive the monatomic gas scattering cross section In

equation (7.26).
4. Determine the scattering function Sea, f3) for the monatomic gas, i.e., from

equation (7.26).
5. Verify that for high temperatures, i.e., for kT» nWQ, the harmonic oscillator

scattering cross section, a•• reduces to that for a monatomic gas. Try to do the
same for a,/,.122

6. Show that equation (7.66) reduces to the equation for an Einstein oscillator if
few} is a delta function.

7. Simplify equation (7.30) for a "heavy gas" moderator, i.e., for A » 1 and
£' » kT/ A, and show that in these circumstances

S
ll> "0
o (E' - £)o,(£')/,(E' -- E) dE = •..A'o (E' - 2kn

So"" (E' - E)2a,(E')/,(E' - E) d£ = 4~1O E'kT.

8. Consider neutrons being moderated in an infinite medium consisting of a heavy
gas. Show that the neutron flux, #..E), satisfies the differential equation

20,0 d [ d#.E)]o.(E)#..E) = A dE (E - kT>+<.E) + EkT dE .

(Introduce .;(E) 0= #..E)/ A-f(E, n into the transport equation and in the integrand
expand .p(E') in a Taylor series about E; then use the results of Exercise 7.123)



9. Show that in a finite medium the presence of a l/v-absorber will not affect the
eigenfunction associated with the fundamental a eigenvalue. Find the effect of
the absorber on a. If the absorption cross section departs to a small extent from the
l/v dependence, i.e., Ua = (uaovolv) + Su(E), find a first-order expression for
the change in a due toSu.
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8. RESONANCE
ABSORPTION

8.1a Introduction

In the" resonance energy" region, from roughly 1 eV to 100 keY, the main
absorption of neutrons by heavy nuclei takes place at relatively sharply defined
resonance energies.· A typical example of the cross-section variation in the
resonance region is provided by uranium-238; the widths of the resonance peaks
for the (n, y) reaction are of the order of 0.1 eV and their energy separation is
about 20 eV (Fig. 8.1).

In all reactors, some of the neutrons will be absorbed in the resonance energy
region and in the design of certain reactors, notably those using natural (or
slightly enriched) uranium as the fuel, an accurate treatment of the resonance
absorption is essential.2 MQreover, the resonance absorption changes with the
temperature of the fuel, due to Doppler broadening of the resonances. The
resultant temperature dependence of the reactivity is then often an important
feature in the reactor control. For these reasons, consideration will be given in
this chapter to the physical bases of the effects of resonance absorption on
criticality and how these effects may be taken into account in reactor design
studies.

The pronounced resonance structure in the dependence of cross section on
neutron energy leads to a corresponding fine structure in the neutron flux. In

• Tbcrc is some direct, non resonance absorption, not involving the formation of a
compound nucleus. in the resonance region. It appears to have no practical significance.
aIthouah it is oIlhcoretical interest. 1
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SHOWING RESONANCES (ADAPTED FROM BNL-325).

general, there will be dips in the neutron flux at those energies (and locations)
where there is strong resonance absorption or scattering. This fine structure
must, of course, be taken into account in determining group cross sections for
use in multigroup calculations as described in Chapter 4.

The detailed energy-dependent cross sections which are required for com-
puting the energy-dependent flux and the group cross sections are not simply
taken from experimental determinations. One reason is that when neutron cross
sections are measured in the laboratory, the experimental energy resolution is
not adequate to yield the required detailed variation of the cross sections with
neutron energy except toward the lower-energy end of the resonance region.

Even at sufficiently low energies, however. in what is known as the region of
reso!r'ed resonances, the experimental results are usually expressed better in
terms of a few resonance parameters. such as the energy of the resonance, its
amplitude. and width. than as energy-dependent cross sections. Theory is then
used to reconstruct the latter from the resonance parameters. In some cases,
such as neutron absorption by uranium-238. this approach has a special ad-
vantage: the resonance parameters can be derived from experimental values of
the fotal cross section and then theoretical methods can be used to obtain the
(n, y) cross sections which are difficult to measure directly.

In practice, the region of resolved resonances will depend on the nature of
nuclide under consideration. When the resonances are widely separated they
can be resolved up to higher neutron energies than is possible for c1osely-
spaced resonances. At present, the region of resoh'ed resonances extends up to
a few kilo-electron volts for the fertile nuclei and to about 50 eV (or so) for the
important fissile species.

At higher neutron energies, it is not possible to achieve adequate resolution of



the individual resonances; the experimental cross sections then represent
averages over several (or many) resonances. In this region of unresolved reso-
nances, theory must be used to deduce the probable details of the resonance
structure. When neutron absorption in this region is important, as it is for fast
reactors, the necessity for relying on theoretical considerations in deriving the
cross sections has significant consequences (§8.2a et seq.).

Another factor which makes it undesirable to use measured energy-dependent
cross sections in the resonance region arises from the Doppler effect. The
resonances are broadened as a result of the thermal motion of the nuclei; this
motion depends on the temperature of the neutron-absorbing medium and on
the binding of the nuclei. The considerations of Chapter 7 may be generalized to
describe the thermal motion but, as will be seen in §8.ld, it is usually adequate
to assume that the velocity distribution of the nuclei is Maxwellian.

The Doppler broadening of resonances has an important influence on the
reactivity of a system and, in particular, on its temperature coefficient. Although
it can be shown (§8.ld) that the area under a resonance peak is essentially
independent of temperature, the broadening decreases the corresponding dip in
the neutron flux. As a result, there is an increase in the product of the flux and
the cross section, which determines the absorption probability and is involved
in the group cross sections. This matter will be considered later in some detail
(§8.3a), but for the present it may be noted that an increase in the temperature
of the material containing neutron-absorbing nuclei always results in Doppler
broadening of resonances and an increase in resonance absorption.

In order to take into account the effect of Doppler broadening on reactivity
or other reactor properties, the basic cross sections in the resonance region must
be adjusted appropriately for the broadening before they are used in computing
group constants. It is not feasible to measure the temperature dependence of
cross sections, i.e., the actual Doppler broadening, but it is a relatively simple
matter to take the broadening into account in cross sections which are derived
from experimental or theoretical resonance parameters.

In this chapter. the nature of the resonance cross sections will first be ex-
amined; in particular, consideration will be given to the expected energy de-
pendence of cross sections in the vicinity of a resonance. Next, the dependence
of the neutron flux on the energy will be studied in a homogeneous medium with
a resonance absorber. The objective is to derive the absorption and group
constants for such a medium. Subsequently, resonance absorption in a hetero-
geneous medium will be treated. Finally,some applications to thermal and fast re-
actors will be considered and comparisons will be made with experimental results.

8.1b The Single-Level Breit-Wigner Formula

The resonances occurring in the neutron cross. sections of heavy nuclei arise
. from the combination of a neutron and the target nucleus to yield a compound
nucleus which may subsequently decay (§8.2b) in various ways, e.g., neutron



emission, gamma-ray emission, and sometimes fission. At the peak of a resonance,
the neutron energy is such as to favor the formation of the compound nucleus
in a definite quantum state, i.e., with a definite angular momentum (or spin) and
parity. For th"ecase of a single resonance which is well separated from other
resonances corresponding to states of the same spin and parity, the variation of
the cross section with energy can be expressed in a particularly simple form,
namely, by the Breit- Wigner single-level formula.3

Suppose that a neutron, having a spin of t, i.e., an intrinsic angular momen-
tum of tli, and an orbital angular momentum of In combines with a target.
nucleus of spin I, where I is either an integer (or zero) or half integral, to form
a compound state of spin J. According to the vector addition of angular
momenta,4 the spin J must satisfy the requirement that

II - I ± tl ~J ~ I + I + t
unless / > I + 1, in which case the lower limit is 0 or t.

Reaction Cross Sections

In the vicinity of a resonance at energy Eo, the macroscopic cross section for a
neutron of energy E undergoing a reaction of type x, for target nuclei at rest,
i.e., no thermal motion, is then given by

_ 2 fnf x (8 1)axCE) - N1TA g (E _ EO)2 + tf2' •

where N is the number of target nuclei per unit volume, required to make ax

a macroscopic cross section, i\ is the reduced de Broglie wavelength of the
neutron, about which more will be said shortly, f n,f x' and f are, respectively,
the width for neutron emission, the width for the reaction x, and the total width
of the resonan~e,· i.e.,

and g, a statistical factor which gives the probability that the particular com-
pound state is realized, is expressed by

2J + 1
g = 2(21 + 1>'

In many situations of interest, only s-wave, i.e., I == 0, neutrons need to be
considered; then g red uces to

g=~(1±21~1)
• The •.width" is a masure of the probability that the compound nucleus wilJ decay in

I specific manner; it is equal to " times the decay constant for the particular process. The
latter is. in JeneraI. dependent on the entre (f8.2b); hence, the widths ra. r10 and r. may
vary to some extent with enerlY within a Jiven ~nancc.



unless I = 0 when. g = 1. In practice, the Breit- Wigner equation (8.1) is of
greatest interest for radiative capture, i.e., x = y, and fission, i.e., x ...,...f,
reactions.

It should be noted that the Breit- Wigner formula is derived for the center-of-
mass system; hence for a neutron of velocity v, the value of Ais given by

IiA =-,
fLV

with fL the reduced mass of the neutron-nucleus system, i.e.,

Am
fL=A+t'

where, as in preceding chapters, m is the mass of the neutron and Am is the mass
of the target nucleus. The resonance parameters, such as the neutron energy and
various widths, are then defined in the center-of-mass system. The cross sections
can, of course, be transformed to the laboratory system, and Awill have the same
meaning as above. Usually, however, equation (8.1) is applied (incorrectly), with
A = Film,:, to interpret experimental data in the laboratory system and to derive
the tabulated resonance parameters.s Consequently, when the latter are used in
conjunction with equation (8.1), it is necessary that A be taken to be equal to
Filml". For neutron reactions with heavy nuclei, i.e., for A » m, the center-of-
mass and laboratory systems are nearly the same, i.e., fL ~ m, so that these
considerations are of little import. But they must not be overlooked when the
Breit- Wigner formula is applied to reactions involving light nuclei.6

The elastic scattering cross sections in the vicinity of a resonance are given by a
formula similar to, but somewhat more complicated than, equation (8.1). For
the Ith partial wave (§I.6c), it is

(£ N .21 ir" 216 112

a••l ) = 11'1\. g £ _ £0 + iir + e 1-

+ N1TA2(21 + 1 - g)le2f61 - 112, (8.2)

where ~, is the phase shift associated with the potential (or nonresonant)
5Cattering.'f Of the two terms in equation (8.2), the first represents the elastic
scattering for a compound nucleus with total spin J (and fixed parity); in addi-
tion to the resonant part of this scattering, which is proportional to r",there is
interference between the resonant and potential scattering. This point will be
seen more clearly below. The second term in equation (8.2) gives the potential
scattering where the total spin is not equal to J, and this does not intefere with
the resonance scattering.



Upon working out the squares in equation (8.2) and utilizing the identity

cos 28, = 1 - 2 sin2 8"
it is found that

CT.,,(E) = (E _ ~:::-: tr2 [r~ - 2r nr sin2 8, + 2r iE - Eo) sin 28,]

+ 4N'TTA2(21 + 1) sin2 8,. (8.3)

In this expression, the first of the four terms on the right is the resonance scat-
tering, i.e., equation (8.1) with rx = rn, and the last is the potential scattering;
the two middle terms give the interference between the two types of scattering.

By adding equation (8.3) for the scattering cross section to equation (8.1) for
the reaction cross section, the total cross section for neutrons of angular
momentum lfi, in the vicinity of a resonance, is then given by

CTt,,(E) = (E ~~:;~~ tr2 [r - 2r sin:l 8, + 2(E - Eo) sin 28,]

+ 4N7TA2(2J + 1) sin2 8,. (8.4)

To a good approximation, 8, may be computed from a hard-sphere nuclear
model B; the result is.,

where j, and n, are the spherical Bessel and Neumann functions,9 respectively,
and R is the nuclear radius, approximately equal to 1.25A1/3 x 10-13 em. For
/ = 0 (s-wave) neutrons, equation (8.5) becomes

R
80 =-A

and for I = 1 (p-wave) neutrons,

R R
cSl = - - tan - 1 -.A A

The most important neutron absorption resonances, except possibly for fast
reactors, where neutrons of high energy playa significant role (§8.2d), are those
for which I == 0, so that cS, = cSo is equal to RIA. Furthermore, it may be assumed
that RIA is small. For example. for uranium-238, R •• 7.7 X 10-13 cm, and

R 7.7 x 10-1'
A -4.55 X 10-10 VE(eV)

- 1.7 x 10-1 VE(cV).
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Consequently, R/~ is small for neutron energies less than 10 keY or so. In this
event, it is possible to write

If this value is used in equation (8.3) for the scattering cross section (for s-wave
neutrons), it is found that

where a small interference term has been dropped and the potential scattering
cross section for I = 0 neutrons, represented by Upot and given by

has been introduced.
Attention will now be directed to the quantities in equations (8.l) and (8.8),

namely, ~, rn, and r, that depend on the neutron energy. Since i\ is inversely
proportional to the neutron velocity, it follows that the dependence on energy
can be written as

rEo
~= ~0,JE'

where ~o is the value of the reduced wavelength of the neutron at the resonance
peak.

According to the theory of nuclear reactions,lO the resonance width~ rx, for a
particular type of decay (or the corresponding decay constant) may be repre-
sented as the product of a "reduced width" (§8.2b), which is essentially inde-
pendent of energy within a given resonance, and a "penetration factor," which
is a function of the neutron energy. If, in a particular decay process, a neutron
of angular momentum Iii is emitted, the penetration factor is proportional to
£' .•(121 for the energy range of interest.l1 For the emission of an s-wave (l = 0)
neutron. for example, the width rn will vary as fl. Consequently, the depen-
dence of r" on energy may be represented by

where r"(£0) is the width of the resonance corresponding to the energy of the
peak.

For y-ray emission or fission, on the other hand, the "penetration factorU

does not vary significantly with the neutron energy across the range spanned by
the resonance. The reason is that the energy of the compound nucleus which is
available for these reactions is always very large in comparison with the variation



~J
of energy across a resonance. Hence, rx may be taken to be independent of the
neutron energy, so that

r = rn(Eo) Ii. + 2 rx•

x

In most cases, the resonance energy Eo is large in comparison with the width r,
and it has been shown 12 that it is then a good approximation to ignore the
energy dependence of r and to write

r = rn(Eo) + 2 rx,

where rn(Eo) is as defined above; this approximation will be used in the subse-
quent treatment, although allowance for the variation of rn with energy will be
made when this quantity appears alone.

The peak value of the total resonance cross section, 00' i.e., the sum of the
resonance absorption and scattering cross sections at Eo, is obtained by setting
E = Eo in equations (8.1) and (8.8) and adding; thus,

. 4N i\2 rn(Eo)
°0 = 7T og r .

The total cross section for I = 0 neutrons; i.e.,

o,.o(E) = °..0 + I ox,

is then given by
(f;, r2

°t.o(E) = °0 A/ E 4(E - EO)2 + [I
4(E - Eo) R]r2 + r i\ + °pot· (8.13)

The general nature of the variation of oAE) and 0'.0(£) in the vicinity of a
resonance, in accordance with equations (8.11) and (8.12), is shown in Fig. 8.2.
The dip in the scattering cross-section curve at energies just below that of the
resonance peak and the general asymmetry of the curve are due to the inter-
ference term in the square brackets in equation (8.12). It is seen that this term is
negative when E < Eo and positive when E > Eo. Consequently, there is a
decrease in 0••0 to the left of the resona~ peak and an increase to the right
which together lead to the asymmetry in the curve.



FIG. 8.2 REACTION AND SCATTERING CROSS SECTIONS VS NEUTRON ENERGY
IN VICINITY OF A RESONANCE.

Results analogous to the foregoing may be obtained for p-wave (/ = 1)
scattering by using 01, given by equation (8.7), in place of 00, If RI"- < 1, as it
is usually, tan - 1 RI"- may be expanded in the form

For fast reactors, p-wave resonances are often important, particularly in de-
termining the temperature coefficient of reactivity due to the Doppler effect
(§8.5b). The neutron energies making the major contribution to the p-waves in
the evaluation of this Doppler coefficient are usually less than (or of the order
of) 10 keV.IJ For such energies. for heavy target nuclei, 00 = RIA ~ 0.17, as
seen above for uranium-238, and 01 ~ 2 x 10-3; hence 01 is very small com-
pared to 00, It follows, therefore, that in the energy region of about 10 keY or
less, the effects of interference, which involve 01> etc., and of p-wave potential
scattering are very small relative to s-wave effects. Consequently, they are fre-
quently neglected. It should be understood that the total cross section for any
nuclide will represent the sum of contributions over all I values, but for reso-
nance absorption the contributions only for I = 0 and I = 1 are important.

So far it has been assumed that the single-level Breit-Wigner formula is



applicable. Situations in which corrections must be made will be considered in
due course.

8.1c Experimental Determination of ResonanceParameters

Some brief comments may be made here concerning the experimental deter-
mination of the resonance parameters. It can be seen from equation (8.1) that
if E = Eo ± -tr, the cross section at this energy would be half the cross section
at the peak of the resonance (E = Eo). It would appear, therefore, that in the
plot of cross section versus neutron energy, the energy span (or width) of the
curve at half the height of the peak is equal to the resonance width.

Although use of the term "width" arose in this manner, it is not practical to
determine the resonance width by simply plotting the measured cross sections
as a function of neutron energy in the resonance region. In the first place, the
resonance is broadened by the Doppler effect (§8.1d), whereas the required
width, which applies to nuclei at rest, must not include the Doppler broadening.
In addition, and perhaps more important, the neutrons used in cross-section
determinations are not precisely monoenergetic nor can their energy always be
measured exactly. Consequently, except at low energies, e.g., ;S 10 eV, the de-
tailed shape of a resonance cannot be obtained experimentally. On the other
hand, the total area under the resonance, which is independeht of the Doppler
broadening (§8.1d), is relatively insensitive to the observational errors, and this
forms the basis for most determinations of the resonance parameters.

A theoretical expression for the area under a resonance is obtained by
integration of equation (8.13) after making two simple approximations. First,
Vi Eo! E is taken to be unity throughout the resonance; this is permissible since,
for the nuclides of interest, Eo is generally greater than 10 eV, whereas the range
of E across the resonance is usually of the order of 0.1 eV. For the same reason,
Eo/r » I, and setting - Eo/f = - OC; in the limit of the integral below consti-
tutes the second approximation. It is then found that the interference term
integrates to zero, and if x is defined as 2(E - Eo)/ f,

This result, \lrhich gives the area under a resonance, for the total minus the
potential scattering cross section, is the same regardless of whether there is or is
not any Doppler broadening (cf. equation (8.27)].

The area can be determined experimentally, using total cross sections obtained
by the transmission method, with the given material for various neutron
energies and the potential scattering cross section from equation (8.9) or,
better. from the more-or-Iess constant measured cross sections between reso-
nances. If the result is set equal to trruor. the quantity uor can be evaluated.
According to equation (8.10), this can be simply related to gr,,(Eo) for s-wave
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j (l = 0) neutrons, provided i\o is known. The latter requires a knowledge of Eo,
the energy of the resonance peak, and this is readily obtained from the energy
at which neutron transmission through the material is a minimum.' For the
fertile nuclides, uranium-238 and thorium-232, g is known to be 1 for s-wave
neutrons, since I = 0; hence fn(Eo) can be derived from the neutron transmis-
sion measurements. Thus, the two resonance parameters Eo and f" can be
evaluated.

For the experimental determination by the transmission method of the area
under a resonance, it is the usual practice to employ thin samples of materiaL
The ratio of transmitted to incident neutron intensity (or flux), for a sample of
thickness d, is ideally equal to exp (-at.od). For a thin sample, at.od« 1, and
hence the fraction of incident neutrons transmitted is essentially 1 - at.od. The
cross section at.o can thus be readily determined for neutrons of known energy E.

If a thick sample is employed in a transmission experiment, so that essentially
all the incident neutrons with energies near the resonance peak are removed, it is
possible to calculate aof2 from the results. To see this, suppose that equation
(8.I3) for the total cross section in the vicinity of a resonance is simplified by
neglecting the interference and potential scattering, i.e.,

(Essentially the same conclusion is reached by a _more involved treatment in-
cluding the small neglected quantities.) The fraction of neutrons of energy E
transmitted through a thick sample, which will be represented by T(E), is then
equal to exp [- at.o(E)d), where at.o(E) may be replaced by the expression given
above.

If T(E) for a thick sample is measured for monoenergetic neutrons of various
energies in the vicinities of a resonance, the results fall on a curve like that in
Fig. 8.3. The area. A. of the marked dip, due to almost zero transmission of
neutrons with energies near Eo is then

Since aot/» I for a thick sample, the exponential becomes significant only
when 4(E - Eo)2/~ » I; it is then possible to write

1 4(E - Eo)2 4(E - Eo)2
+ f2 ~ f2 t



FIG.8.3 NEUTRON TRANSMISSION OF THICK ABSORBER IN VICINITY OF A RESO-
NANCE.

Upon introducing the variable
2(E - Eo)

x == .'~r

A = eN r = ...;1TC/od r,

e = i f~lX)(1 - e-1/JC2
) dx = y';.

The physical reason for this value of A is that the width of the dip in Fig. 8.3 is
proportional to ~ r.

The area A can be determined experimentally for a thick absorber of known
thickness d, and from this ~ r (or C/or2) can be obtained. Since C/or has been
derived from transmission measurements with a thin sample, the resonance
parameters C/o and r can be evaluated. Hence. Eo. <70- gra' and r are available
from the experiments. For the fertile nuclides. r = r. + r" at energies less
than I MeV, and so rr can be obtained. Consequently, as indicated earlier, the
<7,(E) cross sections in the vicinity of a resonance. as given by equation (8.11)
with x = 'Y, can be derived from transmission measurements based on the total
cross section.

For the fissile nuclei. the total width of the resonance includes the fission
width rl and, moreover, g may not be known with certainty. Hence, rl and r,.
must generally be determined by separate experiments. The fission and radiative
capture cross sections are measured on thin samples by detection of the fission
fragments and gamma raySyrespectively. The area under a resonance, in the

.~:.~':r
1 ',-"



plot of the appropriate cross section versus neutron energy, is then equal to
trraorf for fission and trraor y for radiative capture. Since ao (and r) can be
derived from transmission measurements with thin and thick samples, as de-
scribed above, rf and r y can be evaluated; r n can now be obtained without
necessarily knowing g.

The measurement of ry can often be avoided because it is known to be ap-
proximately the same for aU resonances of a given nuclide (§8.2b) .. Hence, if it
has been measured for one or a few resonances the same value may be assumed
for other resonances. Moreover, in some instances ry for a given nuclide has
been estimated from the values of adjacent nuclides.

I t will be recalled that the expressions for the cross sections derived earlier refer
to nuclei at rest in the laboratory system, i.e., with no thermal motion. When the
nuclei are in thermal motion, the resonances will be broadened as a result of the
Doppler effect. This motion can be taken into account by an extension of
the considerations of the preceding chapter. For example, it has been shown 14

that the Doppler broadened cross section for a neutron reaction of type x
can be written as

where ao. r, and rx have the same significance as in the preceding section, p is
the neutroR momentum vector, i.e., p = V2mE, and S(p, E) is the function
defined in equation (7.36) with the neutron momentum, p, rather than the
momentum change, hx. Thus, any of the models developed in Chapter 7 could
be used to compute S(p. (), and hence a;x(E), as a function of temperature.

A simple-r approach is based on the finding that,15 provided the temperature
of the medIum containing the absorbing nuclei is not ""too low," it is a good
approximation to assume a Maxwell distribution of the nuclear velocities at (or
slightly aoo\"e) the temperature of the medium. In particular, if the temperature
e\cccds the Dcbye temperature. 8D,* the approximation is a good one. At such
temperatures. all the vibrational modes of a solid are excited with appreciable
probabiltty: the velocity distribution of the atoms (or nuclei) is then insensitive
to the details of the binding. Hence, a Maxwellian distribution may be assumed.

For metallic uranium and thorium, the Debye temperatures are less than
2OO"K,·e and so the appro\imation referred to above may be used at room (and
higher) temperatures. For materials with higher Debye temperatures, such as
U30. "ith 'D - SOO"K. however. a better procedure at room temperature is to

• The Dcbyc temperalure it equal to J"'a•• IIe, where •.•••ax is the maximum vibration fre-
quency 01 the atoms aft • solid and It and Ie are the Planck and Boltzmann constants.
rapcctJ~)' .



take the temperature of the Maxwellian distribution to be such that the average
kinetic energy is the same as for the actual solid.17

The shape of the Doppler broadened resonance will now be derived based on
the assumption that the nuclear velocity distribution can be approximated by a
Maxwellian spectrum.18 In equations (8.11), (8.12), and (8.13), which are valid
for nuclei at rest, E represents the neutron energy in the laboratory system. It is
convenient to write

E = -!-mv;,
where Vn the relative neutron-nucleus speed, is equal to v, the actual neutron
speed, for nuclei at rest. Consider a neutron having a definite velocity v in the
laboratory system but suppose the nuclei are moving with velocity V in the same
system; the relative velocity is then

Vr = If - V,

and the neutron-nucleus interactions will take place with a cross section a(Er),

where
Er = im[·;.

If P(V) dV is the probability that a nucleus has a velocity within dV about V,
the probability of reactions of type x with such nuclei is

Probability of reaction x per sec = l'raAEr)P(V) dV. (8.15)

Hence, the total probability of a reaction per second is found by integrating over
all nuclear velocities, and the macroscopic cross section is obtained upon
dividing by l'; the result is

aAE) = ~I l'raAEr)P(V) dV. (8.16)

This derivation is the same as that used in obtaining equation (7.22), except that
it has been generalized in order to allow for the energy dependence of the cross
sections in the integrand.

In the present situation, the evaluation of the integral in equation (8.16) may
be simplified by taking advantage of the fact that the neutron velocity is large
compared with the nuclear velocities. The procedure is as follows. A coordinate
system is cho~n such that the = ax-is is In the direction of the neutron velocity;
then

Er = !m(v - V)2 = ~m[(l' - V,:fl + V; + V:J. (8.17)

where Vxe Vile and V: are the components of V. The neutron speed is given by
"

r- II
and the most probable nuclear speed in a Maxwell distribution is

J2kT'V•.•. - . ~I •



. where M is the nuclear mass; hence,

_v__ JEM.
Vm•p• - kTm

This ratio is generally large for neutrons with energies in the resonance region.
For example, consider a 100eV neutron, i.e., E = 10 eV, and a temperature, T,
of 1200oK, so that kT = 0.1 eV; for a nucleus of M = 238, vi Vm.p. is > 102•

Hence, the terms V;, V;, and V~in equation (8.17) may be neglected,19 with the
result that

v = J2Er•
r m

In accordance with equation (7.23), the Maxwellian velocity distribution may
be written as

P(V) dV = (~)3/2 e-My2/2kT dV dV dV27TkT x y z,

J P(V) dV = 1

is appropriate for a probability distribution. It is then found that

Jx JOG P(V) dVx dVl/ = (~)1/2 e-MY~/2kT,
- a: - "" 27TkT

which is just the distribution for one velocity component. By using equations
(8.11), (8.18), (8.19). and (8.21) in connection with equation (8.16), the latter
gives ax(£) as a function of temperature; thus,

E . fx )£0 ( M ) f:C -My2/2kT r2 dV
ax< ) =. ao r £ 21TkT _ "" e z 4(Er _ EO)2 + r2 z.

The form of the integral in equation (8.22) may be simplified by defining the
following quantities:

2
X = r (Er - Eo)

2
Y == r (E - Eo)

~ = J4kTE _ J4kTEo
. A - A



where 'f( " Y) is a function defined by

'f(', Y) = _,_ Jex> exp [_*'2(X 2- Y)2) dX.
2y"; - ex> 1 + X

This Doppler function has been studied extensively and tabulated values have
been published 20; several computer programs are also available for rapid de-
termination of'f(S, Y).21 The quantity ~, called the Doppler width, is a measure
of the width of the resonance due to thermal motion; it should be noted that ~,
and hence " contains the effect of temperature on the shape of the resonance.
Although a number of approximations have been made in deriving equation
(8.23), it is sufficiently accurate for most practical applications.22

j,

The behavior of 'Fa, Y) and GAE) in the limiting situations of ~ large and ~
small is of interest. At very low temperatures. the Doppler broadening is small
so that ~ is large; in these circumstances, the integral in equation (8.24) is very
small except when X::::: Y. Upon setting X = Y in the denominator, it is found
that

where A is the ratio of the masses of the nucleus and a neutron. By making the
substitutions in equation (8.22), the latter takes the form

GxCE) = Uo iJ!t 'f(', Y),

I'Fa, Y) ::::: I + y2 for large ~.

If this is inserted into equation (8.23). the result obtained IS identical with
equation (8.11) for the unbroadened resonance.

For very high temperatures, i.e .• extreme Doppler broadening, , is very small;
tne integral in equation (8.24) may then be approximated by the product of the
integral of dX;(1 + X:2) and the value of the exponential for X = O. It is thus
found that

and equation (8.23) becomes

u.JE) = Go_r Jr !Eo _v; exp [_ (_£_'_£_0)']~ ,J£ 2 ~.

This expression, which is valid near the resonance pak for sufficiently high
temperature, i.e., 'small and Y« ,-I, rcpresenu a Gauman distribution curve
with a maximum at £ =: Eo and a width (Vl x the standard deviation) of ~;this



FIG.8.4 DOPPLER BROADENING OF A RESONANCE WITH INCREASING TEMPERA-
TURE.

is why ~ has been called the Doppler width. Furthermore, for large values of
Y. when Y» ~- 2, i.e., far out in the wings of the resonance, there exists an

asymptotic expansion 23

\}' ..... I [ 2 3 Y2
- 1 ]

.....I + Y2 I + ~2 (l + Y2)2 + ...

so that the cross-section curve recovers its natural shape far away from the
resonance peak.

Although the shape of a resonance is changed markedly by Doppler broaden-
ing. as may be seen from the typical curves in Fig. 8.4 derived from equation
(8.23). it is found th3t the area under the curve does not change significantly.
That i" to ~ay. it can be shown that the integral ofax(E) dE over all energies is
appw\imately constant. For the reason given in §8.1c, VEo/E can be set equal
to unity "lthin a re~onance. and so equation (8.23) can be written as

J
4 r ra:

Clx(E) dE = ao rX Jo 'fa, Y) dE

= -laor x f:<Xl 'fa, Y) dY.

By using the definition of "f"({, Y) in equation (8.24), and integrating over Y
and X. in that order. it is found that

f:..'fa, Y) dY = 7T,



is independent of temperature. By using more accurate expressions for the Dop-
pler broadening (see Exercises 1 and 2), it can be shown that the relative change
in the area is proportional to kT/ AEo, when the latter is small. In stars and
nuclear explosions these changes may be significant,24 but in reactors they are
usually negligible.

Hence, in spite of Doppler broadening of the resonance by an increase in
temperature, the area remains essentially unchanged. Nevertheless, the broad--
ening has an effeCt on reactivity because neutron reaction rates (and group cross
sections) involve the products of cross sections and neutron flux. As a result of
the less marked dips in the flux in a resonance, Doppler broadening increases
neutron absorption (§8.3e).

Expressions for the Doppler broadened scattering cross sections may be
derived in a manner analogous to that given above for reaction cross sections.
In equation (8.16) the expression for a•.o from equation (8.12) is ,substituted,
instead of ax, and the same manipulations are performed as before. If vi Eol E is
set equal to unity as in the foregoing treatment, the result is

a•.o{E) = ao ~n \f(~, Y) + ao ~ x(,. ,y) + apot.

where the Doppler function Xa, Y) is defined by

=-~ J~ Xexp[-if(X- YflldX.xa, Y) - v'- 1 X2
"IT -cc +

Tabulations and computer programs for obtaining X<', Y) are also available.25

In tracing back the second tern:t on the right of equation (8.28), it will be seen
that it arises from interference between resonance and potential scattering. The
function xa, Y) may thus be regarded as representing the extent of this inter-
ference..jl

8.1e Overlap and Interference of Resonance.

The Doppler broadened cross sections have been derh'ed above for an isolated
(single-level) Breit-Wigner resonance. In computing the neutron absorption in
the resonance region. it is sometimes possible to sum the absorptions in a
series of levels, each being treated as more or less independent of the others.
There are certain circumstances, how~er. in which it is not adequate to take the
resonances one at a time.

The absorption in one resonance v.'iIl ob\'ious.ly perturb the neutron flux in
resonances of lower energy; this malta. which is not of great practical im-
portance, is best treated numerically and it will be discussed brieflY in &8.3h.



For the present, three situations will be considered; they are (a) accidental over-
lap of adjacent resonances due to thei.r proximity, (b) overlap due to Doppler
broadening, and (c) level interference, i.e., failure of the Breit- Wigner single-
level formula. These effects will be examined in turn.

In computing resonance absorption, account should, of course, be taken of all
the materials present in the system. It may then happen that a few of the reso-
nances of different nuclides, e.g., uranium-235 and uranium-238, occur at
energies that are very close to one another. In addition, it is possible for adjacent
resonances for a single nuclide to differ so little in energy that there is significant
overlap. This can arise because the sequences of resonances with different
quantum numbers (J and parity) are independent; consequently, resonances in
different sequences may overlap. *

In studying the energy dependence of the neutron flux in the resonances, the
absorption in the combination of overlapping resonances should then be con-
sidered, rather than in one resonance at a time. In practice, however, the effects
of accidental overlap on reactivity and its temperature coefficient are generally
small 26 ; there are nevertheless a few cases, e.g., the energy region around
20 eV for tungsten, where they are significant.27

The effect of overlap due to Doppler broadening is more important than the
one just considered. According to the definition given above, the Doppler width,
~, increases with the temperature, T. and the neutron energy, Eo, at the reso-
nance peak. For sufficiently high temperature and resonance energy, the Doppler
width will become comparable with the spacing between resonances having the
same quantum members (~8.3i). Adjacent resonances in the same sequence will
then overlap at high temperatures or high neutron energies (or both).

In uranium-235. for example, the average spacing of s-wave resonances is
about I eV. At a temperature of about 700° K, i.e., kT = 0.06 eV, and Eo =
I keY, the \alue of ~ is approximately I eV; for Eo = 10 keY, at the same tem-
perature. ~ is roughly3 eV. Consequently, at a neutron energy in the vicinity of
I keY (or more) the s-wave resonances of uranium-235 will exhibit strong over-
lap as a result of Do_ppler broadenin~

For uranium:-238 the average spacing of s-wave ~esonance~ is about 20 eV
(see Table 8.1), but the Doppler wid1hs are similar to those ~or uranium-235.
Hence. for uranium-238, overlap of i-wave resonances will npt be significant
until the ncutron energy is more than 100 keY. It should be not~, however, that
p-wa\c resonances are important for uranium-238. The spacing between succes-
sive resonances of this type is about_a third that of s-wave resonances28; thus,
overlap bet\\ec:n adjacent p-wave resonances becomes effective at lower energies.
At around 40 keV the spacing is about equal to the Doppler width.

A theory of strongly o\erlapping resonances is given in §8.3i. For fast reac-
tors. o\'erlap of an intermediate character is also important and special treatment
is required."

• The 'PKinl of resonances in one sequence is discussed in §8.2c.



Finally, there is the difficult problem arising from the failure of the single-
level Bteit-Wigner formula.30 This occurs when the normal spacing between
resonances in the same sequence is not large compared with the level widths, r.
In these circumstances, the adjacent resonances do not contribute independently
but interfere with one another. Unfortunately, such interference effects occur in
the fission cross sections of the fissile nuclides, uranium-233 and -235 and
plutonium-239 and -241.31 Interference -effects of this kind are much less im-
portant, however, for the (n, y) cross sections of the fissile nuclides and for the
fertile nuclides, thorium-232 and uranium-238.32 When there is interference of
adjacent resonances, even at moderate temperatures and low neutron energies,
a number of difficulties are encountered. In particular, it is presently not possible
to derive from the measured cross sections of the fissile nuclides a unique set of
physically significant resonance parameters which could be extrapolated to the
region of unresolved resonances (§8.2b).33

For the energy region where the resonances in the fissile nuclei have been
resolved experimentally, namely, for neutron energies below about 50 eV, there
are various practical ways of solving this problem. Thus, it is possible to fit the
cross sections, to a reasonable extent, by a sum of single-level Breit- Wigner
resonances; regardless of whether these resonances represent states of the com-
pound nucleus or not, they can be used as a basis for Doppler broadening
calculations.

A more satisfactory approach, however, is based on the observation that, even
when interference effects are important, the cross sections can be expressed as a
sum of asymmetric quasiresonances.34 Thus, the (unbroadened) reaction and
total cross sections for nuclei at rest can be represented by

a.(E) - a, - 2: ax·
• )

In these expressions. C is a constan~ ~ is the energy of the ith quasiresonance
and fa is its width; Gue• Gu, Hue, and H" are energy-independent~parameters
chosen to fit the experimental data. ~

Other methods have been proposed for fithn, the experimental cross sec-
tio~ 35 but the procedure described above has the advanlaF that d\c Doppler
broadening can be obtained by using the functions '1.«(_ Y) and x<l Y) of the, .
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preceding section. With a Doppler broadening due to a Maxwellian distribution
of velocities, for example, it is found that

C "" I
ux(E) = _rr L r, [2Gtx'Y('h Yt) - HtxX('h Yt)].

vE i .•

Some effects of these interference phenomena and the associated uncertainties
will be considered in §8.3i.

8.1f Resonance Absorption at Low Energies

Several nuclides which are important in the operation of a reactor have promi-
nent resonances at relatively low energies, i.e., below about I eV. Examples are
the fissile species plutonium-239 and -241,* the fertile nuclide plutonium-240,
and the fission products rhodium-103, xenon-135, and samarium-149. The varia-
tion of the cross sections of some of these nuclides with energy at low neutron
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FIG. 8.5 EXAMPLES OF RESONANCES AT NEUTRON ENERGIES BELOW 1 eV
(ADAPTED FROM BNL-325).



energies· are shown in Fig. 8.5. For such well-resolved, low-energy resonances,
the resonance parameters are known.

In thermal reactors containing appreciable amounts of the aforementioned
species, i.e., in amounts sufficient to perturb the thermal flux, the low-energy
resonances should be taken into account explicitly. In particular, when calcu-
lating the thermal neutron spectrum using a thermalization model and a multi-
group representation of this spectrum, as described in Chapter 7, the detailed
resonance absorption cross sections should be included. As a result of the low-
energy resonances, the relative reaction rates for fission and absorption will
depend on the reactor (moderator) temperature. Hence these resonances will
influence the temperature dependence of the reactivity.

8.2a Introduction

It has been seen that experimentally derived resonance parameters, i.e., Eo,
rn' and rx, are available for characterizing measured cross sections for suffi-
ciently low energies, e.g., Jess than about 4 keV for fertile nuclides and less than
some 50 eV for fissile species. At higher energies, i.e., in the region ofumesolved
resonances, experimental resonance parameters are not available. It is then
necessary to use theoretical considerations to infer the probable resonance
structure underlying the measured cross sections as a function of neutron
energy. This is particularly important for fast reactors since many of the neutrons
have energies in the region of unresolved resonances.

To some extent the procedure used amounts to extrapolating to higher ener-
gies the parameters of the resolved resonances measured at the lower energies.
Moreover, the theory is sometimes useful for determining resonance parameters,
especially r,., which are difficult to measure at 10" energies. The treatment is
based on a study of the systematic variations of resonance parameters, especially
their dependence on the neutron energy. This 1m ohes two aspects: first, the
expected distribution about their average \alu~ of the resonance parameters, in
particular the widths r "and r)f and the .~ener~y separation between adjacent
resonances, and second, the dependence of the average \alues on neutron
energy and properties of the reacting nucleus. such as spin and partly.

With the foregoing information a\'aiLablc, it is possible to construct a hypo-
thetical sequence of resonances ha\'in~ the required properties. This sequence
may then be used to represent a region of unresohed resonances in calculations
of the Doppler effect on reactivity. and so on.lS In many cases. as will be seen
in §8.2d. such an explicit sequence is not requin:d and a knowledge of the
average resonance parameters and thrir distribution with energy is sufficient.

It should be noted at the outset th~t there i'no qu.tntitative theory which can
be relied upon to predict the variation' in the resonance para~ters. Neverthe-



less, the combination of qualitative theoretical considerations with measur
ments at low neutron energies permits useful estimates to be made. In the ne;,
s'ection, attention will be directed to the distributions of resonance widths aboD
their average values.

8.2b Decay Channels and LevelWidth Distribution

It was mentioned earlier that the resonances under consideration correspond to
especially favorable energies (and spin and parity) for the neutron and target
nucleus to form a particular quantum state of a compound nucleus. This state
is formed with several million electron volts of excitation energy, made up of
the binding energy of the neutron in the compound nucleus and of the kinetic
energy in the center-of-mass system. The state may decay, i.e., lose its excitation
energy, in various ways, including always neutron reemission ana gamma-ray
emission and sometimes fission. An energy level diagram depicting these possi-
bilities is shown in Fig. 8.6, where the zero of energy is taken to be that of the
target nucleus plus the unbound neutron at rest.

Each particular mode of deexcitation is called a decay channel. Thus, in Fig.
8.6, neutron reemission is one channel, the emission of a gamma ray Yl (of a
particular energy) is a second channel, of Y2 (of another energy) is a third
channel, and so on. The point that is being brought out is that there is only one
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FIG. as ENERGY-LEVEL DIAGRAM INDICATING DECAY CHANNELS FOR A COM-
POUND NUCLEUS OF ENERGY Eo' AND OCCURRENCE OF RESONANCES.



channel for neutron reemission but several channels for gamma-ray emission.
According to current views, there are a few (typically two or three) channels
available (or open) for fission.37

If the number of open channels for a given kind of decay is known, it is pos-
sible to estimate how the corresponding resonance width rx varies for a set of
equivalent resonances. By using the arguments of the theory of nuclear reac-
tions, it has been shown 38 that if n equally probable channels are available for
a given type, x, of decay of the compound nucleus, e.g., gamma-ray emission,
then the corresponding reduced partial width, * represented by r~,will have a
"chi-square" probability distribution with n degrees of freedom.

This means that if x is defined by

rO
xx =-,- J:ox

where J:~is the average value of r~over all the resonances for states with the
same spin and parity, the probability Pn(x) dx that x will lie ,between x and
x + dx is given by

n (nx) (12)n -1 (nx)
Pn(X) dx = 2f(1n) 2 exp -2 dx,

where f(1n) in the denominator of the first factor on the right side represents a
gamma function. It can be shown that

It follows from equation (8.34) that the deviation from the mean of a chi-square
distribution decreases with increasing n. Some of these distributions are indicated
. F' 8 739m Ig...

The applicability of the foregoing conclusions to experimental resonance
widths has been amply confirmed.·o Consider, first, neutron reemission at
energies low enough for inelastic scattering and I > 0 channels to be ignored.
Then only one channel, reemission of a neutron with I = 0, is open. It was noted
in §8.1b that. for this case, the neutron width is equal to the product of a re-
duced width and a penetration factor proportional to vE. This led to the con-
clusion that r" varies as Vi over a single resonance. The same penetration
factor applies to all the I = 0 neutron widths; hence, the reduced neutron width,
~, the. distribution of which is under consideration, is obtained by dividing the

• The relationship of the reduced width. which was referred to in §S.t b, to the actual (or
measured) re50nancc width is discussed in subsequent paragraphs.
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experimental \\idth rn by v'E. In general, for the ith resonance, r~t= rn/~,
where I'll and £1 are usually expressed in electron volts.

The data on reduced neutron widths are quite consistent with r~dr~satisfying
the chi-~quare distribution for one degree of freedom, i.e., equation (8.33) with
n = I; thus,

Pl(X) dx = ~lr f!:. e-x/2 dx.
2v 7T ~ x

This is often called the Porter-Thomas distribution.41 In a region of unresolved
resonances. neutron widths are generally assumed to have the same probability
distrihutwn. Tl) determine this distribution, all that need be known is the average
"idth. r II' for the resonances in the unresolved region. When values of I higher
than I = 0 are pr~nt. however. there are some instances where the use of
n = 1 In equation (8.33) is appropriate,42

For radiatl\e c.apture reactions. i.e., deexcitation of the compound nucleus by
gamma-ray emi$$ion. many channels are open and a large number are more or
less equally probable. as may be judged from the complexity of the spectra of
the gamma rays accompanying radiative capture of neutrons by heavy nuclei.
MOfeO\,er. the penetration factors for radiative capture (and also for fission),
unlike those for neutron reemission, vary only slowly with neutron energy; they
may, therefore. be taken to be constant over the energy range of a few kilo-
electron \'ollS. The reason is that the quantity analogous to a penetration factor
is &1\-enby the total gamma-ray energy raised to some integral power; since this



energy is in the vicinity of one or more million electron volts, a variation of a
few kilo-electron volts in the neutron energy has no significant effect. 43 The
experimental widths for radiative capture, ry, may thus be used in place of the
reduced widths for the present purpose.

In view of the existence of many channels which are more or less equally
probable, it is to be expected, therefore, that the ry distribution will lie within a
narrow range; that is to say, the value of n in equation (8.33) will be very large.
Since it is difficult to detect experimentally any significant variations of ry

among resonances for a given nuclide, it is generally assumed that ry is constant,
i.e., it is the same for all resonances of the nuclide. This (see Fig. 8.7) corre-
sponds to setting n equal to infinity in equation (8.33). From measurements of
ry for 62 resonances of uranium-238, the distribution was found to be consistent
with n = 44 ± 8.44

Fission of the common fissile nuclides by neutrons of low energy is believed
to involve only a few decay channels. In the curve in Fig. 8.8 representing the
potential energy of the compound nucleus versus the deformation in the fission
process, the few (three) channels corresponding to definite states of the com-
pound nucleus are shown at the potential energy maximum. These are states of
the compound nucleus with definite quantum numbers through which fission
can take place.45 It is to be expected, therefore, that fr/f, would be distributed in
accordance with equation (8.33) with n ~ 2 or 3. For comparison with experi-
ment, actual widths, rather than reduced widths, may be used because the
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penetration factors GO not vary mudl in the relatively narrow energy range in
which the resolved resonances occur.

To some extent, this expectation has been confirmed experimentally,46 but
there are some reservations. First, the various fission channels are not equally
likely, i.e .. they are not open to the same extent, and second, it is difficult to be
sure that the values of rf derived from the experiments are meaningful because
of the overlap effects of adjacent resonances mentioned earlier. Consequently,
although the fission widths are qualitatively in agreement with the treatment
based on the chi-square distribution, it is difficult to draw precise conclusions
from the results. Various procedures have, therefore, been tried for predicting
fission widths in the unresolved region. Generally, a chi-square distribution with
n ~ 2 is employed. but it is also possible to generate hypothetical fission cross
sections which include a reasonable allowance for overlap effects.47

It is of interest to mention that a double-humped fission barrier, 'such as that
shown by the dashed curve in Fig. 8.8, has been indicated both by experiment48

and theory. H< This may be responsible for a periodic modulation of average
fission cross sections. with periods of the order of a few kilo-electron volts.50 It
is not yet known. however. if such effects are of any significance for reactor
physics.

S.2c Resonance Peak (or Level) Spacings

It has been fl)und that adjacent resonances for states with the same spin and
ra ...it~ tend III be f~l1r1ywell separated in energy. The suggestion was made51

that tht: ~racmg D between adjacent resonance peaks (or energy levels in the
compl)und nucleus) could be represented by

Dz = -=,
D

.• here D I~ Ihe: a\crage spacing in the sequence. It is evident that

f 1C P(:) d: = f<XJ :P(z) d: = 1.
.0 0

Further theoretIcal analysis has confirmed the reasonable nature of this distri-
buill," and It ha\ been found to be in agreement with experiment.52 It will be
nl)led that equatIOn (8.36) predicts only a few levels with very small spacings,
becau~ for ~mall: the dl\tribulion varies as : d:.

For making cakulatlOn~. the distributions given by equation (8.33) are some-
•••hat e3!ltcr to .• ork .• ith than those from equation (8.36). Consequently, DID is
IOmdunn anumed to be di\tributed in accordance with equation (8.33) with
" - 8 or 10. and the results arc quite similar to those given by equation (8.36).



As already mentioned, the spacings under consideration apply to adjacent
levels in a given sequence. Levels of the compound nucleus with different
quantum numbers or levels of different nuclei are independent of one another.
Hence there is no correlation between the energy values of such resonances.

The probability P(z) in equation (8.36) is defined in terms of the spacing be-
tween adjacent but distinct levels (or resonance peaks). For situations involving
overlapping resonances, the probability is also of interest that there is a level
within the distance (in energy) zjj of a given level without regard to the number
of intervening levels. Let n(z) dz be the probability that a level lies in the energy
range between zjj and (z + dz)jj of the given level in the same sequence. This
function is probably very complicated, but if it is assumed that the correlation
between level positions in general is due only to the correlation of adjacent
levels,53 then n(z) may be derived in terms of P(z).

The probability, Q(z) satisfies the integral equation

£l(z) = P(z) + f: P(z - z')Q(z') dz',

as may be seen in the foIJowing manner. Either the level in dz is adjacent to the
given level (at z = 0) or there is another level at z' (0 ~ z' ~ z) which is adjacent
to the level at =. The probability of adjacent levels separated by z is P(z), the
first term in equation (8.37). The probability of another level at z' is Q(z'), so
that the second term in the equation is the sum of probabilities that there is a
level at :' with an adjacent level at :. Thus, the sum of the two terms gives the
probability of there being a level between = 15 and (: + d=)15.

Equation (8.37) may be solved for U(z) either approximately or exactly for
some choices of P(=).54 For example, if PC:) is obtained from equation (8.33) with
n = 8, it is found that

It follows from equation (8.38) that £1(=)approaches unity for large z. This is, in
fact. a general property of 11(:), as may be deduced from equation (8.37). When
z is large, PC:) approaches zero and hence, if 11(:) is unity for large =, equation
(8.37) would require that

I = J: P(z - :') dz',

which is the normalization condition satisfied by PC:).
The significance of the conclusion that H(:) approaches unity for large z is

that at a large distance (in energy) from the reference resonance, which is at
z = 0, it is equally probable that a resonance wiIJ be found anywhere. Thus, the
expected number of resonances is unity for a unit interval in z, which corre-
sponds to the intervaJ [j in energy.



S.2d Average Resonance Parameters

The average (or mean) values of the resonance parameters are required in order
to apply the results of the preceding section in making predictions of the
resonance structure of the energy region of unresolved resonances; The quanti-
ties of interest are 1\, 1\ (or r~),rf, and Jj. Of these, r y is obtained from the
known (resolved) resonances at low energies and, as already implied, it may be
assumed to be the same at all energies. In addition, it is a fairly good approxi-
mation to take ry to be constant for all resonances of a given nuclide. It has
also been seen that, for / = 0 resonances, rn (or rather rn) is proportional to
vEt Furthermore, it has been found that over a limited energy range, e.g., up
to about I keY, rf and Jj do not vary very much for resonances with the same J
value. Some average resonance parameters based on the foregoing considerations
are given in Table 8.1.55 (The quantities So and S1 are described below.) For
higher energies, the energy dependence of rr has been estimated fTom channel
theories of fission,56 but experimental results on "subthreshold" fission may
lead to some revision of these theories. 57

It is thus apparent that as long as / = 0 resonances predominate, it is possible
to predict the average values of the resonance parameters fairly well up to
moderately high neutron energies. At higher energies, where / = 1 resonances
are important. a more general approach, which is also useful at low energies,
may be employed. This is based on the requirement that the average resonance
parameters should yield average cross sections which are in agreement with
experiment. Thus, in the energy region of unresolved resonances, there are
usually a\ailable measurements of cross sections for which the individual
resonances are not resolved but have been averaged over. These average
resonance parameters must be consistent with the measured cross sectioM.

Consider a sequence of resonances having the same values of J and of /.
According to equation (8.27), the area under a given resonance is

Uranium-238 Uranium-235 Plutonium-239

I,. meV 19 45 39
r, (J-waves). meV 53 41 (J = J+)

f-: (J-wave). meV
1500(J = 0+)

1.9 0.1 0.3 (J = 1+)
0.9 (J = 0+)

D. eV 21 1.0 3.1(J=I+)
8.8 (J = 0+)

So 0.9 )( 10- • 0.91 x 10-· 1.07 x 10-·
51 2.S )( 10- • 2.0 x 10-· 2.S x 10-·



where 0"0 is given by equation (8.10) and 0"00 is defined by

Suppose the average cross section is being sought over an energy interval /:}.E
which contains many resonances and is, therefore, large in comparison with the
average resonance spacing, D. The interval must not be so large, however, that
the average resonance parameters will change much within /:}'E. The expectea
number of resonances within the interval ;j.E will then be /:}'Ej D.

The average cross section may now be found by taking the average contribu-
tion of a single resonance, averaged over the distribution of resonance widths,
divided by D; thus, using equation (8.39),

where the subscripts J, 1 indicate that a particular sequence of resonances is
under consideration. Such quantities as fj and f\ will depend on J and I. The
brackets < > imply that an average is being taken over all the resonance partial
widths.

For example, for uranium-238. I' = I'll + T,,~ it will be assumed that ry is
constant. whereas x = r~/r~is distributed in accordance with equation (8.35).
It is then found that

Such quantities have been computed and are available in graphical form.58

For a fissile nuclide, for which y = f1lrl ha~ a distribution given by equation
(8.33) with n :: 2,

(a,.·X < r"r, ) Je (C xr"r" P( )P( )d d
1\ + 1'1 + 1', = 0 Jo ,Tr" + yr, + 1', 1 X Il Y X Y

The important ratio of jhe average of neutron captures to fissions would then be
the ratio of the two integrals given .bo~. Although the resultinc quantity is
quite complicated, it can be computed readily.

1.1...-:
J~I .J:
;



The average value of the scattering cross section may be expressed in a
form similar to equation (8.40), using equation (8.28) for as; for a sequence of
resonance it is found that

(as)J.I = [~al>0<r fn >t.1 + gapat, (8.41)

where use has been made of the fact that the integral of the resonance interference
function is zero.

To compute the average cross section for comparison with experiment, the
foregoing expressions must be summed over all contributing sequences of
resonances, i.e., over all J and I values which are important;- thus,

(ax) = 2: (ax)J.I
J,I

(as> = 2: (as>J,1
J,I

When experimental values of the average cross sections are available and the
number of contributing J and I values is small, the results derived above are
useful for determining the average resonance parameters. For example, at low
neutron energies. i.e .. up to about (or less than) 1 to 10 keY, depending on the
particular nuclide. only I = 0 resonances need be considered. If I = 0 for the
target nucleus. then J = 1and there is only a single sequence of resonances.
If I i: 0, then J = I ± 1. so that two sequences are involved.
" At higher energies I = I resonances become significant and further sequences
must be included. In these circumstances, nuclear models may be used to suggest
the relative values of some of the parameters. Thus, the dependence of jj on
spin can be obtained from models of the nuclear level densities,59 and for values
of J which are not too large it can be assumed that

jjJ cc (21 + 1)-1.

Moreover. \"alues of r../jj may be estimated from calculations of neutron
.stunKlh junctions.eo

In particular. the .s-wave (/ = 0) strength function is usually defined by

So = jj~ (8.42)

and the p-wavc (/ = I) strength function is given by

S _ r.. I + (RIA)2 (8.43)
1 - lh/E (RIA)2

where R and ,\ have the same significance as before. In equations (8.42) and



(8.43) the values of f'nand 15 are appropriate to the sequence of I = 0 and I = 1
resonances, respectively, under consideration.

Strength functions, which are of the order of 10-4 (see Table 8.1), can be
calculated within a factor of about two for most nuclei from optical models of
the nucleus. They can often be estimated more accurately, however, from the
known values for adjacent nuclei.61 From the strength functions, f'nl 15 can be
derived by means of equations (8.42) and (8.43) and then used for determining
average cross sections. For example, suppose that f x in equation (8.40) is large
compared to f n; then f nf xlf is approximately equal to f n' Under these
conditions, it follows that

( )
••.•.•7Taoo fin.

ax '" 2 15
Hence, for s-wave neutrons, (a x) is proportional to tile strength function, So,
times VE. .

A possible method for making use of the foregoing procedures ;s to fix most
of the average resonance parameters and leave a few adjustable to fit the
measured average cross sections. It is not proposed to consider further details
here. Suffice it to say that, by using these and similar combinations of theory and
experiment, it is possible to deduce many properties of the average resonance
parameters. However, especially at higher neutron energies, there will remain a
degree of uncertainty in the unresolved resonances for which allowance must be
made. This uncertainty is not important for thermal reactors, for which the
unresolved resonances playa minor role, but it is significant for fast reactors.62

It has now been seen how cross sections are to be represented in the resonance
regions, i.e .. by Doppler broadened shape functions. as in equations (8.23) and
(8.28), with resonance parameters determined from experiment or from com-
binations of experiment and theory. Given such cross sections, it would be
possible to use them in a general (numericaH scheme for generating multigroup
constants, such as that given in §4.5a. Certain approx.imations have been found
to be useful, both for avoiding some of the elTort "hich would be involved in
such a general approach and for pro\ iding ph~lcal insight into the results.
More important, special treatments must be developed for obtaining multigroup
constants in lattice geometry. A method based on colli~ion probabilities will be
described in §8.4a et seq.

Some insight into the problem~ and terminology of rewnance absorption may
be obtained by considering first the simpl~t 1ituation, namely, a homogeneous
system. This will be done in the followlOg sectIOn.

S.Ja Effective Resonance Integra.

In every nuclear reactor, some neutrons are slowed down into the energy region
where resonances occur and they arc absorbC'd. Co,wdcration "ill now be given



to resonance absorption in an idealized case which will serve to iIIustrate the
essential physical features. The system to be treated consists of a homogeneous
mixture of a moderator and a material with cross-section resonances in which
neutrons are absorbed. It is assumed that a source, independent of space and
time, is supplying neutrons, e.g., by fission, which are being slowed down into
the resonance region.

For evaluating the resonance absorption in such a homogeneous medium
with known (measured or assumed) resonances, the only problem is to determine
the energy dependence of the neutron flux; the product of the absorption cross
section and the flux then gives the absorption. In principle (and in practice) the
flux can be computed to any desired degree of accuracy by numerical solution
of the slowing down integral equations. But a number of fairly accu.rate approxi-
mations reduce the effort involved and also clarify the physical situation.

Before attempting to determine the neutron flux, it is convenient to consider
what use will be made of the results and to introduce a way of summarizing
them. Suppose, for the moment, that the flux rj>(E) is sought in the vicinity of a
single resonance with a peak at E = Ec and let the flux be normalized so that the
asymptotic value, i.e., the flux unperturbed by resonances, at energies just above
E1 is given by

The reaction rate within a resonance for the flux based on this normalization is
then

Reaction rate per cm3 per sec = f uxc(E)rj>(E) dE,

where axl denotes the cross section for reactions of type x in the vicinity of the
resonance at E1• The quantity in equation (8.44) is called the effective resonance
integral and is represented by IXh i.e.,

Ixt = f uxcrj>dE,

where t$ = 1/E above the resonance.
The contribution of the resonance to a flux-weighted multigroup cross section,

as in equation (4.26), is conventionally stated in terms of an effective group
cross section, 6, where. for example,

I,u~dE _ IX1
axj = ---- """---.I. t/> dE In E(I-l

Ell

In obtaining the last form of equation (8.46) it is assumed that t/> = lIE over
nearly aU the energy range of the group g (§4.5b).



It is also useful to determine the probability that the neutrons are absorbed in
the resonance, rather than being moderated to lower energies. For this purpose
the competition between absorptions and slowing down must be assessed. When '.•~
the asymptoti~ flux is I IE, the corresponding slowing down density, i.e., the 'j
number of neutrons per cm3 per sec which are moderated to energies below E,
may be written 63 as

where e is, as usual, the average logarithmic energy decrement per collision; the
sum is taken over all scattering nuclei. If the scattering cross section of the
moderator is Urn and the off-resonance (or potential) scattering cross section of
the absorbing nucleus is Upot, then

q = emum + eaupOt,

where fm and ea refer to the moderator and absorber, respectively.
The probability of absorption in the resonance i is now given by

iJ _ f UaiePdE _ fa!
abs.! - q - emum + eaUpot'

For a group of resonances, assuming the flux to be proportional to I IE in the
absence of the resonances,

Pesc = n (I - Pabs••)·

If all the individual absorption probabilities are small, as is usually the case,
equation (8.48) may be approximated by

Peac ::: exp (- -:> Pabs.!) = exp [- ') e fa! e ]. (8.49)
~ - mUm + aUpot

I i

The quantity ~ fat is then frequently called the total effective resonance integral.
I

Suppose the neutron energies are low enough for s-wave scattering by the
moderator and s-wave scattering plus absorption by the absorber nuclei to be
the only important kinds of collisions. If the neutron flux is independent of
space and time and the scattering is s-wave only, so that uf is given by equation
(4.5), the transport equation takes the form of a slowing down equation

f~j·· a f~'·· a (E')
a(E)4,(E) - J~ (l - :m)E' 4>(E')dE' + J~ (I:' «a)E' ,,(E') dE', (8.50)



where a is the quantity defined in §4.2b; the scattering cross section, am, of
the moderator is assumed to be independent of energy, but that of the absorber,
as. is not. The total cross section on the left of equation (8.50) is given by

Equation (8.50) could be solved numerically to any desired degree of accuracy.
Thus, eP(E) can be assumed to be known at high energies, e.g., eP = liE for
E > Emax, where Emu represents some energy beyond the resonance. Then the
integrals in equation (8.50) can be evaluated and the equation can be solved for
the flux at Emu - €, with € small. The procedure could then be repeated using
this flux to obtain the solution eP(E) for E ~ Emax. In practice, equation (8.50)
would normally be expressed with the neutron lethargy rather than energy as
the independent variable (cf. §8.4c).

There would be no difficulty in including the scattering of neutrons with
higher angular momenta (/ ~ I), e.g., p-wave scattering, in such a numerical
approach. The scattering kernels would be different, but they are known (§4.2b).
As noted in §8.1b, however, the effects of p-wave scattering are less important
than for s-waves: most of the effect can be taken into account by including
p-wave scattering in aCE) on the left side of equation (8.50).

Multigroup cross sections could be determined by means of the fluxes derived
in this manner using purely numerical methods; the required cross sections are
taken as detailed functions of the neutron energy. In many cases, however, the
required group cross sections can be derived from the resonance parameters
(and temperature) by making some approximations in order to evaluate the
integrals in equation (8.50). These approximate procedures, described below,
are nearly always adequate for preliminary calculations and they provide useful
insight into the physical situation. Attention will first be paid to resonances
which are not Doppler broadened and for which simple results can be obtained.
The complications due to Doppler broadening will then be examined. In
practical problems of resonance absorption by heavy nuclei, Doppler broadening
must always be taken into account.

Suppose that a solution is being sought for the flux 4>(£) in the vicinity of a
narrow resonance at El• A better condition for narrowness will be given below.
but for the present it may be supposed that a narrow resonance is defined by the
width being less than the neutron energy loss per collision. Since the energy loss



per collision with a heavy absorber nucleus is less than with a moderator nucleus,
the condition for a narrow resonance* may be written

r« (1 - aa)Ei•

For E ~ Eh such a resonance will have very little effect on the integrals in
equation (8.50). In other words, the integrals will be dominated by contributions
which are far enough from the resonance in question so that the flux is not
significantly perturbed by it. Neglect of the effect of a resonance on the flux in
the integrals of equation (8.50) is known as the narrow resonance (NR) approxi-
mation. In this approximation, alE') is set equal to apot so that the contribution
of the resonance is not included in the scattering integral, i.e., the second
integral in equation (8.50).

Since I - am is much larger than I - (la, the NR approximation is nearly
always a good one for the moderator and so it is generally used in evaluating
the first integral in equation (8.50). In some cases, however, it is not applicable
to the absorber; this situation will be discussed later. For the present it is as-
sumed that the N R approximation is good for the absorber, as well as for the
moderator, and so it will be utilized here for both integrals in equation (8.50).

If the resonances are well separated, it is reasonable to assume that other
resonances do not affect the integral very much. Neglect of the effect of these
other resonances is referred to as the flux rccorcry approximation, because it
implies that the flux •. recovers" to an asymptotic value between resonances.
Under certain conditions. of resonance spacing this approximation may be
poor,64 but on the whole it has been found to be quite satisfactory,65

With the two approximations just described, the flux in the integrals may be
expressed by an asymptotic form. The integrals can then be evaluated and
equation (8.50) can be solved for ~(E). Thus. if in the integrals

a(£)<f>(£) = am + apol
E

4>(£) = am + CPOl.!..
aCE) £

It is evident, therefore. that since the numerator is constant, the flux will have a
pronounced dip at the energy corresponding to a resonance (Fig. 8.9).

Equation (8.51) expresses the NR approximation to the neutron flux. It is
valid for all sufficiently high energies and for the narrow resonances associated

• For a Doppler broadened resona~ a comparabH: criterion would be:
VI~ + ~2 «(I - .")Eo.
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FIG. 8.9 CROSS SECTIONS AND NEUTRON FLUX IN VICINITY OF A NARROW
RESONANCE.

with absorption by heavy (fissile and fertile) elements. For example, consider a
resonance at Ei = I keV; the maximum energy loss accompanying the collision
of a neutron of this energy with a uranium-238 nucleus is given by

( 4AaEi 17 VI - ua)Ef = (1 + A
a
)2 = e.

For collision with an oxygen nucleus, on the other hand, it is 220 eV. Both of
these energy losses are large compared to resonance widths and so the narrow
resonance approximation can be justified at energies above 1 keY (or even less).

An alternative (and better) condition for the self-consistency and validity of. ,
\ the NR approximation can be derived in the following manner. According to

equation (8.51). the flux eP(E) will depart from its asymptotic value in t"he
neighborhood of the resonance. But, the flux was assumed to be asymptotic in
the integrals. Consequently. for the approximation to be consistent, the con-
tribution to the integrals must be small from regions where eP(E} departs from
its asymptotic value.

Consider. in particular, the energies at which eP = 1/2E (or Eq, = -!-), so that
the N R flu't is half the asymptotic value. This usually turns out to be far out on
the wing of a resonance where the natural shape of the cross-section curve is
valid. If, for simplicity, the interference between potential and resonance
scattering is ignored and, furthermore, viEol E is taken as unity, equation (8.13)
reducest-o



Then, if Ee/> = t, with e/> given by equation (8.51) and noting that aCe) = am +
as + 2: ax(E), it follows that am + apot is one-half of the total cross s~ction,i.e.,

x

IE - Ed = trJ ao - 1.
am + apot

The energy interval 21E - Eil, over which the flux is so perturbed as to be half
the asymptotic value (or less), is called the practical width of the resonance, and is
represented by rp. For cases of interest, ao » am + apot and hence the practical
width may be defined by

A better condition for the NR approximation than the one given earlier would
then be

rp « (I - Cla)Et•

Approximations which can be used when this condition is not well satisfied are
discussed later (§8.3g).

For Doppler broadened, resoJlances, fp is, in principle, a function of tem-
perature. As noted earlier, however, in most cases of importance the practical
width is determined by the wings of the resonance where Doppler broadening
does not affect the shape. Hence, rp is essentially independent of temperature
and is equal to the value in equation (8.52).

If the flux is represented by equation (8.51), then the number of reactions per
cm3 per sec, I.e., the effective resonance integral, is obtained from equation
(8.45) as

f
EZ

Reaction rate per cm3 per see = J)Cl = ax,(E~(E) dE
. "I

fEZ aAE) dE
= (am + apot) £1 a(E) E' (8.53)

where E1 and EJ are energy limits chosen to include the resonance of interest
at E•. In the NR approximation. the effective cross section, defined by equation
(8.46), is then

[.
1 ux(E) dE

(j _ Ix. _ 61 ~ £,
xi - J:: ~E) dE fl'_I_ dE

., a(E) E



in which the constant factor (am + apot) has been cancelled in numerator and
denominator.

Further simplifications, which are often quite accurate, can be made to
equation (8.54). In the numerator of this equation, the main contribution to the
integral is from E ~ E', and so l/E can be set equal to l/Ei. Then, in the
denominator, l/a(E) ~ l/(arn + apot) over most of the energy range, whereas
near the resonance the former is smaller; hence l/a(E) may be replaced by the
constant l/(am + apot). Then equation (8.54) becomes

-_ am + allot· fE
2 aAE) dE

axi - Etln (E2/E1) E
1

a(E) .

If E1 and E2 represent the energy boundaries of a group in multigroup theory,
then axi> given by equation (8.55), would represent the contribution of the
resonance at Et to the group cross section for reactions of type x.

a.3d Absorption Probability in the N R Approximation

As in equation (8.47), the probability of absorption, Pabs,t, is equal to the given
resonance integral, i.e., Ixi as represented by equation (8.53), divided by the
slowing down density; thus,

p == ~ JE
2 aa(E) dE '" _1 JE

2 aa(E) dE
abs,l ~ E

1
a(E) E - 't E

j
E

1
a(E) ,

where. as before, aa( E), is the sum of all the reaction cross sections of the
absorber, and l is defined by

l = fmam + ~aapot.
am + apot

The resonance escape probability for a group of resonances is now obtained
from equation (8.48) as

p = n(1 - L rE~ aa(E) dE),
esc ~ JE - a( E ) E

1 I

where E1- is an energy between EI-1 and Ei, and E1+ is between E1 and Ei+ l'

The product may be represented to a good approximation by an exponential,
so that

P '" [I JEmall a. a(E) dE]
esc - exp - -= a(E) E '

~ EmlD

where EmtD is typically chosen as around the cadmium cutoff energy. approxi-
mately 0.4 eV. whereas Em..,. is some large energy beyond the resonances, e.g.,
around 100 keY. Equation (8.57) is the expression for the resonance escape
probability in a homogeneous system as given by the NR approximation.



If the absorber is very dilute, then apot and as in equation (8.53) can be
neglected in comparison with am' and the total resonance integral at infinite
dilution, 100, may be written as

where aa, for all reactions, has replaced ax and a has been set equal to am in
obtaining the final result. The corresponding integral at finite dilutions is

f aa(E) dE
fa = (am + O'pot) O'(E) E

and hence equation (8.57) becomes

Pesc::::::exP[-t fa )].
(am + apot

The resonance escape probability can be measured 66 and then the total
effective resonance integral may be derived from equation (8.59). Thus, the
effective resonance integral provides a convenient device for summarizing
experimental data.67

For fertile nuclides, the experimental resonance integrals do not agree well
with the values derived from equation (8.58) using experimental resonance
parameters, primarily because the NR approximation is not valid for the largest
low-energy resonances.68 Comparisons of experimental and calculated resonance
integrals are given in §8.5a.

The integrals involved in the resonance absorption will now be examined and
in the process an assessment can be made of the accuracy of the NR approxi-
mation. Suppose it is required to evaluate an integral such as the one in equation
(8.53), with 1/E replaced by 1/Ej, or the one in equation (8.58), i.e.,

I = am + apot faxCE) dE
xi El a(E)·

In the absence of Doppler broadening and assuming the single-level Breit-Wigner
formula to be applicable, aAE) can be taken from equation (8.11) and aCE),
the total cross section, from equation (8.13) with apot replaced by am + O'pot to
take into account potential scattering by both moderator and absorber. In
addition, Et is substituted for Eo. Since it is usually adequate to set vi EtlE = 1,

. the expression for [Xi becomes



2
Y = r (E - Et),

and E1 and E2 are taken such that IE1 - Ed and IE2 - Ell are both much
greater than the total resonance width r; equation (8.61) may then be written as

I I = Om + °pot fIX) dY = 7T(Om + Opot) , (8.62)
x Et _ IX) a y2 + b Y + C Et vac - ib2

2
c = a + r'

x

Thus, the resonance integral, and hence the effective cross section axh can be
expressed in terms of the resonahce parameters.

The absorption probability for a single reaction, as given by equation (8.56)
with Ox replacing OIl> now becomes

p - ~ 1 . (863)
aba.xi - [aEt J: _ b2 .•

a 4a2

Upon substituting the expressions given above for a, b, and c, and using equa-
tions (8.9) and (8.10) for the potential scattering and peak resonance cross
sections, respectively, to evaluate b2/4a2, equation (8.63) takes the form

p _ 1'"00rxl. (8.64)
atM •..-1 - [(om + opot}E, J 1 + . °0 (1 _ gr n °pot )

Om + 0pot r Urn + 0pot

The physical significance of the terms of this expression can be understood
by writing it as

Pa•.- xi = A --==1 ==-,-. vi + Be

B • C70

o. + C71*



If the absorber is infinitely dilute, then u(E) in equation (8.60) is equal to
Urn + Upot ~ Urn and hence, writing loo•xi for the effective resonance integral at
infinite dilution,

where equation (8.27) has been used for the integral. If loo•xi is divided by the.
slowing down density, g(um + Upot), the result, which is identical with the term
A, is the resonance absorption probability at infinite dilution. This result is
obtained in the absence of flux depression by the resonance.

If interference between resonance and potential scattering were neglected,
the quantity b in equation (8.62) would be zero, and equation (8.65) would
become

P - A I (no interference).
abs,xl - VI + B

Thus, the infinitely dilute resonance absorption is decreased by the factor
I/V(l + B) because of the flux depression at the resonance. The quantity, B,
i.e., oo!(um + upot), is the ratio of the peak value of the resonance cross section
to the cross section away from the peak (Fig. 8.10).

Finally, the term C in equation (8.60) represents the increase in the resonance
absorption due to interference between resonance and potential scattering.

(To + (Tm + (Tpot--1----
I
I
I
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I
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I
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For most resonances, the effect is small although there are some significant
exceptions.69

8.3e Doppler Broadening in the NR Approximation

When Doppler broadening of the resonances is taken into account, the equations
for the N R approximation become somewhat more complicated. Thus, the
cross sections for single levels may be taken from equations (8.23) and (8.28).
When interference between resonance and potential scattering is negligible,. the
results may be expressed in terms of the tabulated function 70 la, (3),defined by

I fOO 'Ya, Y)
la, (3) =:2 _00 'Y(~, Y) + f3dY,

where f3 is a function of cross sections (and sometimes also resonance widths)
to be derived below, and ~ = r/ti. as before.

In particular, if '\/ E/ Eo is set equal to unity, it is found that

Thus, for a single resonance, the effective cross section from equation (8.55)
becomes

p = ~Xjl(r am + apot).
abe.1 'E ':0,

~ I ao

For a series of ~onances. the total effective resonance integral for reaction x is
obtained from equation (8.58) as

The 1!eneral behavior of Ja. (3) as f3 varies is shown in Fig. 8.11.71 It is seen
that when fJ is large. J is independent of , and, hence, of the temperature. The
reason is that for large fl. i.e .• when (am + up)/uo is large. the flux depression
by the rnonancc is small. Hence. the denominator of equation (8.67) is close to
•• + •••• and the numerator f a.(E) dE. which is the area under the resonance,
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FIG. 8.11 THE FUNCTION J (~.f3) VS i, WHERE f3 = 21 x 10- ~ (AFTER L. DRESNER.
REF. 71).

is essentially independent of temperature and. therefore. of ,; hence, when f3 is
large. J is also independent of' (and of temperature).

For small values of f3, Fig. 8.11 shows that) is again independent of " at
least unless { is ,,'ery small, i.e., T is very large. This arises because when f3 is
small. 00 'l·a. Y) » Om + 0pot until Y becomes large, i.e .• at energies some
distance from (on the wings of) the resonance. On the wings, the cross-section
curve has its natural shape (§8.ld) unless T is very large, so that J is independent
of ,.

At low temperatures. i.e .• for' » 1. J is independent of , and thus of tem-
perature. The reason is that when' is large, the resonance has its natural, un-
broadened shape.

It is also seen from Fig. 8.11 that. for any \'alue of {J, the function J increases
or remains constant as , is decreased, i.c., with increasing temperature. In other



words, the resonance absorption must increase (or be unchanged) when the
temperature is increased. This result is found to be quite general and not limited
to the NR approximation. The physical basis is that when a resonance is
broadened by the Doppler effect, the neutron flux depression is decreased (Fig.
8.12) whereas the area under the cross section curve is essentially constant.
Hence, the absorption, i.e., the product of the flux and the cross section,
increases with increasing temperature.

The effect of Doppler broadening in increasing absorption is most marked
when Ja, fJ) varies significantly with ~, at a given fJ. This is seen from Fig. 8.11
to occur particularly in the range 10-3 .:s f3 .:s 1.*€onsequently, such resonances
are likely to be the ones which contribute to the temperature coefficient of
reactivity (§8.4e). In the NR approximation, this coefficient would include a
term proportional to oJ/aT, and in view of the definition of ~ (and of Ll), i-t
follows that

oj
oT=

1 ~ oj----.
2 To~

Hence, resonances with values of fJ and , such that oJ/a, is large will make
important contributions to the temperature coefficient of reactivity.

When the interference between resonance and potential scattering cannot be
ignored in the Doppler broadened cross sections or when the resonance cross
sections cannot be represented by a single-level Breit- Wigner formula, the
results cannot be summarized in terms of J functions. Nevertheless, the qualita-
tive effects of Doppler broadening are the same as those derived above.

FIG. 1.12 INCREASE OF RESONANCE ABSORPTION WITH INCREASING TEMPERA.
TURE.



8.3f The NRIM Approximation

It will be recalled that the condition for the NR approximation is that the
(maximum) energy loss in an elastic scattering collision with an absorber
nucleus, i.e., (1 - lXa)Ej, in the vicinity of a resonance should be much greater
than the practical width, rp, of the resonance. There are instances, especially
for some of the strong, low-energy resonances of uranium-238, for which ao is
large and Et small, where this NR condition does not hold. For example, for
the 6.67-eV resonance of uranium-238 in a 1: 1 mixture with hydrogen as
moderator, Tp is approximately I eV, whereas (1 - lXa)Ei is around 0.1 eV.

Under stich conditions, when (1 - lXa)Et « rp, the NR approximation fails
for the second integral in equation (8.50), although it is usually satisfactory for
the first (moderator) integral. A better and equally simple approach is then to
assume that the resonance is narrow (N R) for collisions with the moderator,
but it is so wide for the heavy absorber nuclei that the latter may be assumed to
have infinite mass (1M). Thus, energy loss in colIisions with absorber nuclei are
neglected. This leads to what is called the NRIM (or sometimes NRIA, where A
refers to the mass of the absorber atom) approximation. The N RIM approxi-
mation is applicable only to a few of the low-energy resonances of the fertile
nuclei, but these few resonances may account for a large fraction of the resonance
absorption in a thermal reactor.72

In the N RIM approximation, the second integral in equation (8.50) becomes

The first integral is the same as before. since the N R approximation is retained
for moderator collisions, i.e .. arniE, and hence it is found from equation (8.50)
that

since a( £) = am ..j.. a.(E) + a,AE). By comparison" ith equation (8.51), it is seen
that scattering by the absorber nuclei no" has no effect on the flux. This is, of
course. to be ex.pected since scattering from an infinitely heavy nucleus, i.e.,
without energy loss. would have no influence on the competition between
moderation and absorption.

If equation (8.69) is used for the flux in deriving expressions for reaction rates,
absorption probabilities. etc., the only difference from the N R results will be
the elimination of "pot. the replacement of 1.1(£) by am + 00(£), and of l by ~m'

For example. instead of equation (8.56), the NRJM approximation would give



For an unbroadened single-level resonance, the resonance integral would be, in
terms of resonance parameters,

I - O'm f O'AE) dE
xl - El' O'm + O'iE) E

trrO'orx-
ElJ 1 + r - rn 0'0

r O'm

The absorption probability is then

1
r - rn 0'0+ . -r <Tm

which may be compared with equation (8.64) for the NR approximation.
Expressions analogous to those given in the preceding section may be obtained

for Doppler broadened resonances. The quantity f3in la, f3) is now expressed by

f3 = O'm
r

O'o(r - rn)

In the third and fourth columns of Table 8.2, the values 'Of Pabs are given for
individual unbroadened resonances of uranium-238, in a 1: 1 atomic mixture

.with hydrogen, for both NR and NRIM approximations.73 (The values in the
last two columns will be discussed in the next section.) It is seen from the results

Iterated Values

E.. ~V r. ~V NR NRIM NR NRIM

66.3 O.OSO 0.0224 0.0260 0.0261 0.0253
81.3 0.0271 0.00652 0.00556 0.00630 0.00627
90 0.02.5 1 0.00114 0.00097 0.00113 0.00113

103.5 o.ocn- 0.0139 0.0217 0.0214 0.0202
117.5 0.040 0.00826 0.00856 0.00836 0.00840
146 0.02.59 0.00178 0.00150 0.00176 0.00177
166 0.029 0.00298 0.00263 0.00294 0.00294
192 0.165- 0.00596 0.01245 0.00914 0.01043

• SIron. raonanc:a.



in the table that the NRIM approximations often gives more absorption in a
resonance, especially a strong one, than does the NR approximation.

8.39 Improved and Intermediate Approximations

For resonances which are neither narrow nor wide, it is possible to improve
upon the NR and NRIM approximations without the necessity for an excessive
amount of numerical work. Two such improvements are the iterative method 74

and the quite successful intermediate resonance absorption treatment.75 Since
the NR approximation is usually a good one for neutron collisions with the
moderator, although not necessarily with heavy absorber nuclei, it will be
assumed to apply to the moderator only. This is, however, by no means the most
general situation for which iterative and intermediate methods have been
devised.76

With the NR approximation for the moderator, equation (8.50) becomes

(E)-I.(E) = am + fE
,
aa o,(E')eP(E') dE'

a 't' E E (1 - Cla)E' ,

which can be written in the form

o(E)eP(E) = ~ + KeP,

where K is the integral operator in equation (8.71).
Consider the iterative sequence defined by

The first guess, 4>0l, for the flux may be taken as the N R approximation, i.e.,
equation (8.51), which is

-L(1){E) __ am + °pot _I (NR . 0)'t' \. ----- apprOXimatIOn
0zn + a, + 00 E

or from the NRIM approximation of equation (8.69),

~111(E) == U
m l (NRIM approximation)

am + 00 E

or in the intermediate form

-L<lI(E) = am + AUpot (0 ed')Y' ----- tnterm late
Um + Au, + U. E

where A. which lies in the range 0 < A < I. is to be determined.
It will now be shown in a heuristic manner that the sequence defined by

equation (8.73) converges to the true flux. i.e.,
.L(1a) ••• .L
? --".".



u(E)£(n) = K£(n -1).

According to the definition of the operator K, it contains only scatterings from
heavy (absorber) nuclei; consequently, £(n) may be interpreted as the flux of
neutrons arising from scattering collisions of neutrons in the flux £(n -1) with
heavy nuclei. All other collisions of £(n -1) neutrons will not contribute to £(n);

that is to say, they will result in absorption. Hence, the neutrons in £(n) will have
n - I scattering collisions with the heavy nuclei, and no other collisions,
starting from £(1). For a large n, this is a very unlikely situation, the probability
of which approaches zero as n approaches infinity; hence,

and c/>lnl converges to the true flux.
The performance of the iterations in equation (8.73) rapidly becomes com-

plicated as n increases. For the NR and NRIM approximations, starting with
the c/>l1l values given above, it is not difficult to obtain c/>(2) for unbroadened
resonances. The corresponding absorption probabilities in some of the uranium-
238 resonances are given in the last two columns of Table 8.2. It is of interest to
note that the iterated NR and NRIM results are in much closer agreement than
are those for the uniterated approximations. Iterations beyond 4>(2) become
impractical.

In the intermediate resonance (lR) absorption method,77 the value of c/>(1)

is obtained from equation (8.74) with an arbitrary value of A, and c/>(2) is com-
puted from equation (8.73). The resonance absorption is then calculated using
both c/>t!) and c/>''}.l and A is adjusted so that the two absorptions are equal. The
justification for this procedure is as follows. If 4>0) were exact, i.e., c/>0) = C/>,

then comparison of equations (8.72) and (8.73) shows that c/>(2) = eP also. Thus,
the resonance absorption would not vary with iteration if c/>(l) = c/>. Hence, eP(1)

is cho~n so that the absorption is not affected by iteration until c/>(3J. In practice,
the \alue of A obtained in this way turns out to be reasonable; for example,
A - I for narrow resonances and A -+ 0 for wide resonances, and the results
are in good agreement with those obtained by Monte Carlo methods78 or by
numerical integration of equation (8.50).

For un broadened single resonances, with interference between resonance and
potential scattering being neglected. A can be derived in closed form. But for a
broadened single resonance, the problem becomes much more difficult. It has
been found, however, that use of the value for A computed for the unbroadened
raonance together with the shape of the broadened resonance gives good
results.n



The variational method (Chapter 6) has also been used to determine A. The
values are much the same as those obtained by the procedures described above.
Since the variational method is more complicated the iterative techniques are to
be preferred.so

If the cross sections cannot be expressed in a simple manner, e.g., if the
single-level Breit-Wigner formula fails to represent CTa or CT due to overlap or
interference effects, or if the NR approximation is not applicable to the modera-
tor, some progress can be made by using analytic methods. For practical
purposes, however, it would appear that direct numerical solution of equation
(8.50), using the experimental cross sections, is the most efficient procedure.
Codes have been written for obtaining the required solutions.s1 As a general
rule, the NR approximation is made for the moderator, so that equation (8.71)
is the one that is solved. With a fast digital computer, these numerical solutions
can be obtained so rapidly that such procedures have largely replaced analytical
methods for detailed reactor design studies. The numerical computation of
resonance integrals is described in §8.4c.

8.3h Resonances and Multigroup Constants

The main effect of resonances on the effective multiplication factor (or reactivity)
or other eigenvalues arises from neutron absorption, both radiative capture and
fission. Apart from the energy regions near resonance peaks, such absorption
has relatively little effect on neutron transport. Hence, in estimating muItigroup
cross sections in equations (4.26) and (4.27), for example, it is vital that proper
account be taken of resonance absorption in eTo.9. J n the CTn•9 values for n > I,
which are involved in the transport equation, however, less care is required
with the resonances, and in the transfer cross sections, CTn•g·_g, they may be
ignored except for g' = g.

It has been seen that the experimental data on resonances can be conveniently
(and reliably) expressed in terms of resonance parameters. Furthermore, methods
have been developed for determining analytically the fine structure of the flux,
i.e., <Pa(E), in the neighborhood of a single resonance. The reaction rate for a
given resonance was thus evaluated, e.g., by equation (8.53). The effective cross
section due to a series of well-separated (or isolated) resonances can then be
found as the sum of contributions from each resonance in a given energy group,
e.g., from equation (8.55). These procedures have been found to be fairly
accurate in treating resonance absorption in thorium-232 and uranium-238, at
least in the region of unresolved resonances.12

Although no allowance would have been made for attenuation of the asymp-
totic (between resonance) flux within the group due to leakage and (nonreso-
nance) absorption, such effccts could be included in a straightforward manner.
For example, the actual rapidly varying cross section, 0)(£), which includes the
resonances, could be replaced by a slowly varying effective cross seetio"n6x(E),

. ;Ii'
K> ·.·'~-'1

:'1
,~.



as in §8.3a, which is then used in a standard BN calculation (§4.5c). The replace.
ment of (1x by iix takes into account the resonance structure of the energy
dependence of the flux, whereas the BN approximation then follows the gross
depletion of the flux with energy due to leakage and absorption.

When resolved resonances overlap, as a result of the Doppler effect (or
because of the near coincidence of the resonance energies), it is possible to
obtain Doppler broadened cross sections and to determine the required reaction
rates using values of the flux computed by numerical solution 83 of the integral
equations (8.50) or (8.71) or by Monte Carlo methods.84 The contribution of
the (n, y) and (n,f) reactions to (10,9 would then be equal to the corresponding
reaction rates, for neutrons in the group g, divided by the flux in that group.
The contribution of resonance scattering to (10,9 and also to (10,9_9 can be
obtained in the same way and a -small allowance could be put into (10,9_9+ 1.

When the resonance parameters are not known, e.g., in the unresolved reson-
ances, they must be generated using mean values and the probability distribution
in the manner discussed earlier. Once an acceptable sequence has been generated,
it may be used with various temperatures to determine the dependence of
resonance absorption on temperature.85

8.3i Strongly Overlapping Resonances

At high neutron energies, the resonances for a given nuclide generally overlap
strongly. This is largely due to,[)oppler broadening because, in accordance with
its definition, the Doppler width varies as the square root of the resonance
energy. Thus, the resonances are bound to be broad at high energies, so that
overlapping is favored. Furthermore, the resonances are more closely spaced at



high than at low energies, mainly because more J and I values are represented.
At high energies, therefore, it is expected that the resonance peaks will protrude
only slightly above a more-or-Iess constant cross-section background,86 as in
Fig. 8.13. These peaks cannot be resolved in measured cross sections but must be
inferred from the systematics of the resonance parameters as described in §8.2c.
Such energy regions are important for fast reactors and they may be treated in a
particularly simple manner .

.At high neutron energies, the NR approximation must be valid because Et is
so large. It is then useful to define an effective cross section, ax, as the ratio of
reaction rate to flux averaged over an energy interval D.E, so that there are many
resonances in this interval, but the variation in the average resonance parameters
is assumed to be small. By using the NR approximation for the fltix, as in
equation (8.51), neglecting the variations in E over the interval D.E, and writing

aCE) = am + ar(E),

faxCE) dE
_ ll.E O'm + ar(E)
a =-------.

x f I dE
ll.E am + O'r(E)

ar(E) = ar + bar(E).

where ax and ar are the local (over t:.£) energy averages of ax and ar, i.e.,

- I fax = t:.E Aoi aAE) dE

- I fO'r = AE u ar(E) dE.

The essential assumption of strong overlap is now made. namely, that oax

and 00, are small compared to uoK and u,. With this assumption,

1 =: 1 I [ &7,(E)]
a. + a,(E) a[ I + I>a~E)] ::: ~ I - a ·

'I'"..........•~..•.•. '•....~...•...•"" .,.~
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00' X OO'r = Ll1E ffoE 00' x(E) oO'r(E) dE.

By using the definitions of O'xCE) and O'r(E) given above, equation (8.76) may
be written as

"- 1 fO'xO'r= tJ,.E foE O'xCE)O'r(E) dE.

In computing the energy averaged quantities in equation (8.77), account must
be taken of all the seq uences of resonances, i.e., all the I and J values. Since the
overlap of resonances is strong only at sufficiently high neutron energies, e.g.,
E ~ 100 keY for the fertile nuclides and more than a few kilo-electron volts
for fissile nuclides, p-wave resonances will be import~nt; hence I = 0 and I = 1
and J ~ I + .~values must be included. Within each sequence of resonances
the averages must be taken over the distributions of resonance parameters. In
the evaluation of ax and an each sequence contributes an average cross section
as in equations (8.40) and (8.41). Alternatively, ax and ar can be derived from
experimental cross sections if they are available'!t may be noted that ax and a,
are independent of temperature; the temperature dependence is included in
oxOr (or hox &:7,).---The quantity &:7x &Jr, which is required to derive ax from ax by equation
(8.76), can be readily computed for a particular sequence of resonances," but
when several sequences are involved, including p-wave resonances, the situation
is more complicated.8ft Moreover, in either case there will be some uncertainties
in the resonance parameters in the unresolved resonance region. This difficulty is
particularly acute for the fissile nuclides (§8.2b).89 Qualitatively, however, the
results can be understood in a simple way. First, it is to be expected that &-~E)
and &7,(£) will exhibit similar behavior as functions of E. For example, both
will tend to be positive if there are an unusually large number of resonances or a



few unusually strong resonances near energy E. Hence, Sax Sar will be a positive
quantity and, from equation (8.76), ax < rrx'

An estimate of Sax Sar can be made in the following manner. At an energy E
where there is a strong overlap of resonances, the Doppler width, ~, must be
large compared with the average spacing, D, between resonances of all kinds,
i.e., ~/ D » 1; it should be noted that D refers to all the important resonances
and not merely to those of one sequence as in §8.2c. In addition, for 'such
resonances ~ » r, so that the effective width of the resonance may be taken as
the Doppler width.

The number, nn of resonances which make important contributions to the
cross section at energy E will be roughly those lying within the energy interval-
2~ about E, i.e., nr ~ 2~/ D. As E is varied through a range ~E, this number
may be expected to vary by amounts of the order of ±~; hence, the fractional
variation is given by

Because of the change in the number of contributing resonances, there will be
corresponding variations in ax of the same order of magnitude, so that

It is to be expected; therefore, that

S S - - ()ax ar ~ axar 2~

()
bax bar = CrrxUr 2~ t

where C is a number of the order of magnitude of unity.
Equation (8.78) has been confirmed by more detaIled analysis for a single

sequence of levels, in which case fJ ZIt /) IHJ; In addition, it is found that C is
quite insensitive to the temperature. Hence, the temperature dependence of ax
is primarily due to the Doppler width in equation (8.78). Upon combining this
equation with equation (8.76), it is found that

CoJC CiJxU, /j T -:tit.
iJT ••• ~ 4T~ IX. •

Such expressions would be used in determinin, the temperature coefficient of
reactivity of a reactor. -

Once the effective reaction cross section •• has been obtained. it may be used,
for most purposes. in place of 0. in ICnttatinl multil"oup constants. It is

!
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I evident that ifx will be a slowly varying function of neutron energy whereas ax

contains all the resonance structure. The replacement of ax by ifx could, however,
lead to some errors in determining transport effects, but such errors are generally
small, especially as at high energies ax and ifx do not differ greatly. Although the
absolute differences between these quantities are not important, their variations
with temperature are significant in determining the safety of fast reactors
(§8.4e).

The procedures described above are applicable at high neutron energies
where the resonance Doppler width, 6., is large compared to the mean spacing,
D. At lower energies, e.g., in the vicinity of 10 keY for the fertile nuclides, where
~ and D are comparable, the overlap of resonances is significant, but there does
not appear to be any simple way to determine it. The best approach in this
region is a purely numerical one. Thus, a sequence of resonances may be con-
structed by sampling from the expected distribution of resonance parameters.91

A Doppler broadened cross section is thus obtained and it may "be used to
evaluate the effective cross sections and their variation with temperature. This
must be done ·for a number of independent sequences, to make sure that the
results are not sensitive to the precise sequence selected.

8.4 RESONANCE ABSORPTION IN HETEROGENEOUS
SYSTEMS

In most reactors and in many critical experiments, the absorbing material, e.g.,
fuel rods or foils. is arranged heterogeneously within the bulk of the moderator.
Such heterogeneous systems have been of interest since the earliest reactor
studies indicated that. in order to achieve criticality with natural uranium fuel
and a graphite moderator. it was necessary to have the uranium in lumps or
rods. As a result of such a heterogeneous arrangement, the resonance absorption
in uranium-238. which caused a loss of neutrons, was significantly less than in a
homogeneous s~stem of the same over-all composition.

In the first theories to be developed for resonance absorption in heterogeneous
systems.92 the absorption was divided into separate contributions from the
surface of the fuel rod and from its volume. Good resonance parameters were
not available for quantitative comparison with experimental data, but the
qualitati\'e features of the theory seemed to agree with the early experiments.
Some years later. a different theoretical treatment of resonance absorption was
reported from the U.S.S.R.93 and efforts were made to understand and reconcile
the two alternati\'e approaches. In the course of these studies, the collision
probability method for determining resonance absorption in ~~ftCOUS

systems was developed." It is this method which will be described here. It will



be seen that, as for a homogeneous medium, the problem is to find the fine,
structure of the neutron flux, but now it must be known as a function of space
as well as of energy.

Consider a two-region system having the absorbing material plus some
admixed moderator in region F with volume VF, and the main external moderator
in region M, volume VId (Fig. 8.14). The moderator in region F may be different
from that in region M. The respective regions may be complex geometrically, e.g.,
region F might be a periodic array of cruciform fuel rods, but within each region
the densities and compositions are assumed to be uniform. The macroscopic
scattering cross sections of the moderator, O'mF in region F and O'mld in region M,
are taken to be constant or slowly varying with energy, whereas the cross sec-
tions of the absorber (heavy) nuclei in region F, i.e., O'aF(£) and O'SF(£)' have
resonances. A time-independent neutron flux is assumed to exist in both regions,
supplied' by moderation from a fission source at higher energies.

The collision probabilities PF and PM that will be used are defined in the
following manner. Let PI(£) be the probability that a neutron originating in
region i with an energy £ will make its next collision in the other region; for
example, if region F is an isolated rod, then Pf' will be an escape probability
(§2.7b). In addition, let epF(£) and epM(£) be the volume-averaged neutron fluxes
in the two regions.

Consider the total collision rate of neutrons of energy £ in region F. If the
total cross section in this region is denoted by O'tf" where

. " ~~.,'.
I ••• " :'~.:. .•.

" .
.. ':'

, ,. '. .
"::~':, :R'EGION M.' : ::'

. ' MODERATOR' :~.'"
.':. ',. " t (1' )' ' .' '-:.:." ,,,' " .. , "'M·.'· ..

. ,. .
..' ..•. REGION F

>.~:;:-:;.,<::,<.-' t~~~~~~
.•...", ", " AND

" . :.~. ;.' '.,: : : MODERATOR
'~'. ::'.~;~:,',:>::.\:',:. ((1'",,)

.', ··~::;'~':/~::'~;·;·;."':."'; ..
# "', ":'f.:r".~.:·"

, ..... ,... " .' ,r.· .•
• ' f •• ~ ,

r l-'. '*0'.



that is to say, they will have arrived at energy Ebyrnaking a collision in region
M and will make their next collision in region F. Hence,

Collision rate in region F due () fE,amM CTmMcPM(E') ,
f . = PM E VM -----dEto neutrons rom regIOn M E (1 - amll.)E' ,

where the integral multiplied by VM is the rate at which neutrons reach E in
region M and PM is the probability that they will make their next collision in
region F.

Similarly, the collision rate in region F due to neutrons which have arrived at
energy E by making a collision in the same region is

Collision rate in regi~n F due = II_P (E)] V {fE/amy CTmFcPF(E')dE'
to neutrons from regIOn F F F E (1 - amr)E'.

where the first integral represents the scatterings from the admixed moderator
in region F and the second those from the absorber nuclei. The sum of equations
(8.81) and (8.82) must equal equation (8.80); hence,

VyCTty(E)cPr= (1 - Py) VF{f:,
amF

(1 ~m~~:)E' dE' + I:,a& (1 :BY::)E' dE}

IE/amw. CT ep
+ Pw. VM E (1 _m:m:)E' dE'.

This is the fundamental balance equation for computing resonance absorption
in heterogeneous assemblies. It will. be observed that if there is only one region,
namely, region F, so that Pr = 0 and Vw. = 0, then equation (8.83) reduces to
equation (8.50) for a homogeneous system.

Although equation (8.83) is exact, some approximations must be made in
deriving the collision probabilities. In most heterogeneous systems, the spatial
distribution of neutrons, at least for those with energies not near a resonance
peak. is largely independent of position in each region. Consequently, the
reasonable postulate, called the flat source (or flat flux) approximation, is made
for deriving Pr and PM' In this approximation, Pr(E) and PM(E) are obtained
for uniform, i.e., spatially constant, sources of neutrons in regions F and M.
It is evident. therefore, that PreE) and PuCE) are the quantities discussed in
§§2.8b.c. In the present case, every collision removes a neutron from energy E,
because it is either absorbed or its energy is changed by scattering. Thus, in
treating the neutrons at energy E as a one-speed problem, both media appear to
be purely absorbing. Hence, Pr in the present treatment is equivalent to Pr .••
of §2.8c, and PM is equivalent to PM_r.



,L (1 ){ r ElamF O'mFcPF dE' + IE1a& 0'3FcPF dE'}
O'tF'f'F = - PF JE (1 - amF)E' E (1 - aa)E'

fElamM cP
+ PFO'tF E (1 _ a:M)E' dE'.

In order to proceed further, the narrow resonance approximation may be
made for both the moderator integrals in equation (8.84). Thus, in the first and
third integrals, the flux may be replaced by an asymptotic value normalized so
that

1
cPF = cPM = -.

E

As before, for a homogeneous system PF would be zero, and this equation would
reduce to equation (8.71).

Values of P, may be derived from the considerations of §2.8c, and equation
(8.85) can be solved numerically (§8.4c) to yield the flux, <p.,.(E). From the flux,
the reaction rates f 0'x<P.,. dE and the effective cr~ss sections can be computed.95

It will now be shown, however, that if a rational approximation is used for PF

(§2.8b), the solution to equation (8.85) is equivalent to that for a particular
homogeneous system. For many practical calculations, the rational (and
equivalence) relations are sufficiently accurate.

8.4b Equivalence Relations

On the basis of the various rational approximations considered in §2.8b et seq.,
the escape probability, P, (or p•.-w), can be written in the general form

where the quantity fYw is a reciprocal length and therefore has the dimensions of
a macroscopic cross section. As will won be seen, 0, may be regarded as an
effective moderator scattering cross section representing the effects of hetero-
geneity on the resonano: absorption. For the particular case of an isolated fuel



rod, PF = Pe.sc in the terminology of §2.8b, and equation (2.114) gives the
rational approximation for which

1
Ue = -=-,
. RF

where RF is the average chord length in region F, as defined in §2.8b. According
to equation (2.112), RF is related to the volume VF and to A, the area of the
surface common to the two ~egions, by

- 4Vy
RF=-·A

When the absorbing region is more complicated, e.g., a periodic array, then
Py is not just the escape probability, but PF-M for which the rational approxi-
mation is given by equation (2.122). In this case,

1 - C
Ry

where C is the Dancoff correction (§2.8c). When C is computed for a "black"
absorber, i.e., one which absorbs all neutrons entering region F, it is found to be
independent of energy. Consequently, Ue then has the feature of being energy
independent, which is desirable if it is to be equivalent to a moderator scattering
cross section.

If the fully rational approximation of equation (2.123) is used for Pr, then

1
Ue = -:::-'

Ry

where Rr• the effective chord length in region F, defined by equation (2.124)~
in the present notation is

where Rw is the mean chord length in region M. For well-separated fuel regions,
CTmwRw » I and then Rr = Rr and Ue = l/Rr, as obtained above for an isolated
fuel rod.

Upon inserting the rational approximation for P,. into equation (8.85) and
multiplying by (a" + a~)/CTtr,it follows that

(ElIZa CT 4> 1
(atr + a~~r(E) = JE (I -':Ya:)E' dE' + (Um•• + a.) E'

Since a,r := a.r + a.r + Um,.. it is seen that in equation (8.87) the admixed
moderator cross section amr always appears added to a•. Moreover, by com-
parison with equation (8.71). it is evident that, for heterogeneous assemblies,
affll' + a. plays the same role as am does for a homogeneous system. Hence, u



stated above, ae represents the contribution of heterogeneity to the moderator
(scattering) cross section.

Furthermore, it is to be expected that for very closely-spaced fuel regions, the
admixed moderator in region F would have the same effectiveness as the outside
moderator in region M. This can be shown by considering the fulh rational
approximation. For closely-spaced fuel regions, amMRM« 1; then equation
(8.86) gives

- Rv d amMRMRF = - an ae = R
vamwRw

But since Rj = 4 VdA, where A is the common boundary between the fuel region
F and the moderator region M,

Since, according to equation (8.87), amY + a~ determines the effect of the
moderator on the flux, the result just derived shows that, for closely-spaced
fuel elements, a moderator nucleus has the same effect regardless of whether it
is in the fuel region or in the bulk moderator.

From the fact that amY + a, in a heterogeneous system is equivalent to am in
a homogeneous system, it appears that the ratio of amY + a, to the absorber
cross sections aa'r + a.T will determine the energy-dependence of the neutron
flux. This conclusion can be cast in the form of a useful equivalence relation.
Suppose there are a number of systems, possibly with different moderators,
which have the same ratios of various kinds of heavy absorbing nuclei, e.g., the
same ratio of uranium-235 to uranium-238, and are at the same temperature.
Then, for all these systems aaF' and a.r will be the same, except for a constant
factor equal to N•. the total number of heavy nuclei per unit volume. If equation
(8.87) is divided by N•. the result can be written as

(
ao., + ,'a,., + amr + ae)4>.,(£) = fE

/
aa a•.,4>., , dE' + Umr + at.!... (8.88)

N. N. JE N.(l - a..)£ N. £

The value of (a4r + a,r)! N. is the same for all the systems under consideration
and so all systems having the same values of (am•. + ae)/ N. will have the same
flux (relative to the asymptotic flux) and the same reaction rates and resonance
integrals (per heavy nucleus).

The result derived above may be stated as an ~quilX1/~nc~princip/~: hetero-
geneous systems ha\'ing the same values of (amr + a.)/N., regardless of the
nature of the moderator, will have the same resonance integrals, and a hetero-
geneous system will have the same resonance integral as a homogeneous system
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with amlNa equal to (amF + ae)/Na• The equivalence applies also to reaction
rates but not to the probabilities of reaction, since the latter depend on the
competition between reaction and slowing down. The slowing down is deter-
mined by gmw. and amw., and these quantities will depend on the particular
moderator in each assembly.

The expected equivalence has been confirmed experimentally in the com-
parison of heterogeneous systems with either uranium metal or uranium dioxide
(U02) as the fuel.96 In general, the equivalence principle is accurate enough to
be very useful, particularly in comparing similar systems, although where high
precision is desirable the rational approximation to PF should not be used.
Other possibilities are then to solve equation (8.85) numerically (§8.4c) or to
utilize some adjusted rational approximations for PF•97

When the rational approximation to PF is employed, so that equation (8.87)
is to be solved for the flux, there is no fundamental difference b.etween the
treatment for homogeneous and heterogeneous systems. Any of the methods
already described for homogeneous systems may be used. For example, the
integral in equation (8.87) may be evaluated by the NR or NRIM approximation
or by means of an intermediate theory. All the results obtained previously for
reaction rates and group cross sections hold when (amF + ae)/Na for the hetero-
geneous assembly is equal to am/Na for the homogeneous system. The situation
is most easily stated in terms of microscopic cross sections. The quantity
(am" + ae); Na is similar to a microscopic cross section per absorber nucleus, and
this must remain unchanged in the equivalent homogeneous system if the group
microscopic cross sections are to be preserved. The quantity (amF +ae)/Na is
frequently denoted by ap• an effective microscopic cross section.

In the foregoing theoretical development using collision probabilitiesy three
important approximations were made. In reverse order, they were (a) a rational
approximation for P,.. (b) the NR approximation for moderator collisions, and
(c) the flat source approximation. These will be considered in turn.

The main rea~on for using the rational approximation to PF is that it leads to
the equi\alence relations. Methods developed for homogeneous systems can then
be applted directly to heterogeneous systems and experimental results may be
compared for a ,ariety of configurations. As seen in §2.8b, however, the rational
appro~imation is of limited accuracy. Moreover, if equation (8.85) is solved
numerically. accurate values of P,. may be used instead of a rational approxi-
mation.

As far as the N R approximation. is concerned, it is not required, in principle,
since numerical solution of equation (8.84) is possible just as it is for equation
(8.8S). But the N R appro~imation for moderator collisions does permit a sub-
stantial ~mp1ification which is usually accurate enough for practical purposes.

The crucial feature of the method of collision probabilities is the use of the
flat source approximation to determine P,. and p••.If this approximation is not
U1Cd. thm it becomes necessary to determine the spatial dependence of the flux



by Monte Carlo methods,98 by multigroup calculations with a fine energy
structure,99 or in other ways.100 The problem is most troublesome for large fuel
lumps and for resonances with much scattering, as is the case for some of the
stronger, low-energy resonances in tungsten for which rn/r is the order often 101
and for the principal resonances in manganese and cobalt 102 which are often
used as neutron -flux detectors.

A number of instances have been mentioned in preceding sections in which
numerical methods must be used to evaluate resonance absorption, e.g., when
resonances overlap either as a result of Doppler broadening (with /),.~ D) or
because of accidental near coincidence of resonance energies (§8.1e) or when
accurate collision probabilities are used for a heterogeneous system. The same
general procedure may be used in all these situations provided the collision
probabilities may be regarded as known; in practice this means that they are
computed using the flat-source approximation. Such a general approach is
described below 103; with the available computer codes, it can be used con-
veniently even when simpler approximations would be adequate.

Suppose, for example, that it is desired to solve equation (8.85) for the neutron
flux; the cross sections and collision probability, Pr, are to be regarded as
known (calculated or given) functions of neutron energy. Once the flux is known,
resonance integrals and effective cross sections may be evaluated by using the
equations in §8.3a.

For numerical work, it is convenient to transform from the flux to the
collision density as the fundamental unknown, because the latter is a much
smoother function of the energy. For example, in the NR approximation the
collision density shows no fine structure in the vicinity of a resonance. Further-
more, it is convenient to use the lethargy, u, in place of the neutron energy as
the independent variable (§4.7a); thus,

u ••• In ~ •••

where Emu. is some energy above which the flux has its asymptotic form, i.e.,
it is proportional to lIE.

Let the volume averaged collision density in the fuel region F at lethargy u be
denoted by F(u). so that

where 11" is the total fuel cross section. u Jiven by equation (8.79). It ihould be
noted that although F(u) is expressed u a function or lethargy, it is actually the



collision density per unit energy.104 By using equation (8.89) and converting the
variable from energy to lethargy, equation (8.85) becomes

( )] (U ( ') uar(u') d' [ P ( )] eU

F(u) = [1 - PF u JU-d
u

F u (1 _ aa)UtF(U') U + UmF + r Uar + Uar Emu'

(8.90)

Equation (8.90) may be solved by approximating the integral by a sum,
using a numerical quadrature formula, such as Simpson's rule. The solution is
first sought for U = n 6.u, where n = 1,2, 3, ... , until the desired range in U

has been covered. A number of computer codes have been written t.o carry out
this program or its equivalent.105 They include the computation of uaF(E) and
uav(E) from input resonance pat:ameters and temperature; they contain collision
probabilities for various geometries, and as output they give the resonance
integrals or effective cross sections, as desired. For example, the resonance
integral for absorption is given by

I = Emax J F(u) UaF«U) e-U duo (8.91)
UtF U

The codes are employed extensively for generating resonance absorption cross
sections for use in multigroup calculations. The results obtained in this manner
may be expected to be reliable provided that the input resonance parameters are
accurate and the flat-source approximation is adequate for the PF computation.

In a numerical procedure suC;has the one just outlined, there is evidently no
need to use a N R approximation for the moderator integral, since it too could
be evaluated numerically. Furthermore, homogeneous and various hetero-
geneous geometries can be treated in the same program.

The approximate dependence of resonance integrals on the geometry of a
heterogeneous system may be derived in the following manner. The rational
approximation for Pr is made. so that the equivalence relation can be employed
a nd the N R approxi mation is used for all collisions. Incidentally, the results
obtained also hold for the NRIM approximation.

For a homogeneous system with a single unbroadened resonance, the
resonance integral may be derived from equation (8.64) for the resonance
absorption; if the interference term is neglected, the result is

I _ !waof• I 1
xi E. jl ao = l«l.n Jl ao

+ alii + allOt + alii + apot



where loo•xi is the resonance integral for infinite dilution, i.e., with ep = llEi

throughout the resonance. For the equivalent heterogeneous system, O'm must be
replaced by O'mF + ue• In addition, for the most important resonances,

I '" I J~mF + Upot O'e.
xi""'" oo,xi ---- +

0'0 0'0

For a single resonance, (UmF + O'pot)/O'o is a constant and all the' geometrical
dependence is contained in O'e' For an isolated fuel region, it was seen earlier
that O'e = I(RF = AI4VF; hence,

A A
U oc-· oc-,

e Vy M

where M, the mass of the fuel region, is equal to VFPF, with PF the density. *
Hence, from equation (8.93) it appears that expressions of the form

!.-':i ~ Ja + h ~ ~ a' + h' J?t
may be approximately valid. This approximate dependence of the resonance
integral on the geometry, i.e., area and mass, of the fuel region was first sug-
gested by Russian physicists 106 and it has been confirmed by experiment, as will
be seen in the next section. However, in view of the many approximations
made in deriving equation (8.94) it would not be expected to be a very precise
relationship.

In some reactors, the geometrical complexity of the fuel elements in a hetero-
geneous array may be quite cohsiderabl~, e.g., fuel rods may be grouped in
clusters so that different fods have different Py values. For survey calculations,
the rational approximation may be generalized, but for greater accuracy it is
necessary to resort to Monte Carlo methods.l07 Once Monte Carlo or experi-
mental experience has been gained with a particular configuration, it may be
possible to use adjusted collision probabilities to give reliable results.

In the foregoing treatment Doppler broadening has been ignored. It is of
interest. of course. to know how the resonance integrals in a heterogeneous
system will change with temperature. From the discussion of the la, (J) function
in §8.3c. it would appear that the effect of temperature will be quite complicated.
Both detailed calculations and experiment, however, have indicated that the
approximate relationship

1 = 10(1 + (JvT).

• Con'\'Ultionally, the surface area or the fuel re,ion is represented by S; the symbol A
is used hcre,however. for consistency with other parts or the book.
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A special problem may arise when the temperature in a fuel rod is markedly
nonuniform. In such cases, an "effective temperature" is used in determining
the Doppler broadening oftheresonances.109

8.4e The Doppler Effect in Fast Reactors

The Doppler effect and its influence on the temperature coefficient of reactivity
are of considerable importance in connection with fast-reactor safety. Con-
sequently, this aspect of the resonance problem has received much attention.
Nevertheless, because of the uncertainties and complexities involved, the
theoretical treatment is not in a very satisfactory state. The following discussion
will therefore be restricted to some qualitative comments and references to the
literature.l1O

In a fast (breeder) reactor, the fissile material would be largely plutonium-239
with some plutonium-241 ; the fertile material, uranium-238 (and some pluto-
nium-240) acts as a neutron absorber. The low-energy part of the neutron spec-
trum, below about 10 keV, will be markedly affected by the presence of elements
of relatively low mass number, such as carbon, oxygen, and sodium.

As already seen, resonances at sufficiently high neutrpn energies overlap
strongly. and hence Doppler broadening produces little change. On the other
hand, at sufficiently low energies there are very few neutrons since most have
been absorbed during the moderation process. Consequently, in practice there
will be an intermediate energy region from which the contribution of Doppler
broadening to reactivity is most important (Fig. 8.15). This energy range is
frequently in the neighborhood of I keY, although for a very fast system it
could be abo\'e 10 keY.

For uranium-238, it is clear that Doppler broadening will increase the
resonance absorption (§8.3e) and decrease the reactivity. This effect can be

EHEcT OF DOPPLER
BROADENING PER UNIT FLUX

EFFECT OF DOPPLER
BROADENING ON k



calculated with a considerable degree of confidence. For fissile materials, such as
plutonium-239, Doppler broadening increases the effective cross sections for
both fission and radiative capture, and since the resonances are resolved only
up to neutron energies of about 50 eV, substantially all of the reactivity effects
in a fast system arise from the broadening of unresolved resonances. Here
doubts concerning the resonance parameters, including mean values, distribu-
tions, and correct forms, make the calculations highly uncertain.

Moreover, there is some cancellation of the effects due to increases in both the
(n, y) and (n,f) cross sections. It is likely that the effective capture cross section
increases more rapidly with temperature than does the effective fission cross
section because the resonances which are important for fission tend to have
larger widths than those which are important for neutron capture. Hence, it is
not clear, in principle, whether the Doppler broadening of the resonances in the
fissile material will increase or decrease the reactivity of a fast-neutron system.

Experimental efforts to study the Doppler effects for capture and fission in
fissile materials have not clarified the situation, except in showing that the net
effect is smal1.1ll Consequently, if there is sufficient uranium-238 present, e.g.,
about three times as much as the fissile species, the over-all result of the Doppler
broadening is to produce a negative .temperature coefficient of reactivity. The
calculations indicate that ak/aT (or (Mlk)/~T) ranges from about -10-6 per
oK up to perhaps _10-5 per OK; al'though these values are quite small, they
nevertheless appear to be important for fast reactor safety.

In most thermal reactors, the neutron flux in the resonance" region varies very
nearly as liE, with the fine structure due to individual resonances superimposed.
Hence, the quantity of interest for resonance absorption is the resonance integral
over all the resonances. Moreover, the situation of greatest practical importance
is one in which fuel rods of natural uranium or uranium of low enrichment in
uranium-235 are arranged as a lattice, i.e., a periodic array of rods, in a
moderator. The resonance absorption under these conditions has been studied
extensively. both experimentally and theoretically. In general. good agreement
has been obtained between theory and observation.

In a series of experiments. resonance absorption was measured in lattices of
rods of uranium metal and of uranium oxide with heavy water as moderator.1l2*
The values of the resonance integrals have been expressed by fitting the results
to relationships of the form of equation (8.94). In terms or the microscopic

• Methods used for detenninina f'CIODUCI iotq:rak capaimc:otalIy ate described in
Ref. 113.
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resonance integral, with dimensions of barns, the data, with AIM in cm2/g, are
well represented by

I (barns) = 2.95 + 25.8JlJ for uranium metal

I (barns) = 4.45 + 26.6JlJ for uranium dioxide.

In Table 8.3, the values of the resonance integrals of uranium-238 in rods of
natural uranium metal and uranium dioxide of different radii, as derived from
these expressions, are compared with the results obtained by calculation.114 In
this calculation, equation (8.85) was solved numerically using exact values for
Pr.llS The line labeled ••unresolved" refers to unresolved s-wave re~onances for
which the average resonance parameters can be derived with a fair degree of
confidence from the experimental values at lower energies. The p-wave reso-
nances are included only to the extent of adding a constant estimated value of
1.6 barns. The ••oxygen correction" for uranium dioxide, in the lower part of
the table, represents the difference between the NR approximation for the
admixed oxygen in the fuel, as in equation (8.85), and the results obtained

TABLE 8.3 COMPARISON OF CALCULATED AND EXPERIMENTAL
RESONANCE INTEGRALS OF URANIUM-238 AT 300oKY4

Uranium Metal, Density 18.7 g{cm3

Rod Radild (em) 0.1055 0.211 0.422 0.844 1.69

AIM (cm~!g) 1.013 0.507 0.254 0.127 0.0634
Resolved (barns) 25.29 18.04 12.91 9.31 6.75
Unresolved (barns) 1.96 1.67 1.40 1.18 1.03
Total + 1.6 barns 28.85 21.31 15.91 12.09 9.38
2.95 • 25.8V AIM 28.91 21.28 15.95 12.18 9.45

Uranium Dioxide, Density 10.2 g{cm3

Rod RQJlws (em) 0.125 0.25 0.50 1.0 2.0

AIM (cmlll) 1.570 0.785 0.393 0.196 0.098
Resolved (barns) 34.40 24.62 18.01 13.59 10.74
Unresol\'Cd (barns) 2.21 1.94 1.68 1.46 1.30
<bYJen Correction -0.08 -0.14 -0.25 -0.43 -0.68
Tot&J + 1.6 barns 38.13 28.02 21.04 16.22 12.96
4.4' + 26.6'" AIM 37.76 27.95 21.10 16.23 12.76



by numerical solution of the slowing down integral for the oxygen, i.e., using
equation (8.84). This correction is significant only for the few resonances of
lowest energy.

The agreement between the theoretical and observed resonance integrals in
Table 8.3 is perhaps better than would be expected. In fact, in other experiments,
values differing by up to 5 percent from those recorded here, with corresponding
differences in the quantities a' and h' in equation (8.94), have been reported.1l6

Nevertheless, it appears that an equation of this form does represent the ex-
perimental resonance integrals in heterogeneous systems and that the calculated
values are in general agreement with those observed. Furthermore, the infinitely
dilute resonance integral of 270 barns for uranium-238, derived from the
resonance parameters (§8.3d), agrees with the experimental value of about 280
barns determined directly.1l7

Measurements have also been made of the temperature dependence of the
resonance integrals.llB Both theoretical and experimental results have been
expressed in the form of a relationship similar to equation (8.95), namely,

leT) = 1(3000K)[1 + f3(vT - v'3OO)].
Some of the experimental values of f3 are compared with those derived from
theory 119in Table 8.4. Again, the agreement between observed and calculated
results is good.

A detailed examination of the calculations 120shows that the most important
resonances for determining the resonance int~grals and their temperature

TABLE 8.4. COMPARISON OF CALCULATED
AND EXPERIMENTAL TEMPERATURE COEFFI-
CIENTS OF RESONANCE INTEGRALS OF
URANIUM-238.119

~ x 1()2: Calculaled
Observed

0.62
0.64

0.55
0.55

p x 1()2: Calculated
Ob5crved

0.81
0.3-4

0.67
0.69

0.61
0.63



coefficients are those of low~st energy. Nevertheless, it can be seen from Table
8.3 that the unresolved resonances, with which the p-wave resonances must be
included, may contribute as much as 2070 (or more) to the total resonance
integral.

Resonance absorption has also been determined experimentally for thorium-
232 in heterogeneous assemblies, and again satisfactory agreement has been
found between theory and experiment.121 It is to be concluded, therefore, that
there is a good theoretical basis for calculating resonance absorption in thermal
reactor lattices.

For fast reactors, comparison of theoretical and experimental results is difficult
for various reasons. The NR approximation is valid for all scatterings and
heterogeneity may be largely ignored because of the small spacing between the
fuel elements. But there are complicati1)ns which are less significant in calcula-
tions for thermal systems. First, the fast-reactor fuel contains a substantial pro-
portion of a fissile nuclide and both capture and fission in the resonances of this
material must be computed. Then, unresolved and p-wave resonances are impor-
tant because of the high neutron energies; also, under these conditions, strong
overlap will occur. At sufficiently high energies the treatment in §8.3i can be used
for the latter. and at low energies the resonances are well separated. In between,
however. there is the difficult region of intermediate overlap.

Finally. since the over-all spectrum of a fast reactor is highly dependent on the
detailed composition. there is no simple way of reporting and comparing reson-
ance absorption except for specific systems. In making calculations, a common
procedure is to replace rapidly-varying actual cross sections by slowly-varying
effc:cti\e cross sections which are computed by taking the fine structure of the
fiux into account. These effective cross sections are used in multigroup calcula-
tIOns In the usual manner for the given system.

On the experimental side, there is no clear way to measure the resonance
absorptIOn and auention has been focused on trying to determine the variation
of the abSllrptlOn "Ith temperature. To this end, measurements are made of
the \'arlatlOn of reactl\ity with temperature; contributions from thermal
c:(pan~lOn and from other less obvious effects are subtracted to obtain the
temperature coefficient due to the Doppler broadening of the resonances.

An e:\ample of this type of comparison between experimental and theoretical
results is pro ••ide<! by a study of the fertile nuclides in a fast-reactor neutron
spectrum. In an experiment with the zero-power fast reactor assembly ZPR-III
45. the temperature of a uranium-238 rod I-inch in diameter was raised from
500 to 1100 K and the resulting decrease in reactivity was measured; in this
partICUlar ~. jJcjk was found to be -26.8 X 10-8•122 For the calculations,
the effccti\'c (multiJroup) crou sections. the reactor flux, and the adjoint were



computed and ~k/k evaluated by means of equation (6.71). The best value
determined in this manner was - 26.4 x 10- 6.

In this case, the agreement between the observed reactivIty change with
temperature and that computed on the basis of the expected Doppler effect is
excellent. Although the agreement is not always so impressive, it is generally
found to be good for the fertile nuclides.123 For the fissile species, on the other
hand, there is considerable uncertainty in both experimental and calculated
effects of Doppler broadening. The agreement between observed and computed
reactivity changes with temperature obtained so far is not good.124 In the design
of fast reactors, the uncertainty in the temperature coefficient is taken into
consideration, so that such reactors can operate just as safely as thermal reactors.

1. By starting from equations (8.16) and (8.20), show that the Doppler broadened
cross section is given without approximation by

x == ..i. (vE - VE)2 and
kT '

A ./- -Y == - (v £ + V£,)2.kT '

(Hint: First choose V.L (= v V; + V~), Vz, and the azimuthal angle, cp, as
variables of integration, and integrate over cp. Then change to the variables Vz
and E, and integrate over Vz.) Show that the, expression given above reduces to
equation (8.22) when ElkT is large.125

2. By using the expression in the preceding exercise, show that the relative variation
with temperature of the area under a resonance is proportional to kT/AEo for
small values of k T/ A Eo. 126

3. Yerify the properties of the chi-square distribution in §8.2b, especially equation
(8.34).

4. Compute the average s-wave neutron capture cross section for uranium-238 as a
function of neutron energy in the range from 1 to 100 keY. Assume that the
strength function So = 10-4, that D = 20eY, and r, = 0.020eV, independent
of energy. The neutron widths may be assumed to have a Porter-Thomas dis-
tribution. Values of the function

< rllr, >
I'll + r,
rrIt ,

r. + r,
may be taken from Fig. 4 in Ref. 127. Compare the results with the experimental
values U. and suggest a reason for the discrepancy.
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5. Consider a sequence of resonances in which both capture and fission are possible.
Derive the ratio of average capture to average fission cross section as a function
of ry/rr, for values of the latter between 0.01 and 1. The following assumptions
are to be made: r y is the same for all the resonances, r, has a chi-square dis-
tribution with two degrees of freedom, and r'n « r. Show what the result would
be for r'n » ry + F,.129

6. Derive the limiting form for low temperatures of the function J(" f3), defined by
equation (8.66).

7. Compute the resonance integrals for T = 300°, 600°, and 12000K for a uranium-
238 resonance, with Eo = 66.3 eV, ry = 0.020 eV, and r = 0.050 eV, assuming
apot + am = 10, 102

, 103
, and infinity barns per uranium atom. Use the NR approx-

imation and ignore interference between resonance and potential scattering. Discuss
the results obtained. (For the validity of the NR approximation and neglect of
interference effects, see Ref. 130.)

8. Show that under such conditions that the NR approximation is ~alid, the
difference between ef>{l) and ef>(2}, given by equation (8.73), is small when the NR
form of ef>0l is used.
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9. REACTOR DYNAMICS-: --
THE POINT REACTOR
AND RELAT"ED MODELS

Attention thus far has been largely confined to time-independent problems in
the physics of nuclear reactors. In particular, in the earlier chapters of the book
various methods were described for solving the transport equation for steady-
state systems. By using these methods, it was possible to predict critical con-
figurations, the spatial distribution of the neutron flux (or reactor power),
nuclear reaction rates, and so on.

Consideration will now be given to situations in which the neutron flux varies
with time. Such time-dependent problems always arise, for example, in the
startup and shutdown of a reactor. They are also of fundamental practical
importance in investigating the stability and controllability of a reactor, both
under normal operating conditions and as the result of an accidental increase
(or excursion) in reactivity, the failure of a coolant pump, or other abnormal
situation. Furthermore, several time-dependent experiments have been used to
determine quantities of interest, such as the reactivity of a chain-reacting system
and also its diffusion and thermalization properties. There are many time-
dependent problems that may be included. under the heading of reactor
dynamics,· but only a limited selectio~ which appear to be of special interest,
will be discussed here.

• The term reactor dynamics. as used huc.iDcludes the time dependence or the neutron
population and related quantities in a reactor-{kinetics) and the factors which are responsible
(or this dependence.



The present chapter is primarily concerned with approaches in which the'
space and energy dependences of the neutron flux are treated in a very approxi-
mate manner. In particular, emphasis will be placed on the so-called "point
reactor" ffi{)del(§9.2c) and to relatively straightforward generalizations of this
model. In Chapter 10, attention will be given to methods for solving various
space-dependent problems.

It will be seen in due course that problems in reactor dynamics are relatively
straightforward provided they are restricted to linearized point models. When
space dependence or a full treatment of a nonlinear system of equations (or
both) must be taken into account, the situations become much more complicated~
In many such cases it is not yet possible to carry out a quantitative treatment,
although qualitative conclusions can be drawn.

The first step in the solution of time-dependent problems is to have a method
for determining the manner in which a neutron population varies with time, for
example, in a subcritical or supercritical system or in a critical system in which
a neutron source or cross sections change with time. In the treatment of these
problems, it is frequently necessary to include the delayed neutrons, since their
decay constants will often determine the time behavior of the neutron population.
Consequently, the time-dependent neutron transport equation, derived in
Chapter 1, will be supplemented with an appropriate allowance for the delayed
neutrons.

It is important to recognize, however, that the times involved in the appearance
of the delayed neutrons, namely, of the order of seconds, are very long compared
to any times associated with the diffusion or reaction of neutrons. For this
reason, the time scales in reactor kinetics problems usually fall into one of two
categories: (0) very short times in which the neutron populations can change
significantly but the delayed-neutron sources can not, and (b) longer times in
which the sources of delayed neutron can change to a significant extent. Use will
be made in the present chapter of this natural separation of time scales.

It is well known that the emission of some of the neutrons accompanying fission
is delayed by times ran,ging from less than a second to a minute or so. These
delayed neutrons result when the beta decay of a fission product leads to such a
highly excited state in the daughter nucleus that neutron emission is energetically
possible. Several fission products are precursors of the delayed-neutron emitters,
but for practical purposes it has been found possible to divide them into six
groups. In each group. the precursors decay exponentially with a characteristic
half-life, which determines the rate of emission of the delayed fission neutrons.
The relative and absolute abundances of the delayed-neutron precursors are
functions of the kind of fission, i.e., nature of the nuclide and energy of the
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neutron inducing fission, in which they are produced, and so also are the decay
constants to a slight extent.1

The expected density of precursors in the jth group is represented by Clr, t)
and the corresponding decay constant is Aj, where j = I, 2, ... , 6. The expected
rate of emission of delayed neutrons is then AjCj, and these neutrons will have a
normalized energy spectrum represented by xlE). For simplicity, and because
it is essentially true under the conditions in a reactor, it will be assumed here
that Aj and Xf are independent of the kind of fission in which the delayed
neutrons are produced. Moreover, to simplify the notation, the normalized
spectrum of prompt neutrons will be indicated by xiE).

Let v(r, E) be the expected total number of neutrons emitted per fission at r
caused by a neutron of energy E, and f3lr, E) the fraction of this total that comes
from the jth group of precursors. Then f3lr, E)v(r, E) is the expected number of
precursors created by a fission at r due to a neutron of energy E. If f3(r, E) is
defined by

f3(r, E) = 2: f3lr, E),
f

then [I - f3(r, E)]II(r, E) is the expected number of prompt neutrons resulting
from a fission at r by a neutron of energy E.

Consequently, if a fission at r at time zero is caused by a neutron of energy
E', the probable emission of neutrons per unit time as a function of time,t,
and emerging energy E, will be

Xp(E)[1 - f3(r, E')]v(r, E') 0(/) + 2: Xj(E)f3fAjv(r, E')e-~Jt,
f

where S(t) is a Dirac function. For reactors with stationary fuel, * this expression,
with t - t' substituted for I, may be inserted in the time-dependent transport
equation (1.14); the result is

1 c<P(r, n. E, I) n v,... ,...- , +. 'V + CT'V
t' ct

=< f f '2 CTJ.Ar; n'. E' .- n. E; t)<P(r, n', E', t) dn' dE'
31 _ f

+ Q(r. n. E, I) + f~.If CTf(r, E', t')<P(r, n', E', r')

x [XlJ(I - P>-- b(t - I') + L xff3JAJve-~/(t-nJ dn' dE' dr', (9.1)
J

• In a reactor with movin. (ftuid) fuel, a fission at one point will lead to the emission of
delayed ncvuom at ocher poants. Even when the fuel is stationary, some or the prccunon
-luc:h arc volaulc. C.I-. ttotopa of bromine and iodine, are not stationary. Such effects
cannot be rormulated acc:uratefy in a conventional neutron transport equation and they will
be iporcd here; ttwy ~YC. ~. been treated approximately in some cases.'



where x/47r, the neutron emission per unit solid angle, has been replaced by X.
The time-dependent transport equation (9.1) with delayed neutrons is given
here because it is sometimes used in theoretical studies of reactor dynamics.
For the present purposes, it is more convenient, and often useful for under-
standing the physical situation, to introduce the precursor densities directly into
the transport equation; thus,

. ~°0; + Q. V <1>+ a<1>= J J L axlx<1>'dQ' dE' + J J xp(l - (3)vaf<1>'dQ' dE'
x,;, {

+ L ~jCj(r, t)Xj +Q (9.2)
j

a=a(r,E,t)
ax = ax(r, E', t) for x i= f
a{ = a,(r, E', t)
fx == fAr; Q', E' ~ Q, E; t)
<1>' = <1>(r, Q', E', t)
.. v = vCr, E')
Q Q(r, Q. E. r).

and f3 and f3J refer to energy E' and Xp and XJ to energy E. If equation (9.3) were
solved for CJ in terms of <1>' and the result inserted in equation (9.2), the transport
equation (9.1) would be obtained.

For equations (9.1), (9.2). and (9.3), the various cross sections, a, axix, and a"
have been indicated above as explicit functions of time; the purpose is to take
into account such changes as may arise from the motion of control rods and
from various feedback effects (§9.lc) and from fuel burnup (§1O.2b). The
quantities connected with fission, e.g .. v, XJ" and X" could also be regarded as
functions of time. but for simplicity such time dependence has not been written
out.

Equation (9.1) or equations (9.2) and (9.3) provide an ex.act formulation of
the variation of the neutron angular flux. with time taking into account the
delayed neutrons. In principle, th~ equations can be solved by straight-
forward numerical methods, i.e., by replacing derivatives by differences, and in
praeti~ solutions have been obtained in this way for a number of problems
in\'olving simple geometries and diffusion theory.3 Even in these cases, however,
the numerical calculations are quite lengthy and are, therefore, ex.pensive in
computer time. For problems with more complicated geometry and feedback
~ffeeu. the direct numerical methods are 50 difficult that gross simplifications
are usually made before solutions are attempted.

·

····.···~··:I··.··~·:.··:.·-.:..··!.'····.·'.·

.:c.,

-~~
~ :';c-oi'
... ~. .;.

. ~~t
i~~

.. ';
"j

.)

l·~
~-:J "~:



In many problems, for example, a separation can be made of the space and
energy dependence of the flux, on the one hand, from its time dependence in the
point reactor, on the other hand. This method and some generalizations will-be
developed in §9.2a, et seq. Alternative methods are based on the expansion of
the neutron flux in modes whereby the spatial dependence may be retained
in approximate form in the time-dependent equations. Such approaches to
solving the transport equation with delayed neutrons will be described in
Chapter 10.

Delayed fission neutrons playa role in all reactors, but in some there may be
another source (or sources) of delayed neutrons. If the reactor contains deute-
rium, e.g., as heavy water, or beryllium, gamma rays of relatively low energy,
emitted by the fission products, can cause neutrons to be released by the (y, n)
reaction. The thresholds for these photoneutron reactions are 1.67 and 2.23 MeV
for beryllium and deuterium, respectively. In thermal reactors with large
amounts of heavy water or beryllium as moderator, these photoneutrons may
be comparable in importance with the delayed neutrons from fission. Although
the photoneutrons may be less abundant by an order of magnitude, they have
much longer decay times than the delayed fission neutrons and may thus com-
pletely dominate the time behavior of a reactor very nea.r criticaL For reactors
with moderators of heavy water or beryllium, the photo neutrons can be approxi-
mated in the point-reactor model as one or more additional groups of delayed
neutrons.4

Even in reactors in which ordinary water is the moderator (and coolant),
there is always some deuterium present in the water. The delayed photoneutrons
from this deuterium may act as a strong neutron source after the reactor has
been shut down. Such a source may, indeed, frequently be stronger than an
imposed neutron source.5 However, it does not affect the reactor dynamics
significantly under operating conditions.

9.1c Feedback Effects

The equations given above allow for the influence of delayed neutrons on the
time behavior of a reactor, but they do not take into consideration certain other
effects \\ hlch ma)' be important in reactor dynamics. For a reactor operating at
any substantial power, for example. account must be taken of the effect of the
neulron population and the power level on the criticality (or reactivity) of the
system. In particular, the power level will affect the temperature and changes in
temperature will alter the criticality by causing changes in geometry, density,
neutron spectrum, and microscopic cross seCtions. Allowance must be made for
these f~~dbad, m('dumisms, i.e., mechanisms whereby the reactor operating
condItions affect the criticality, in treating time-dependent problems of a reactor
operating It power.

Sneral of the feedback effects are included in the equations of reactor
dynamics in a relatively crude manner by the use of ulumped" parameten,



such as "fuel temperature," "moderator temperature," etc. (§9.4a). Detailed
calculations of heat transfer, fluid flow, and so on, are nevertheless required for
the determination of these parameters. In spite of this simplification, the resulting
equations are nonlinear and a full analysis of any but the more tractable models
is difficult even for a point reactor. For small departures from critical, however,
the equations can be linearized by making some approximations, and then they
can be solved readily, as will be seen in due course.

9.2a The Amplitude and Shape Factors

The space and energy dependence could be eliminated from equations (9.2) and
(9.3) by integrating over r, Q, and E. But the time derivatives would then appear
as small differences between large numbers, so that this approach is not practical.
It has been found better to consider differences between the actual system and
some just critical (time-independent) reference system. Moreover, by intro-
ducing an adjoint function for the critical system, expressions for the reactivity
can be obtained which are insensitive to errors in the flux, as in §6.3c. The time-
independent adjoint equation [cf. equation (6.69») for such a system may be
written as

-Q. V<1>iJ + uo<1>6= J J [2: {uxofxo(r; Q, E -+ Q', E')} + x(E')v(r, E)ulo(r, E)]
x';' 1

X <1>iJ(r, Q', E') dQ' dE', (9.4)

where the zero subscript indicates values of the various quantities in the (critical)
reference state. In practice <1>iJ could be found by the methods described in
Chapters 4 and 5 for the calculation of the k eigenfunction; the number of
neutrons per fission is varied until the condition for criticality is found. As
usual, <1>6 is assumed to satisfy the boundary condition of zero outgoing im-
portance. \\ hereas for <1> it is assumed there are no incoming neutrons. For later
use, <1>~ is normalized in some definite but arbitrary way.

For the point-reactor treatment 6 of a time-dependent problem, <1>(r, Q, E, t)
is first written as the product of an amplilude faclor P(t), which is dependent on
time only, and a shape faclor (or shape function) .p(r, Q, E, I); thus,

It will be seen in §9.2c that the point-reactor model is obtained when the time
dependence of the shape function is ignored, i.e., when .p is taken to be indepen-
dent of time. For the present, however, the time dependence will be retained in
the shape function so that various improvements on the point-reactor treatment
can be developed. In writing the angular neutron flux as the product of the two
factors in equation (9.5), the intent is that the amplitude factor, P(t), should



describe most of the time dependence whereas the shape factor, 1/;, will change
very little with time.

The shape factor is normalized so that

:, [f f f ~C1>t(r, Q, E)I/;(r, Q, E, t) dV dQ dE] = 0, (9.6)

where v is the neutron velocity. The volume integral is taken over the interior
of the convex surface on which the boundary conditions are imposed. The
purpose of the normalization in equation (9.6) is to satisfy the requirement that

IIf ~C1>t 0<1>dV dQ dE = oP(t) III! C1>tl/;dV dQ dE.
v 0 at at v 0

Such a normalization can always be made in principle and other normalizations
are possible.7

The determination of the appropriate shape function, 1/;, may sometimes, e.g.,
for severe space-dependent reactivity transients, be so difficult as to render the
approach of doubtful value. But when the system is disturbed only slightly from
its initial state, a time-independent value of I/; can be found to a good approxima-
tion. In these circumstances, the point-reactor treatment has been found to be
useful for solving the problems involved. The shape function will be discussed in
more detai I in §9.2<:.

Although <t>~ has been normalized above, equation (9.6) does not determine
any normalization on t/J and P. Hence, P(t) may be normalized independently in
an) convenient manner. In particular, P(to) may be set equal to the reactor
power at some time 10- This will then fix the normalization of the shape function
t/J at t = 10• and from equation (9.6) the normalization will be determined at all
other times. However, P(t) will still be nearly equal to the reactor power at all
times t for which the shape function does not differ greatly from that at I = 10,

as can be seen from the following considerations.
The reactor power may be represented by

Power == 'f Iff o/(r, E)C1>(r, Q, E, t) dV dQ dE

- P(t}4, Iff o,er, E)if;(r, Q, E, I) dV dQ dE,

where _, is the a\'erage energy release per fission and the fission cross section is,
for ~Imphcity. taken to be independent of time. If, then, at t = to, the power is
set equal to p(to). it follows that

.,fJ f a,(r, E}Y1(r,n, E, (0) dV dQ dE = 1.

If at other times 't the lhape factor'" is not very different, this relationship will
remain cuc:ntiaDy correct. and the power will be approximately equal to p(t)



at such times. When the flux shape changes significantly, however, it may not
be possible to identify pet) with the reactor power even approximately.

Alternatively, the amplitude factor P(t) may be normalized so that P(to) is
equal to the neutron population, i.e., the total number of neutrons present, at
time to. Again, P(t) will then represent the neutron population at any other time,
t, provided the shape factor does not change very much. In most instances,
however, normalization to the power is more convenient; this is especially true
when feedback effects are considered, since they are affected by the power level
of the reactor.

9.2b The Reactor Kinetics Equations

In deriving the equations for the time-dependent behavior (or kinetics) of a
point reactor, the procedure is somewhat similar to that used in several instances
in Chapter 6. First, equation (9.2) is multiplied by $6 and equation (9.4) by $;
the results are then subtracted and integrated over volume, angle, and energy,
with equation (9.7) being used in the term containing o$/ot. The gradient terms
are eliminated by utilizing the divergence theorem and boundary conditions, as
in §6.1c. The final result consists of the source and precursor terms and some
terms involving differences, e.g., between a and ao, of bilinear weighted cross
sections (§6.4h); it may be written as

d~~t) = pet) ~(f)(t) pet) + 2: Ajcit) + Q(t), (9.8)
. j

where the quantities p(t), ~j(t), ~(t), A(t), cj(t), and Q(t) are defined below.
Furthermore, if equation (9.3) is multiplied by Xj(E)$6 and integrated over all
variables, it is found that

dc,(t) = ~J(t) PC· ) _ A ()
dt A(t) t jCj t

Equations (9.8) and (9.9) describe the kinetic behavior of a reactor. The
parameter p(t) is given by

per) == ~{f···f ~[L ax!:e(r; n', E' -+ n, E; t) + X(E)V<7,(r, E', t)]
x _I

X .jJ(r, n', E', t)$b(r, n, E) dV dn dE dn' dE'

- J J f ~a(r,E, t}p{r, n, ~ t)$t(r, n, E) dV dn dE}, (9.10)

where the ~·s represent the differences between the respective quantities, af and
a. in the time-varying state and in the time-independent (critical) reference
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state, e.g., au = u - uQ. The other parameters in equations (9.8) and (9.9) are
given by

PJ(t) == ~ f· ··f xiE)f3Jvuf(r, E')t/J(r, n', E',.t)

x <1>b(r,n, E) dV dn dE dn' dE'

A(t) = ~f f f ~r/J(r, n, E, t)<1>b(r,n, E) dV dn dE

ell) = ~ f f f Xi(E)Clr, t)<1>t(r, n, E) dV dn dE

Q(t) = ;F f f f Q(r, n, E, t)<1>b(r,n, E) dV dn dE.

The factor IfF in the foregoing definitions is more or less arbitrary. It has no
effect on the solutions to equations (9.8) and (9.9) since it always cancels in the
numerator and denominator of each term. In practice, however, F is chosen so
that the various parameters have a physical interpretation for simple situations.
A reasonable choice for F in this respect is

F(t) == J ... J x(E)vu/(r, E')t/J(r, n', E', t)<1>b(r,n, E) dV dn dE dn' dE'. (9.16)

With this value for F, it will be seen below that the quantities in equation (9.8)
can be given a physical interpretation.

It is important to realize that the individual parameters defined above are to
some extent arbitrary; first, because <I>t is not completely determined, i.e., the
reference critical system is somewhat arbitrary, and, second, because of the
choice in the value of F. Nevertheless, the various parameters are related, so that
care must be taken to define them consistently. Once a consistent choice has
been made, however, such as that given above, the parameters are quite definite.

Consider, for example, equation (9.10) for p(t). With F given by equation
(9.16), the expression for p is very similar to that for the relative change in the
effective multiplication factor, k, i.e., akfk*, in equation (6.71) produced by
changes in the cross section. In fact, if the shape function, .p, has the same
dependence on r, n, and E as the fundamental angular flux eigenfunction
~r, 0, £) for the rd'erence critical system, equation (9.10) would be identical
with equation (6.71), and then

k - 1
p= k



This is the relation used to define the reactivity in elementary treatments of
reactor kinetics8; hence, the quantity represented by equations (9.10) and (9.16)
is here called the reactivity.

In general, the shape function will not vary with r, n, and E in the same way
as does the eigenfunction of k in the critical state. Under these conditions, p is
not simply related to the static multiplication constant, k. In~tead, equation
(9.10) represents a generalization to dynamics problems, and it may oe used to
define a dynamic multiplication factor, k(j, by writing

k(J - 1
p= ,

k(J

but k(J would be related only indirectly to k for a static problem. Nevertheless,
in many instances, as will be seen below, ~ may be closely approximated by the
eigenfunction of k, so that k(J :::: k and the elementary interpretation of p as the
reactivity is quite accurate.

If, as in §1.5e, fission is regarded as the event separating successive generations
of neutrons, A, as given by equation (9.13), is the mean neutron generation time.
For neutrons of one speed in an infinite medium, equation (9.13) reduces to
A = l/VGfv; for a system at (or close to) critical, this is equivalent to I/Gav,
which is the conventional elementary definition of the lifetime of a prompt
neutron in an infinite system.9 More generally from equations (9.13) and (9.16),
A is the (adjoint-weighted) neutron population divided by the (adjoint-weighted)
rate of emission of fission neutrons.

The quantity pj, defined by equation (9. i1), is the effective delayed-neutron
fraction from the jth group of precursors, and pis the total effective delayed-
neutron fraction. Even for a uniform reactor core, the effective fractions differ
from the actual fractions because allowance is made in the former for the fact
that the delayed neutrons have lower energies than the prompt fission neutrons.
Thus, the delayed neutrons usually have a greater importance in thermal
reactors than do the prompt neutrons, and in some cases P, may be greater than
f31 by 20% or SO.10

If P(r) in equations (9.8) and (9.9) is taken to represent the neutron population,
i.e., the total number of neutrons, then c, IS the effective number of delayed-
neutron precursors ofthejth group prescnt. On the other hand if, as is commonly
done, P(r) represents the reactor po\\-er. C, is the number of precursors multiplied
by a rate at which energy is produced pel" neutron. Some writers use a different
symbol for c. in these circumstances. but this is Dot necessary provided its
significance is borne in mind.

9.2c The Shape Factor
No approximations have been made so. far in derivio, the reactor kinetics
equations from equations (9.2) and (9.3); hOYr-ever,the development is purely
formal unless the flux shape factor ;<r, ~ ~ ,) can be found (or evaluating the
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parameters defined by equations (9.10) through (9.16). Fortunately, there are a
number of situations for which this can be done fairly easily and they will be
outlined below.

Before discussing these situations, reference will be made to a matter of
nomenclature. In some cases, as already indicated, a time-independent shape
function is employed to determine the parameters referred to above, for use in
equations (9.8) and (9.9); the resulting expressions for the reactor kinetics are
then said to describe a point-reactor model. It is in this sense that the term
"point reactor" will be used in making comparisons, mostly in Chapter 10, with
other, more accurate treatments of the spatial (and energy) variation of the
neutron flux in time-dependent problems.

It should be noted, however, that the reactor kinetics equations (9.8) and (9.9)
are often used in a quite different way; the parameters- are not computed for a
detailed shape factor but are postulated, perhaps on the basis of ~xperimental
considerations~ The equations (9.8) and (9.9) are then often referred to as the
point-reactor kinetics equations, simply to indicate that no account is being taken
of the spatial dependence of the neutron flux. This is the approach that will be
taken in most of the subsequent sections in the present chapter.

Consider. first, the exact equation which is satisfied by the shape factor. By
inserting equation (9.5) into equation (9.1) and dividing through by pet), it is
found that

1 [Cl/J I dP ]- -, +--t/J +n·vt/J+at/J
v.Ct P(t)dt

= f J 2 uxfxt/J' dQ' dE' + P~)
x ••f

+ f f xp(l - {3)vurt/J'dQ' dE' + Qd.(rp~') E, t), (9.18)

where QIt represents the delayed-neutron precursor decay nite at time t, i.e.,

Q4 = J~Cl JJ ro,(r. E', r')P(t')t/J(r, Q', E', t') 2 {3JXjAje-AJ<t-ndQ' dE' dt'.
j

(9.19)
Equation (9.18). with Qd as just defined, is thus an exact relationship which
should be satisfied by .p(c. n. £, t).

Equations (9.18) and (9.19), together with the reactor kinetics equations,
constitute a system of equations equivalent to equations (9.2) knd (9.3). The
new equations are. however. much more cumbersome than the original ones
and progJ"C'U will have been made only insofar as approximate solutions of
equation (9.18) can be found. Some simple situations in which this is possible
will fint be noted and then more general approximation procedures will be
described.



If a reactor is ·on an asymptotic period, i.e., the reactor geometry is unchanged
and the transients have died out (§§1.5b, 9.2e, 10.ld), the flux is truly separable
into a product of a function of space and a function eat of time. The space
dependence, for any a, can then be found by setting pet) proportional to eat in
equations (9.18) and (9.19), and Q = 0, and solving for ifi, which will not be a
function of time.

Furthermore, provided the reactor is not near or above prompt critical, a
will be small, and so the second term on the left of equation (9.18), which is
equal to aifi/v, can be neglected. Only the delayed-neutron source term Qa/P(t)
will then depend on a. A change in the delayed-neutron source will, however,
be equivalent to a small change in the fission-neutron source, and for this case
the shape factor can usually be determined by a k eigenvalue calculation, i.e.,
an adjustment of the magnitude of the fission spectrum required to achieve
exact criticality (§1.5e). When the reactor is above prompt critical, the term
a4J/v is no longer negligible; but now the delayed-neutron term QaIP(t) becomes
small and hence ifi can be found from an a eigenvalue calculation, as described
in Chapters 4 and 5. These topics will be considered further in §lO.1d.

A second situation of interest is that in which the departure from criticality is
so small that the shape of et>(r, n, E, t) is well approximated by that in the
critical condition. As in perturbation theory, it is required that the shape must
not change much locally, as well as grossly. The shape function may then again
be derived from a k calculation. In considering the stability of an operating
reactor, small perturbations from criticality are generally assumed; the shape
function for this analysis can then be approximated quite simply and with
sufficient accuracy.

The cases just discussed are somewhat special in the respect that the shape
factor is not a function of time; hence, for these cases the point reactor defined
above is accurate. There are, however, many important situations in which ifi
does change with time, yet where simple approximations are possible. In par-
ticular, in large. high-power reactors, such as are now becoming of commercial
interest. spatial transients must be considered in several contexts. When a large
reactor is perturbed nonuniformly. e.g., by motion of control rods, by the
accumulation of xenon- 135. or by the bumup of fuel, the spatial dependence of
the flux may be affected in important ways.

\\-'hen the power changes are sufficiently slow, as in xenon or bumup problems,
the time deri\ atives in equation (9.18) can be neglected. and so also can the
time variations of P and'" in computing Qd' Once more. the delayed-neutron
source can be combined with the source of prompt neutrons and a k eigenvalue
calculation can be made to determme the shape factor at any particular time.
Since the reactor conditions change gradually ~ith time. the shape factor will
also change but, for any gi,'en time. '" can be computed from the conditions at
that time. This procedure. which is caJkd the adiobalic approximation,l1 is
ceminly applicable for sufficiently llow time variations of the reactor power (or
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neutron flux). But it has been shown that it can describe the major part of the
spatial effects in reactor kine!ics even for fairly rapid power transients, such as
may accompany the movement of a group of control rods.12

For a more accurate treatment of spatial effects in rapid reactor kinetics, an
improvement on the adiabatic approximation can be achieved by considering
the solution .p(r, n, E, t) of equations (9.18) and (9.19) in more detail. When a
reactor is suddenly perturbed, it is to be expected that the prompt-neutron
population will adjust to the new conditions in a short time, of the order of a
few prompt-neutron lifetimes. The delayed-neutron precursors, however, will
reflect the conditions, especially the spatial dependence of .p, before the per-
turbation until several precursor lifetimes have passed. Moreover, as seen from
equation (9.18), the decay of the delayed-neutron precursors furnishes a neutron
source, Qd, which is involved in the determination of the shape factor, .p.

It is evident, therefore, that the main deficiency of the adiabatic approximation
is a failure to account for the sluggishness of the delayed-neutron precursors in
changing the shape factor, .p. An improved treatment, called the quasistatic
approximation,13 is possible, however, by computing Qd from equation (9.19)
and using this in equation (9.18) with (a.p/at)/v set equal to zero. The quantity
[ap(t )/8t l/P(r) can then be taken from the solution of equation (9.8) for the last
of a series of time intervals (see below). Accurate shape factors have been
obtained by this approximation even for severe space-dependent transients.l4
It is also possible to include the term o.p/ot by approximating it as

c.p .p(r, n, E, t) - .p(r, n, E, t - !:i.t)
(:t ~ !:i.t

and then solving equation (9.18) for .p(r, n, E, t). This amounts to a full numeri-
cal solution of the time-dependent problem which may be quite efficient if the
time steps for computing .p can be much larger than those for computing P(t).15

The advantage of the three types of approximation described above, i.e., the
shape function independent of time and the adiabatic and quasistatic approxi-
mations. as compared to a direct numerical solution of the time-dependent
transport equation, i.e., the combination of equations (9.2) and (9.3), is that
the shape factor is determined infrequently. In a problem in which the amplitude,
P(l), changes by several orders of magnitude, the calculation of t/J is made,
typically, one or only a few times. On the other hand, because of the large
variations, P(I) may have to be determined, using the point-reactor form of the
kinetics equations (9.8) and (9.9), for many small time steps. Since computations
of the shape factor are much more time consuming than solution of the point-
reactor kinetics equations, it is a great advantage to be able to limit the number
of the former that need to be made.

In §to.le. the results of some of these approximations will be compared for
certain situations involving extre~e changes of the shape factor during a



transient. Other methods of treating such space-dependent problems will also be
described in Chapter 10.

There is a special but important case in which a careful interpretation of the
approximations is required. It will be seen in §9.3b that it is often useful to
examine the response of a reactor to a small sinusoidal perturbation caused, for
example, by the oscillation of a control rod. Suppose that this perturbation does
not change the neutron flux significantly either in amplitude or shape; then, the
unperturbed shape function can be used for obtaining the various parameters in
equations (9.10) through (9.16). But when the response of the reactor is sensed
with a localized neutron detector, as is usually the case, the small changes in
the shape may be just as significant in determining the detector response as the
small perturbations in the amplitude.

For a large reactor, these spatial effects in the observed response are often
important. They can be calculated by using either an approximation, as described
above, or from the exact equations (9.2) and (9.3) by introducing a localized
sinusoidal variation proportional to etwt, where w is the perturbation frequency,
in the cross sections and solving for the corresponding sinusoidal variation in
the neutron fiux.16 This approach will be considered in more detail in §9.3c.

Once a shape function has been determined and <1>6 and F have been fixed,
the parameters appearing in the point-reactor equations can be computed. Of
greatest interest is the reactivity, p. which, as seen from equation (9.10), is
proportional to the changes in the macroscopic cross sections that occur in going
from the critical reference state to the actual state of the system. Some of these
changes may be controlled by external circumstances, e.g., the motion of a
control rod. In other cases, however. the changes may result from normal
operation of the reactor at power, as mentioned earlier in the reference to
feedback mechanisms; these will be discussed in some detail in later sections.

For a reactor which is operating at an appreciable power level, the reactivity will
generally be a function of the reactor temperature and. therefore, it will be
affected by P(r) and also by its pre\lous hlstof). i.e., by P(t') where t' < t.
Since p(t) is then a functional of P(t), equation (9.8) is nonlinear in P and, in
general, difficult to anal)'ze. When the power le\el is so low that the reactor
temperatures are unaffected by P(t). the problem is linear and simple to solve.
Such a situation is important for understanding experiments on critical assem-
blies and for reactor startup and other conditions. ""hen p(t) is independent of
P(I). the result is called the :uo-po"'~r (point) rt'Q~tormodd.

Since there is no feedback mechanism an the zuo-power reactor, equations
(9.8) and (9.9) are complete. assumin, that the paramcten p, A, Q, and Pi are
known. These equations are then the zero-po\\'er. point-reactor equations. The



two equations can, however, be combined to yield a single expression which is
sometimes useful. For this purpose, equation (9.9) is solved for cJCt); thus,

cit) = cj(O)e-Ajt + J:~P(t')e-Aj(t-n dt'.

Then this result is substituted into equation (9.8) to give

d~~t) = p(t) ~ ~(t) pet) + 2: Aj[ciO)e-Ajt + f:~P(t')e-Aj(t-t') dt'] + Q(t).
j

(9~20)

9.2e Asymptotic Period-Reactivity Relation

Solutions of equations (9.8) and (9.9) or of equation (9.20) have been obtained
for special cases.17 A familiar one is that in which a subcritical reactor'is made
slightly supercritical by a sudden (step) increase in the reactivity. As is well
known, the neutron population will start to increase and, after an initial tran-
sient, it will do so at an asymptotic rate which is related to the stable (or steady-
state) reactor period.

Suppose that before time zero the reactor is subcritical and the neutron
population and precursors are maintained constant by a constant source Q.
If the reactivity at (and prior to) t = 0 is represented by p_, where p_ < 0,
equations (9.8) and (9.9) at t = 0 are

p- - ~ '"
A Po + ~ AjCjO + Q = 0

j

At t = O. the reactivity is suddenly increased to P+, where p+ > 0, i.e., the
reactor is slightly supercriticat. with the source still present. Upon takin8 the
Laplace transforms 18 of equations (9.8) and (9.9), with

pes) == !i'P(t) = foaJ

e-,tP(t) dt

sp(s) - Po = P. ;; ~ P(s) + 2: AJCAS) + ~
J

sets) - ejo == ~ pes) - AtCAS).



(It should be noted that a function of the argument s, here and elsewhere,
denotes a Laplace transform.) By using equation (9.22) for Cio, equation (9.24)
can be used to eliminate cls) from equation (9.23), with the result

Po(A + 2 ~i ) + AQ
pes) = j S + Ai S • (9.25)

'"' S~jsA + L.. - P+
j S + Aj

The inverse transform of pes) will now give the time-dependent solution pet)
for t > O. The general features of this solution are determined by the roots of
the denominator of equation (9.25); these are the values of COk for which

~ COk~j
p+ = AWk + L A . (9.26)

Wk + j f
i

By using the methods of residues 19 to evaluate the inverse transform of equation
(9.25), it is found that

with the coefficients Pk being given by

Po(A + ') ~, ) + AQ
P _ 7" COk + ,\} Wle

Ie - A + ') A,S, 2 (9.28)
j (wk + ,\})

There are seven possible values of k. corresponding to the six groups of delayed
neutrons (or precursors). and at late times the solution to equation (9.27) is
dominated by the term with the most positive Wk' This is usually represented by
Wo and l/wo is the asymptotic (or stable) reactor period. The other six (negative)
values of W/c correspond to transient terms which die away in a short time.
, The relation between reactivity and reactor period, as given by equation (9.26),

commonly known as the inhour equation. has been frequently applied in studies
of reactor kinetics. It is desirable, therefore. to examine its physical implications.
In the derivation of equation (9.26) it was assumed that the reactivity is suddenly
changed from p _ to a constant value P .•.. A change of this nature might be
accomplished. approximately, by the sudden motion of a control rod, and such
an experiment wiIJ now be considered. Ignoring. for simplicity, the time required
for the actual motion. suppose that the rod is moved instantaneously at time
I - 0 from some initial position to a final position. If the shape factors,
t/J(r, n. E, t), corresponding to the initial and final positions of the control rod
are much the same, either function could be used to compute the reactivity
change as well'3S the parameters PI and A. These could then be employed to

. calculate the asymptotic period by means or equation (9.26). Alternatively, if
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Pi and A have been found in this (or some other) way, the reactivity (or worth)
of control rod motion could be determined.

Suppose, however, that the shape function does change substantially as a .
result of the rod motion, so that it reaches a time-independent value only after
the transients, which are associated with the decay of the delayed-neutron pre-
cursors, have died away. During the time the shape factor is changing, so also
is the reactivity, according to equation (9.10), even though the control rod does
not move. Under these conditions, the reactivity would approach its final value,
P+, after a delay of perhaps several seconds; only then would the asymptotic
period be attained. rhe situation is as indicated in Fig. 9.1.

These considerations are important for large reactors, in which the different
spatial regions are loosely coupled, i.e., the dimensions of the regions are large
compared with the neutron diffusion length, especially when the reactivity
changes are large and are caused by localized perturbations. The gross shape of
the neutron flux and the shape function can be changed significantly by rod
motion and it may take several seconds for the new shape to be established.20

For small, tightly coupled systems, on the other hand, particularly if the
reactivity perturbations are small, the situation is different. Although the shape
function may change locally, i.e., in the immediate vicinity of the control rod,
such changes are rapid and do not depend on the decay of the delayed-neutron
precursors.

The inhour equation (9.26) has been widely employed for deriving reactivity
values from observed asymptotic periods as, for instance, in the calibration of
control rods. The values of Pi and A for the reactor are generally available, to a

TIME FOR SHAPE FUNCTION
TO REACH FINAL STATE
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good approximation, either from equations (9.11) and (9.13) with an estimated
shape factor or from other considerations. For example,21 the quantity ~ can be
obtained from measurements of the difference in mass between prompt and
delayed critical, together with an interpretation of this mass difference in terms
of k as given by perturbation theory (§6.3c). When using point-reactor relations,
however, such as the inhour equation, it should be borne in mind that the
parameters p, ~j, and A are properly and consistently defined in terms of the
shape factor, ljJ(r, n, E, t), which, in turn, reflects the over-all neutronic state of
the reactor at a specified time.

9.2f Numerical Solutions of the Point-Reactor Equations
and the Zero Prompt Lifetime Approximation

In many cases of interest, the reactor kinetics equations (9.8) and (9.9) cannot
be solved in closed form and numerical methods of solution must be used. In
practice, solutions are usually sought to these equations supplemented by feed-
back relations (§9.4a), but an important difficulty in their solution can be
appreciated even without considering feedback effects.

Except for cases of very fast transients, it may be required to follow the
solutions over many seconds or even minutes. A difficulty then arises for the
following reason. Equations (9.8) and (9.9) represent a set of J + I first-order
coupled differential equations, where J is the total number of delayed-neutron
groups. The solution of these equations by standard difference techniques) e.g.,
by the Runge-Kulla method, is not efficient, however, because for accuracy it is
necessary to use small time steps which are determined by the prompt neutron
lifetime, A.22 Consequently, a number of fairly specialized integration pro-
cedures have been developed and digital codes are available for obtaining
reliable solutions.23

There is also a simpler general approach based on the assumption, in physical
terms, that the prompt-neutron lifetime is so short that it can be set equal to
zero, provided the system is not at or above prompt critical. This is called the
uro prompt-neutron lifetime (or in brief, the :ua prompt lifetime) approximation.
For the reason to be given later, it is also sometimes referred to as the pro~pt-
jump approximation.

Equation (9.20), which is equivalent to equations (9.8) and (9.9), may be
written in the form

dP(/)AdZ -= [p{t) - /3(1)]P(r)

+ 2 .\1['\c~-'\" + £ p/..tr)P(I'~-'\r'-n dl'] + AQ(t), (9.29)
J

where, for simplicity, A is taken to be independent of time. and CtO a cJ (0). If



the prompt lifetime, A, is small, the two terms on the right side of this equation
that are multiplied by A cannot be set equal to zero because they are source
terms for the problem, and multiplication by A simply converts them into
sources per neutron lifetime. As A gets smaller, both P(t) and the sources thus
decrease proportionately (see end of §9.2b). For small A, however, the left side
of equation (9.29) goes to zero more rapidly than the right side, except perhaps
for fast transients. Thus, the assumption of a prompt-neutron lifetime of zero
consists in setting the left side of equation (9.29) equal to zero.

The situation may be expressed mathematically by expanding pet) in the
form

substituting into equation (9.29), and equating the coefficients of each power of
A to zero. From the coefficient of A0, it is found that

[p(t) - ~(t)]Po{t) + .2 Aj I~~lt')Po{t')e-Alt-t')dt' = 0,'
j

and the solution of this equation is Po(t) = O. By setting the coefficient of A
equal to zero, it is found that P1(t) satisfies the equation

[pet) - ~(t)]Pl{t) + .2 Ai [c/oe-AJt + f~~lt')PI{t')e-A/t-n dt'] + Q(t) = O.
r

(9.30)
The zero prompt lifetime approximation then consists in terminating the series
at Pl, i.\, since Po{t) = 0,

In other words. it is seen that in this approx.imation .\P1(t) satisfies equation
(9.29) with dP(r )/dr = O. (Systematic improvements on the zero prompt lifetime
approximation can be obtained by the use of singular perturbation theory.:24)

Equation (9.30) can be solved numerically by using time steps, which are
independent of .\. to evaluate the integral. If p - ~ > 1, i.e., for a system above
prompt critical. however, this approach fails; all terms on the left side of
equation (9.30) are then positive and their sum cannot possibly be equal to zero.

For analytical work. it is convenient to make use of a further simplification of
the zero prompt lifetime approximation. First, it is assumed that there is only

I' one (average) group of delayed-neutron precursors, characterized by fl and ~;
furthermore, fl is assumed to be constant, independent of time, and Q is taken
as zero. Then. upon differentiating equation (9.30) and using equation (9.30) in
the result, it is found that

[P(I} - fl] d~~t) + [d~~t) + AP(t)]P(t) = O. (9.31)

This simple form of the zero prompt lifetime approximation is sometimes used
in anal)1ical studies.



Since in the zero prompt lifetime approximation the kinetic equation (9.29)
is solved with the time derivative set equal to zero, the power, P(t), can respond
instantaneously to any change in reactivity. Thus, if dP/dt = 0 in equation
(9.29), the result can be written as

[pet) - p(t)]P(t) = A[Qit) + Q(t)],

AQct(t) = L Ai[ AciOe-)..jt + I~Plt')P(t')e-)..j<t-n dt']'
J

Hence, if pCt) were to undergo asudden jump, the right side of equation (9.32)
would not change for a while; but pet) would also show a prompt jump in order
to satisfy this equation. Thus, the zero prompt lifetime approximation is also
referred to as the prompt-jump approximation. In this book, the former
terminology is preferred since it indicates more clearly the physical content of
the approximation.

9.29 The Linearized Kinetics Equations

It was mentioned earlier that, in a reactor operating at power, the reactivity is a
function of the power. Hence, the kinetics equation (9.8) will be a nonlinear
equation in the reactor power. If a reactor operating at power undergoes a
small perturbation in reactivity, however, it is possible to linearize the equations
for the point reactor. The resulting simple expressions, which are derived here,
will find application in several subsequent sections.

Consider a system operating in a steady state at power Po in the absence of
any source. Such a system is critical and hence p = O. The kinetics equations
(9.8) and (9.9) for the point-reactor model will then have time-independent
solutions Po and C/o, obtained by setting dc,/dt in equation (9.9) equal to zero,
I.e.,

This result also satisfies equation (9.8), with dP/dt - 0, p =: 0, and Q = 0, as
may be seen by summing equation (9.33) over J, and recalling that 2. PI = p.

Suppose that the reactivity is perturbed from zero by a small amount op(t)
and that this causes the power and delayed-neutron precursors to be perturbed
by small quantities; thus,



· If these expressions are inserted into equations (9.8) and (9.9), with Q = 0,
and the steady-state condition (9.33) is satisfied, it is found that

d[oP(t)] = op(t) [Po + oP(t)] - P oP(t) + ~ Ai oCAt)
dt A A ~

i

d[ocAt)] = Pi oP(t) _ A OC (t)
dt A i i .

In equation (9.36), the term op(t) oP(t)/A is second order in small quantities
and hence it may be neglected if the perturbations are small, as postulated
above. Then equations (9.36) and (9.37) can be written as

d(oP) Po P 2-- = - op - - oP + . Ai OCj
dt A A

I

These are the linearized kinetics equations for a point reactor.
It is )mportant to bear in mind that equation (9.38) can be used only when

op OP/ A is small. Whenever the solution of the linearized equations predicts a
large power perturbation, the nonlinear equation (9.36) must be considered
since the neglected term may greatly alter the character of the solution. As long
as op and OP are sufficiently small, however, as is the case in some of the situa-
tions considered below, the linearized equations may be used.

9.38 The Zero- Power Transfer Function

Useful information about a reactor can be obtained by studying its response to
small perturbations of the reactivity. In particular, conclusions concerning the
stability of a reactor when it is operating at power can be drawn from the
response to small sinusoidal perturbations. The response characteristics are then
summarized in terms of a transfer function, which is defined below. The study of
reactor transfer functions, both experimentally and theoretically, is of great
importance in connection with the control of nuclear reactors. As the first stage
in the treatment of this aspect of reactor dynamics, consideration will be given
to the power response of a system operating at very low (or zero) power to a
small reactivity oscillation. The determination and use of transfer functions are
described in §9.Sa ~t s~q.

Suppose that the system under consideration is critical, with no SOU~ and
that the reactivity is changed by a small amount; if the power also changes to a



small extent only, the conditions are then such that the linearized equations
(9.38) and (9.39) are applicable. Upon taking Laplace transforms of these
equations, with oP(D) = oc,(O) = 0, so that

d(oP)
.Ptit = s.P(oP) = S opes)

d(oc.)
2T = s.P(OcJ) = S oc,(s),

equations (9.38) and (9.39) become

S opes) = ; opes) - ~ opes) + L Aj OcJCs)
J

Spes)
Spes) = PoR(J),

R(s) = "
\

,'sjJ.
S. + ~ \

IS'" ",

The response (or output) of any physical system to an information (or input)
signal applied to it is expressed by the [romler junction of the system. It may be
defined for the present purpose by

T r f' Laplace Iran~form of response
ransu:r unction = .

LAplace tran~form of perturbatJOn

It follows. therefore. that if op is the change in po"er of a reactor operating in
the steady (or critical) state. in response to a small change 1Jp in the reactivity,
[,P(s )/op(s) is the appropriate: transfer function. Bence. in the case under
consideration, equation (9.42) gi\es for the linearized system

There arc alternative, but equi\'aknt. ~~prcuionl for this particular transfer
function. For example, if the response is uatcd Ai the change in po .• ~r relative



to the initial (steady-state) value, i.e., oP/Po, the transfer function would be just
R(s), as given by equation (9.43).*

The transfer function for the linearized system defined by equation (9.43) or
equation (9.44) is called the zero-power (or open-loop) transfer function. The
reason is that the power level is not allowed to affect the reactivity in any way.
In other words, feedback effects are not considered; if there is a feedback loop
(see Fig. 9.5), it is regarded as being open. This would be true in practice only if
the reactor is operating at such a low, essentially zero, power that the tempera-
ture, and related reactor conditions, remain unchanged during operation. The
more general problem of a point reactor with feedback is taken up in §9.4a
et seq.

9.3b Sinusoidal Reactivity Perturbations

For the special case in which a reactor is perturbed by small sinusoidal oscilla-
tions about the steady (p = 0) state,

op(t) = op cos wt

o (s) = s op = s op ,
P S2 + w2 (s - iw)(s + iw)

where w is the oscillation frequency. Upon inverting the Laplace transform 25

of the power change, SP{s), given by equation (9.42), the poles of opes) at
s = ± iw would give the long-term power variation; the other poles of op(s) at
negative real values of s would lead only to transients (§9.2e).

Thus. for the specified sinusoidal reactivity variation, the inverse transform of
equation (9.42) leads to

Po Sp fb+ lCO S
SP(t) = -..,-. R(s) ( .)( .) est ds.

-'7Tl b-lco S - lw S + lw

B)" using contour integration to evaluate the integral, it is found when t is large,
so that the poles at s = ± iw give the only contribution, that

t,P(t) 11&"': Po opIR{iw)1 cos (wt + 8).

It is evident from this result that if a reactor operating at low power in the
steady state is subjected to a sinusoidal perturbation in reactivity, the power will

• The reactivity is often expressed in dollar units, as defined in §6.3r. When reactivity is
measured Ul dollars. the tra.osfer function would be PPoR(s).



oscillate with the same frequency but with the phase shifted by the angle B
radians; the amplitude of the power oscillations is proportional to IR(iw) I. In
practice, 8 is either negative or close to zero (see Fig. 9.3); consequently, as
expected, the power response lags behind the reactivity change.

The amplitude IR(iw)1 and the phase angle 8, as functions of w, are the essential
components of R(iw), which is equal (or proportional) to the reactivity-to-power
transfer function for a reactor operating at low power. Equation (9.47) pro-
vides a basis for the experimental measurement of both amplitude and the
phase angle. Other methods for determining these quantities will be mentioned
later.

Alternatively, IR(iw) I and 8 for a given system can be calculated from equation-
(9.43) with s replaced by iw; thus,

1
R{iw) = . f1 '

. A "" Iw f
Iw + L. . A

I Iw + I

and R(iw) can be computed for specified values of A and f11. To obtain the
amplitude and phase angle, the result may be expressed in the form of equation
(9.46) or, alternatively, as

R(iw) = Re [R(iw)] + ; 1m [R(iw)].

If the values of Re [R{iw)] are plotted as abscissae and 1m [R{iw)] as ordinates,
as in Fig. 9.2, the amplitude I R(iw) 1 is the magnitude of the vector, and 8 gives
its direction, where

8 _ 1m [R(iw)}.
tan - Re [R(iw)]

A comparison of observed and calculated zero-power transfer functions for
some reactors and critical aS~{11bliesis given in Fig. 9.3; the points are the

Re [R(iw}] FIG. 1.2 RE,.RESEHTATION OF AMPU-
TUDE AND PHASE ANGl£.

.
.j.•......:;
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: . .~
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FIG 9.3 EXPERIMENTAL AND CALCULATED ZERO-POWER TRANSFER FUNCTIONS
FOR REPRESENTATIVE FAST. INTERMEDIATE. AND THERMAL URANIUM-235
SYSTEMS (AFTER G. R. KEEPIN. REF. 26).

experimental data for the indicated systems.26 The full lines show the amplitude
and phase angle (in degrees) as a function of the oscillation frequency in radians
per second calculated for values of A ranging from 10-8 to 10-3 sec. The
etrccti\e delayed neutron fractions, Pj' used are for uranium-235, which is the
common fissile material; the P/s were assumed to be the same in all the systems.
The zero-power transfer functions have been tabulated for the common fissile
nucl ides. IT



9.3c Space Dependence of Transfer Functions

In considering the transfer functions of large, loosely coupled systems, It IS
necessary to take spatial effects into account. As noted in §9.2c, the reason is
that, for such systems, the variations of the shape function, if(r, n, E, t), with
time may be as. important as the variations of pet). Thus, when the transfer
function is measured, by taking the output to be that indicated by a lo~alized
neutron detector, it will be sensitive to oscillations in if as well as in the power,
P(t). It is possible, however, to define a space-dependent transfer function by
considering a ratio of detector output to sinusoidal reactivity input and to
compute such a..transfer function without solving the complete time-dependent
problem.28

In order to understand the procedure, the time-dependent transport equation
(9.2) is written as

1 8<1> ~-. -8 = Lp<1> + AfCJCr, t)Xf + Q,v t -
f

where Lp represents a prompt-neutron transport operator; this is similar to L
in §6.1b except that the prompt neutrons are here explicitly the only ones
considered as emerging from fission. A solution to this equation, together with
equation (9.3), which is reproduced for convenience, i.e.,

is now sought for a small localized disturbance in some cross section, denoted
as oLe1wt.

Suppose that in the absence of any disturbance, there are time-independent
solutions, <1>0 and C'a' due to a steady source, Q. During the course of the
disturbance, the solutions may then be assumed to be of the form

<1> = <1>0 + o <1>e1wt

CJ = C,a + bC,el<.Jt,

where .\<1> and bC! may be complex functions of r, n, and E. If these expressions
for <1>and C, are inserted in equation (9.48) and the steady-state conditions are
taken into account, the result, after linearization by dropping terms in oL 0<1>,
is found to be

iw 0<1> = L" eS<1> + eSL<1>o + ~ AJ eSC/X,.
l' L

1

In a similar way, equation (9.49) gh'cs

l>CJ - k» ~ )'J f f fJr' 1><1>' dQ' dE',
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Equation (9.51) may now be substituted into equation (9.50) and the result
separated into real and imaginary parts. Solutions can then be sought for the
real and imaginary parts of S<1> from which the amplitude and phase angle of a
sUltabl} defined space-dependent transfer function can be found.

A calculation of this type has been made by using a two-group diffusion theory
form of Lit. The results were then compared with the experimental values for
the l'ORA reactor. an enriched-uranium critical assembly moderated by heavy
water.29 The measurements are made by observing the response of the reactor
at a gi\en point to a sinusoidal disturbance introduced elsewhere (see inset in
Fig. 9.4). The observed values of the phase angle and the computed curves, for
various distances from an oscillating control rod, are shown in Fig. 9.4. There is
clearly a strong spatial dependence of the transfer function in this case.

The foregoing remarks concerning the space dependence of transfer functions
do not imply that it is incorrect to consider space-independent transfer functions
e'en for large systems. In principle, such transfer functions can always be defined
by considcrina P(I) as the output. The problem is simply that the variations in
PC,) do not repreKnt the situation completely; moreover, such variations are



In the zero-power point reactor, the power level is assumed to be so low that it
does not affect the reactivity; hence, there are no feedback effects. It is necessary
now to examine the consequences of feedback mechanisms especially insofar as
they influence the stability of a reactor operating at power. For the present ,:; .
purpose a feedback mechanism is regarded as a physical effect whereby the 1~
neutron population or reactor power, PCr), alters the reactivity, p(t).

It is evident from equation (9.10) that changes in reactivity arise from changes
in the macroscopic cross sections and by such changes alone. There is a slight
complication since, for a given tlo, the reactivity may change due to changes in
the shape function, !f;, which can be caused by changes in the source. In general,
however, it is basically changes in the macroscopic cross sections that influence
the reactivity. Such changes will occur either when the nuclear densities change
or when there is a change in the microscopic cross sections. This distinction
provides a convenient way of separating feedback effects.

Feedback reactivity can arise from changes in temperature in a reactor
operating at power. First, the densities of the reactor materials will be affected
by temperature due to thermal expansion. Density changes can also be the
result of phase changes, e.g., conversion of water into steam. In addition, tem-
perature changes may lead to mechanical motion, e.g .. bending, of fuel elements
or other reactor components. Furthermore, temperature can alter the micro-
scopic cross sections: this may ari~ from changes in the thermal neutron scatter-
ing laws and from the Doppler broadening of resonances. Changes in microscopic
cross sections also result from the accumulation of fission products; in this
connection xenon-135 is especially important.

Changes in reactivity with temperature are described by temperature coeffi-
cients of reactivity which can be expr~ in various ways. For stable operation
of a reactor, negative temperature coefficients are, of course, desirable. If the
temperature of a reactor always rern.tined uniform during operation, an iso-
thermal temperature coefficient of reactj\"ity could be obtained. In practice,
however,when a reactor is at a power level high enough for feedback mechanisms
to be significant, the temperature will not be uniform and the isothermal tem-
perature coefficient will not be applicable. In situations of this kind appropriate
average temperatures are u~.

In order to determine the temperature distribution throughout an operating
reactor, detailed engineering calcul&tiom are required of heat transfer and

difficult to measure precisely. There are other experimental problems involved
in the determination of transfer functions, e.g., approximating a sinusoidal
reactivity input; more will be said about this in §9.5b.



coolant flow. The results are then incorRorated in the equations of reactor
dynamics for determining feedback effects by introducing them in terms of
"lumped" parameters of the system. These are, for example, "fuel temperature,"
"moderator temperature," and "coolant temperature" and their associated
temperature coefficients of reactivity. In principle, these temperatures should be
averages, based on the actual temperature distribution, weighted to give the
correct reactivities. The effective temperatures of the various regions are coupled
by parameters derived from engineering calculations.

Because of these and other approximations, including the neglect or simplifica-
tion of spatial effects in point-reactor kinetics, there is always some degree of
uncertainty in the calculation of reactivity changes arising from feedback
mechanisms. It would be desirable for the performance of the reactor to be
insensitive to the approximations, but, in any event, the expected feedback effects
should be verified by means of an experimental program, at least during reactor
startup and early operation.

Of the situations in which feedback effects are important, three will be treated
here. The first involves small oscillations of the power (and reactivity) about
some equilibrium value. This represents, indeed, a common practice for studying
the stability of a reactor by observing its response to, small, more-or-Iess
sinusoidal. oscillations in reactivity. In analyzing this stability, the kinetics
equations can be linearized, thereby greatly simplifying the problem. The
stability investigated in this manner, i.e., against small oscillations, is referred to
as ··stability in the small."

The second situation of interest is that in which larger variations or oscillations
of power or reactivity are permitted; in this case, nonlinear effects of feedback
must be taken into account. These nonlinearities make the analysis much more
difficult so that it has been possible to obtain partial results only in some special
cases. For large oscillations. at least two kinds of stability are distinguished; they
are asymptl)tlC stabdity when the oscillations damp out with time, and Lagrange
stabllJt~ \\ hen the ()scillations remain finite but bounded.30

Flnall~. clln~lderation \\ ill he given to very large excursions which bring the
reactl\lt~ abl)\e prompt critical. In extreme cases such excursions are terminated
onl) b~ falrl~ \ Ill!c:nt dl~ruption of the core, e.g., by melting or by ejection of the
(ltquld) mllderahlr. The matter of interest here is to determine the consequences
of a ~lngle tranSient or pulse. Such problems arise in the analysis of pulsed
reactor~,:]1 In fa~t·transient safety tests on various water-moderated systems,32
and in considering the damage which may follow the accidental achievement of a
hi~hl)' supercntlcal state.

9.4b The Transfer Function with Feedback

There are ~cral possible ways of introducing feedback into the reactor kinetics
equat.ions.. bUllhe wmpl~ from a physical viewpoint, is to use the temperature,



as indicated above, to characterize the state of various regions. The simple case
will be considered in which the feedback is determined by the average (lumped)
temperature of the fuel, TF, and of the moderator (or coolant), TM.*

It should be noted that reactivity effects associated with temperature changes
in the fuel are relatively prompt, since the fuel temperature responds, usually
with little delay, to changes in the reactor power. Moreover, there is no appreci-
able lag between a change in fuel temperature and the corresponding changes in
the cross sections of the fuel which affect the reactivity. On the other hand,
reactivity effects due to changes of temperature of the moderator (or coolant)
are delayed because heat must flow from the fuel before these temperatures can
be established. '

SlJppose that under steady operating conditions, the power (or neutron
population) is Po and the fuel and moderator (or coolant) temperatures are TFo
and TMo, respectively. It will be assumed that small perturbations about these
conditions can be represented by

d(oTF) _ ~P _ ~T

d
- a 0 WF 0.1.F

t '

where oTy, STw., and OP are the deviations of the actual temperatures and power
from their steady-state values, and wyand Ww. are the decay constants of the
fuel and moderator temperatures. Equation (9.52) expresses the fact that the
fuel temperature responds directly to the changes in the power, wher~as equation
(9.53)' implies that the moderator responds to the change in the fuel temperature.
The thermal responses to a sharp power pulse SP = Po S(t), where S(t) is a
Dirac function. are then

These equations sho~' that the fuel temperature responds promptly to the
power change. but the response of the moderator is delayed. If w•. » ww, as is
generally true. this time delay is of the order of l/wr•

If the reactivity temperature coefficients of fuel and moderator are 'r and rw,

rcspecti\ely. and if hpn is some externally imposed reactivity change on a steady-
state reactor, the actual reactivity is

hp = hpn. + rr hTr + r •• hTw• (9.56)

• The ,ymbol T",. as used here and in later sections.. refen to the temperature of any
component of the reactor that affccu the reactivity in a delayed manner in response to a
chan,c in the power.



Models such as the one described by equations (9.52) and (9.53) give the
reactivity as a linear function of the power at earlier times; the most general
relation of this kind is

op(t) = 0Pex(t) + I:f(t - '1") oP( '1") d'1",

where it is assumed that oP(t) = 0 for t < O. Equation (9.57) describes how the
reactivity at time t is affected by the power at preceding times; the function f,
which appears in this equation, is determined by the feedback mechanisms of the
system. The equation must be combined with the reactor kinetics equations in
order to determine the system response, oP, which results from some imposed
reactivity, opex' Since small variations are involved in all quantities, it is appro-
priate to use the linearized forms of the kinetics equations, i.e., equfltions (9.38)
and (9.39). These two equations together with equation (9.57) now describe the
system.

From equations (9.54), (9.55), and (9.56), it is seen that, for the simple model
under consideration,f(t), which here represents the effect of fuel and moderator
feedback, is given by

fi( ) [
- W t rMb( e - w.,t - e - wMt)]

t = a rye r + ------- .
WM - WF

The next step in the development is to take the Laplace transforms of the
kinetics equations and of the feedback equation (9.57). For the kinetics equa-
tions. these are given by equations (9.40) and (9.41). Upon taking the Laplace
transform of equation (9.57) and utilizing the convolution form of the integra}33
to write

opes) = oPex(s) + F(s) oP(s),

where F(s) is the Laplace transform of f(t), it is found from equations (9.40)
and (9.41) that the transfer function, represented by H(s), is

opes) poRes)
oPex(s) - I - PoR(s)F(s) = H(s),

whcre R(s) is cxactly as defined by equation (9.43). In fact, when the feedback
tcrm F(s J i~ zero (or Po is very small), equation (9.59) reduces to the zero-power
transfer function of equation (9.42).

Equation (9.59) is often represented in the form of a block diagram, such as
that shown in Fig. 9.5. In an actual reactor system, the feedback block marked
F(s) would be broken down into a number of components to allow for other
factors in addition to that of temperature. These would include the effect of
coolant velocity derived from studies of heat transfer and fluid mechanics,s.
with appropriate time delays. There would also be a feedback loop to allow for
automatic movement of control rods based on sensing the changes in power.
For complex systems of this kind, the transfer functions cannot be detumined by
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analytical procedures, but they can be readily obtained by simulating the reactor
and the various feedback mechanisms on an analog computer.35

To return to the case under discussion of a simple linear feedback, the time
response of the system to an imposed reactivity Spex(t) can be found by inverting
the Laplace transforms in equation (9.59). Thus, if h(t) is the inverse transform
of the transfer function H(s), then

&P(t) = f: 8pex( r)h(t - T) dr,

9.4c Stability Conditions

The stability of the system with feedback can be investigated by examining the
poles of the Laplace transform, H(s). These poles are solutions of the character-
istic equation

which includes the power; it is obtained by setting the denominator of equation
(9.59) equal to zero. The poles of R(s) in the numerator determine the response
for the zero-powt:r reactor (cf. §§9.2e,9.3a) but these are not applicable here (for
finite power) since R(s) also appears in the denominator.

Suppose equation (9.61) has a simple root, so that H(s) has a pole, at s = !/.
Then, when the Laplace transform oP(s) is inverted to obtain SP(t), a term will
be obtained proportional to r'. If the real part of !/' is positive, Le., !/ is a
root in the right-half plane of the plot of 1m (s) versus Re (s), as indicated by
one of the circled crosses in Fig. 9.6, then the oP(t) will grow exponentially with
time. thus indicating an unstable (or unbounded) response to the applied
reaet~vity perturbation. It should be mentioned that the exponential growth of
[,P(t) is to be expected only from the linearized kinetics equations, i.e., for small
perturbations of reactivity and power. For a large power excursion, nonlinear



kinetics equations or a more general treatment would have to be used to deter-
mine the behavior.

If, on the other hand, the real part of !/ is negative, i.e., it lies in the left
half-plane of Fig. 9.6, as shown by the uncircled crosses, the root will produce a
contribution to oP(t) that decays with time. Since what is true for one pole will
be true" for the others, it follows that if all roots are in the left half-plane, the
system would be stable to a small perturbation in the reactivity. Hence, from the
standpoint of reactor safety, it is important to determine if any of the poles of
H(s). i.e .. roots of equation (9.61), lie in the right half-plane.

Another way of deriving conditions for stability" is as follows. If a system is
stable to a smaIl increase~ opu' in the reactivity, it is to be expected that, at late
times after the reactivity increase, OP(I) will approach some constant positive
value such that hp(t) = O. Hence, at late times, it follows from equation (9.57)
that for a stable response

o = opu + oP fo:%) f(t) dt = oPex + F(O) oP,

~herc I{t) is a feedback function. The quantity F(O) is a Laplace transform
rcp~ntJng the \alue of F(1) when s = 0, i.e., in the steady state of the reactor;
It is consequently called the steady-state power coefficient. A necessary, but not
suffiaent, condition for stability is then

F(O) ,.. fa" f{/) dl < O.

Thus.. the steady-Jt&te pov,'er coefficient of a reactor must be negative for
llability; thas condU5ion has also been extended to nonlinear feedback
problems. 1M



Another general feature of interest is that the linear feedback model may exhibit
power thresholds at which instabilities develop. Suppose that somewhere in the
right half-plane, the real part of R(s )F(s) is positive whereas the imaginary part
is zero. There will then be some power at which the product of Po and the real
part is equal to unity; this will represent a root of the characteristic equation
(9.61) and hence corresponds to an instability. The reactor will evidently be
stable for lower powers, as far as this root is concerned, but it will become
unstable at a critical power level at which the feedback becomes strong enough
to drive the instability.

Actually, the situation is not quite as simple as this because the feedback
function, J(t), will itself depend on the power Po to some extent. Nevertheless,
the principle that each mode of instability will tend to have a definite power
threshold is correct. The physical reason is that at low powers not enough
energy is being fed into the mode to drive it, and damping keeps the mode
amplitude limited. At higher powers, the driving power exceeds the damping, at
least in the simple linear theory.

Some insight into the onset of instability in linear theory can be obtained by,
first, considering the situation at low power. Provided R(s) =I 0, the character-
istic equation (9.61) may be divided by R(s); the result, together with equation
(9.43) for R(s), can be written as

G(s) = R:S) - PoF(s) = As + 2: s ~sA - PoF(s) = O. (9.63)
j J
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will occur for s = 0 and for six (j = 1, 2, ... , 6) negative values of s. This can be
seen by plotting G{s) for Po = 0, actually 11R(s), versus s for real values of s,
as in Fig. 9.7.

For small but significant Po, the root at s = 0 will move to the left or to the
right according to whether the steady-state power coefficient, F(O), is less than
or greater than zero. In the former case the system will be stable, according to
equation (9.62), and in the latter case it will be unstable.

The situation at higher values of Po can be understood by considering the
behavior of the roots of the characteristic equation (9.63), i.e., G(s) = 0; these
roots are the poles of H(s). The particular case illustrated is one in which the
system is stable when Po is small, but instability occurs at some higher power.
Some simple examples are given'in §9.4f. At zero power, the roots are just those
of II Rs = 0, and are indicated by 9' l' 9'2, 9'3, etc., in Fig. 9.8. If the steady-state
power coefficient, F(O), is negative, then at higher powers the root 9'1will have a
more negative real value and will move to the left, whereas some of the other
roots may move to the right. At the same time, because of the F(s) factor in
equation (9.63), some of the higher solutions will have formed conjugate pairs,
provided G(s) is real for real s. The roots of equation (9.63) for moderate powers
are indicat~d by the crosses in Fig. 9.9.

As the power is increased further, !/1 and !/2 approach each other in this
example and then form a conjugate pair; with increasing Po the points move to
the right. i.e .. Re ('V'l) and Re (Y'i) become less negative. and farther apart,
i.e.. 11m (/I'd! increases. The situation is depicted in Fig. 9.10. At a sufficiently
high power. the roots will cross the imaginary axis and enter the right half-
plane; as seen earlier. the system then becomes unstable. In this manner, there-
fore. a reactor with a negative steady-state power coefficient that is stable at low
power could become unstable at a sufficiently high power. A specific example of
the effect of increasing power on stability will be given later (§9.5e).

~;-"--~-----Il:"-_---- Re(s)
1J3 1J2 ~t



FIG. 9.9 BEHAVIOR OF ROOTS OF THE CHARACTERISTIC EQUATION (9.63) AT
HIGHER POWER.

When the roots ~ and ~! of the characteristic equation, for significant
values of Po, are close to the imaginary axis, i.e., when Re (~) is small and
negative, the reactor will have a tendency to exhibit spontaneous power oscilla-
tions at a frequency of 1m (~). The reason is that oscillations at this frequency
are barely damped and hence are readily excited. In addition, as will be shown
below, the power would exhibit a large response to imposed reactivity oscilla-
tions at frequencies near 1m (.~). Mathematically, this arises because the trans-
fer function for imaginary values of ~ will have a peak or resonance at a fre-
quency wo, approximately equal to 11m (.'l;)1 when Re (.~) ~ O. The occurrence
of resonances in transfer functions for actual reactors is described in §9.5e.

Suppose that at some power the characteristic equation has a pair of roots,
~ and its complex conjugate Y'i, which are near the imaginary axis, i.e.,
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where € is small. Then, for values of s close to fl'l or fl'i, the expression for
H(s) can be given (approximately) by

H(s) '" Ho _ Ho ,
- (s - fl'l)(S- fl'i) - (s + €)2 + wg

where Ho is a constant. To determine the response of the system to the sinusoidal
reactivity perturbation op cos wot of frequency Wo, the value for resonance, the
procedure is the same as in §9.3b, except that Po R(s) is now replaced by H(s), i.e.,
compare equations (9.59) and (9.42). The result is

8P(t) t larg: -t op[H(iwo)etwot + H( - iwo)e-twot].

For €Iwo « I, however, H( ± iwo) = ± Ho/2iwo€, and hence

~) ) op Ho .oP(t t large -2 - sm wot.
. WOE

This expression shows that the power response to a perturbation at the resonant
frequency is proportional to liE";thus, for small E" the response would be large.
Moreover, at the resonance frequency the power change lags 90° behind the
imposed reactivity perturbation.

9.4e Stability and Reactivity Perturbation Frequency

The problems of stability and instability can be considered from still another
point of view. Since a system becomes unstable when the characteristic equation
(9.63) has a root for purely imaginary s, it is convenient to set s equal to iw;
the equation for instability is then

G(iw) = R(l. ) - PoF(iw) = iwA + "" . fliw A - PoF(iw) = 0, (9.64)
lw L lw + j

j

where II R(iw) and F{iw) are both complex functions of a reactivity perturbation
frequency w.

If for some value of w, represented by Wa, these functions i.e., l/R(iw) and
F(iw), have the same phase, i.e., the same ratio of real and imaginary parts.
there will be a value of Po for which G(iwo) = 0; this wiJl then represent an
instability.

Figure 9.11. for example, 'shows the variation of the phase angle 8 with
frequency for 1/R(iw) and for a hypothetical feedback function F(iw). For a
sufficiently large power, po. instability occurs at the frequency wo, where the two
curves cross; this represents the resonant frequency of the system. Since G(iw)
is then zero. the transfer function H(iw) is very large; as stated above. a reac-
tivity perturbation of frequency Wo will produce a large response at the given
power. At still higher power. the power oscillations would be predicted to
diverge according to the linear theory.



Since 1/R(iw) is a general function which, according to equation (9.43),
depends only on the prompt-neutron lifetime, .\, and the delayed-neutron
constants, $}, Aj, the behavior of its phase as w is varied can be readily deter-
mined. From equation (9.64), it can be seen that

[ I] ~ w
2p,

Re R(iw) = L w2 + A;,

1m [-R I. ] = w.\(IW)
~ wP,A,

+ / 2 \2
-..... W + '}
!

These functions are plotted in Fig. 9.11. \\ ith w as a variable parameter, for
.\ = 10-3

, 10-\ and 10-5 sec. The values of p, and ,\; used are those for
uranium-135, hut the results are qualitatively the same for other fissile nuclides.

It will be observed that thc cur\cs can be separated conveniently into two
parts. The part at the left. for the sm:.t11values of w. is independent of the
prompt-neutron lifetime and is determined b~ the characteristics of the delayed
neutrons: on the other hand, the part on the nght. for larger values of w, is
dependent on .\ and hence is governed h) the prompt neutrons. The frequencies
w" which separate the two parts of each curve, are very approximately at the
minima in Fig. 9.11, where (C.Imjcw) •••, = 0: it is found that. for uranium-235
as the fissile material.

~
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It is. seen from Fig. 9.12 that IIR(icu) lies in the upper right quadrant of the
complex plane. i.e .• both real and imaginary parts are positive. for all values of
(II > O. It follows, therefore. from equation (9.64) that for instability to be
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possihle. the feedback function F(iw) must lie in the same quadrant. HeftCe,
necessary conditions for instability are

It must be remembered that these conditions have been derived for linearized
theory and they also involve the assumption that the roots of G(s) start in the
left half-plane and move to the right at sufficiently large values of Po, as indicated
earher. It will be shown that the latter assumption is satisfied for many simple
fecdhack mechanisms but it may not necessarily be true for all kinds of feedback.

Accordang to linearized theory, therefore, a sufficient criterion for stability of
the s)stem is that for no value of w shall both Re [F(iw)] > 0 and 1m [F(iw)] > 0.
i.e .. the real and imaginary parts of F(iw) be positive. In §9.4i, analogous stability
criteria will be described for situations in which the reactor kinetics equations
are not Imearized.

It may be noted, incidentally, that for simple feedback models the roots of
the characteri~tic equation, with G(s) = 0, can be examined explicitly.a? Ia
m~ny models they are found to be roots of a polynomial and hence depend 011

Po in a continuous manner. Consequently, for these models, the criterion of
instability deri,'cd above, based on an examination of G(iw), can be justified
rigorously. One such model will be considered in §9.4f.



It has been seen that the resonance frequency (or frequencies) of a system
depends on the phase of th~ feedback function, F(iw). The phase will, in turn,
be affected by the time constants that are important in the physical feedback
mechanisms, e.g., time for heat to flow from the fuel to the coolant, time for
coolant to pass through the reactor core, etc. It follows that the resonance
frequencies will be of the order of magnitude of the inverse of the important
time constants. Some examples are given in the next section.

9Af Simple Models of Feedback

Consider the simple model, represented by equations (9.52) and (9.53), in-
which the fuel temperature increases promptly and the moderator (or other
reactor component) is then heated by the fuel. By taking the Laplace transform
of equation (9.58) it is found that

F(s) = FF(O) + FM(O) , ,

1 + ~ (1 + ~) () + ~)
Wy Wr WM

,where FF(O) and FM(O), the steady-state (s = 0) responses of the fuel and
moderator, respectively, are given by

For stable behavior of a reactor when operating at steady power. it is required
that F(O) < O. But if this is achieved primarily by having a large negative value
of FM(O), i.e .• large delayed feedback. there is the possibility that an instability
may occur. The reason is that. during the time required for the delayed feedback
to become effective, the imposed reacti'lt)' perturbation may change sign.
Hence it is possible for the feedback reactivit), to be in phase with the imposed
reactivity. thus enhancing the perturbation.

Suppose. for simplicity, that F..(O) :: O. so that there is no feedback from the
fuel; then from equation (9.65)

F.,(O)[I - ~ - ;(~ + ~)]
Fi(

' ) - ....,.,.,. Wy Q11l11
Iw - 5' 2

(I + ;;)( 1 +~)
Since it is being postulated that F ••(O) < O. the imaginary part of F(icu) will be
positive for all values of w > O. The real part. hoVtl.'VCt. will start out negative
for small values of 01, it will go throup lVO at CIJ - V••.•••••and will then
become positive for higher frequencies. Consequently, since both Re [F(iw)]

1
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and 1m [F(iw)] can be positive, instability can occur for negative values of F)I(O).
For practical cases, it is of course possible that the power level at which such
instability is predicted is so high as to be of no practical interest.

The general character of the plot of 1m [F(iw)] versus Re [F(iw)] with in-
creasing values of w is shown in Fig. 9.13; curve a refers to the case under
consideration in which there is no reactivity feedback from the fuel. The real
part of F(iw) starts at the left, i.e., it is negative, and becomes positive when
w > V WyWw. Since the imaginary part of F(iw) is always positive, it is seen that
instability can occur under these conditions.

On the other hand, for a sufficiently large negative fuel feedback, the plot of
the real and imaginary parts of F(iw), with increasing w, is indicated by curve b;
the system is then always stable to small perturbations of reactivity.

Suppose F(O) is negative, so that the reactor is stable at low power, but the
fuel feedback coefficient, Fy(O), is positive, i.e., Fw(O) is negative and 1F)I(O) 1

> Fy(O). The reactor can become unstable at higher powers, as in Fig. 9.13c.
This will now be shown explicitly by using equation (9.63) with F(s) replaced
by equation (9.65). For simplicity, only one group of delayed neutrons is
considered; thus,
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It will be assumed that A is small enough so that, for values of s of interest,
the term .\5 may be neglected, i.e., the zero prompt-lifetime approximation is

1m [F(iw)]

W = ./WFWtA
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made, and that WF is so large that 1 + s/wF may be set equal to unity; then
equation (9.67) becomes

G(s)::::: f3s .\ - Po [FF(O) ~ IFM(O)~ = O.
S + A 1 s+-

W

If the unit of time is chosen such that A = 1 and the unit of power is taken as
f3/IFM(O)I, it is found tha~

-.!..- - Po (E - _w_M__ \ = 0
s + 1 s + w:J

Fy(O)
E = 1 F)&(O) 1 < 1.

Upon multiplying by (s + 1)(s + wM), the result is

s2(l - POE) + s{wM[1 + Po(l - E)] - POE} + W),fPo(l - E) = O. (9.68)

Equation (9.68) has two roots, represented by [/1.2' given by

1
[/1.2 = 2(1 - POE)

x [-wM(l + aPo) ± \/w~(l + aPo)2 - 4wwPo(1 - PoE)(1 - E)] (9.69)

Let E = i and WM = i. so that a = - t; then equation (9.69) becomes

!l'1.2 = 8(1 _ !lp
o
) [ - (1- iPo) ± ,,/(1 - l por.! - ~Po(1 - ~Po)]

As the value of Po is increased from zero. the roots :/1 and .51'2 remain real and
negati\e until Po = 0.0962 when the square root term is zero; the two roots then
coalesce. At some" hat higher reactor po"ers. the square root is imaginary and
then !/1 and .C/ 2 are comple~ conjugates. \Vhen the value of Po is i. the roots
are pure imaginary. and then the system becomes unstable (Fig. 9.14). For
Po •••• 1.664, in the pr~nt case, the square root vanishes again so that the two
roots become identical. At stilI higher po\o\er :-/1 and .~ 2 are once more different
and real.

When the roots cross the imaginary axis, the ,·alue of 11m (s >1 is about 0.35;
this is of the same order of magnitude as UJ •• assumed for the calculations.
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FIG.9.14 ILLUSTRATIVE CALCULATION SHOWING CHARACTERISTIC ROOTS AND
ONSET OF INSTABILITY DUE TO POSITIVE FUEL FEEDBACK.

Hence, in this example, the typical frequency for resonance, when Po is slightly
less than 1, is comparaqle with the reciprocal of the decay time (~l/wM)'

Simple models of feedback, similar to the ones treated above, have proved
useful for understanding the important physical effects in the safety of fast
reactors 38 and boiling water reactors. Further reference to this matter will be
made later in connection with a discussion of the measured transfer functions
for such reactors.

For the realistic interpretation of the behavior of an actual power reactor,
much more detailed models of feedback must, of course, be used. The transfer
functions are then determined by means of an analogue or digital computer for
comparison with experiment. Nevertheless, simple models, such as those
described here, are useful for providing physical insight into some of the impor-
tant feedback mechanisms. For example, they suggest a danger of instability
when the primary feedback mechanism is a delayed negative temperature
coefficient aond indicate the desirability of a comparable negative prompt
coefficient.

9.4g Other Sources of Instability

When there is a time lag for fluid flow associated with delayed feedback, then
equation (9.53) may be replaced, at least approximately, by

d[~~;(t» _ b aT,(t - At} - w •• aT••(t).

where 6J is the time delay; ~T••(t) refers to time I and aT,.(t - At) to time



1m [FCiw)]

Re [F(iwl]

FIG. 9.15 RESONANCES AT SEVERAL HARMONIC FREQUENCIES DUE TO TIME LAG
IN FEEDBACK.

1 - 6.1. Instead of the second term in equation (9.65), with s replaced by iw,
it would be found that

. . F••(0)e-1wM

F••(IW) = ( .)( .)
1 lw 1 lw+- +-

wr. w••

and this can lead to instabilities similar to those described above.
If Fr(O) is positive, then combination with equation (9.70) can lead to a

variation of Re [F(iw)] and 1m [F(iw)] with frequency in the manner shown
in Fig. 9.15. There will then be several frequencies (or harmonics) at which
enhanced responses (or resonances) to reactivity disturbances will occur. The
fundamental resonant frequency for instability is then of the order of I I~1.

Another example of an instability mC1:hanism is that in which acoustical
modes or mechanical oscillations may sometImes be amplified to cause a'h
instability. In homogeneous reactors. there can be a gross oscillation of the
fluid fuel in and out of the core as the density of the liquid changes.39

9.4h Relative Importance of Delayed and Prompt Neutrons

In studies of reactor stability, two quite different approximations have some-
times been made. The first is the zero prompt lifetime approximation which, as
seen in §9.2f, is useful in some numerical schemes for wh'ing the reactor kinetics
equations. From Fig. 9.12, it is dear that this approximation will change
IjR(iw) only at high frequencies and it is expected, the~fore, that it would be
good for the study of low-frequency 'lability. i.e., with e.t < w, defined in §9.4e.



Another approximation is to neglect the delayed neutrons entirely. Then
l/R(iw) becomes equal simply t.o iwA ane is purely imaginary for all values of
w; this is certainly not a good approxidtion for low frequencies, and so it is
not useful except possibly for disturban~s of high frequency. The significance
of the approximation is that it often makes the system appear to be less stable;
hence, if stability can be demonstrated in the absence of delayed neutrons, the
system is usually even more stable with <klayed neutrons.

This may be seen by considering thetbehavior of F(iw) with increasing w.
The reactor is assumed to have a stea~state stability, so that F(O) < O. For
potential instabilities, as explained in §9.4c, F(iw) has to get into the upper
right quadrant of the plot of 1m [F(iw)];.gainst Re [F(iw)], i.e., both real and
imaginary parts of F(iw) are positive. In f>articular, with increasing w, the point
representing F(iw) must cross the 1m axi~ If it does so by crossing this axis with
1m [F(iw)] > 0, as in Fig. 9.15, then -if'/R(iw) is simply iwA there is an im-
mediate instability at some power. It is reasonable to believe that this will occur
at a lower power than will any possible .instability when delayed neutrons are
included. Hence, when crossing of the ~ axis occurs in this manner, delayed
neutrons will improve the stability; this situation is represented ~y curve a in
Fig. 9.16. •

If, with increasing w, however, F(iw) c~sses the 1m axis when 1m [F(iw)] < 0,
. as in curve b, the situation is quite diffe~nt. The system could be stable in the

absence of delayed neutrons, but it might be unstable with delayed neutrons ..40

From the practical point of view of reactor stability it would appear, therefore,
that the delayed ne!ltrons should not be neglected. An exceptional situation
arises in the treatment of very fast transl!nts for then the delayed.:neutrons play
essentially no part (§9.6a.). ~.

.~
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The results obtained above refer to stability in the small, i.e., when there are
arbitrarily small oscillations about some initial steady-state conditions. In these
circumstances the term 8p(t) 8P(t) could be neglected and the kinetjcs equations
were linearized (§9.2g). When variations of larger amplitude are considered,
however, the equations governing the stability are nonlinear; first, the whole
term op(t)[Po + 8P(t)] must be retained, rather than just setting it equal to
op(t)Po, and second, the feedback reactivity will no longer be relat~d in a linear
manner to the change in the power, as in equation (9.57).

When nonlinear effects are taken into account, the results o~ the stability
analysis may be quite different from those for a linearized model. A system
which was stable for small oscillations about Po might be unstable for power
variations of large amplitude. A simple situation of this kind would occur if the

_. oscillations carried the react{}f-to a higher power PI at which it is_unstable for
~mall oscillations. On the other hand, a system exhibiting instabilit~ in the small

may have its oscillations bounded by nonlinear effects and the bounds may be
such as not to endanger the reactor operation.~ -

As mentioned earlier, nonlinear feedback can lead to various typ~s of stability,
including asymptotic stability and Lagrange stability (§9.4a). These-two kinds of
stability may exist only for perturbations within some limited range of param-
eters; such stability is then said to exist within a particular domain.

Several approaches have been made to the solution of the probl~ of stability
based on nonlinear kinetics equations. but none is really satisfactow-. In the first
place, attention has generally been limited to linear feedback, as.expressed by
equation (9.57), and so the only nonlinearity has been in the term

r-
~

Second. the various conditions which ha\e been deri\ed with 'gard to the
feedback function F(iw) are sufficient to insure stability but they ar~ot necessary
conditIOns. ThIS means that the stabilit\ conditions found can be too restrictive.. .
Finally. it has been seen that a typical mode of slabtlil) in the linear model will
have a power threshold below which the reactor is ~tahle. Some of the conditions
on F(iw) for nonlinear kinetics have been derl\ed for all powers and-do not take
this threshold beha\ ior into account. '

In an attempt to deri\c stability conditions for all powers. it has been shown!l
neglecting delayed neutrons, that a system would be asympt\ti~lly stable
provided ",,-

Re (F(iw)] < 0 for all w. ..._

Furthermore. it has been demonstrated U that delayed neutron'do not alter
this criterion. This stability condition is seen to be consistent witt!Phe results of
linear theory which indicated (~9.4c) that there would be stability i_ [F(iw)] < 0
or if Re (F(iw)} > 0 and 1m [F(,e.,» < O. As d~ri\'ed. the &>'Odition that



Re [F(iw)] < 0 for all w is sufficient but not necessary for stability; from
linear theory it may be suspected that this is overly restrictive.

A method has been described for predicting instability bounds for systems
which are stable according to the linearized theory.43 Information of this type
should be useful in indicating the limits of validity of the results obtained by the
use of linear models.

A possible procedure for assessing the stability of a system governed by
nonlinear differential equations is to use the second (or direct) method of
A. M. Liapunov.44 In this approach, a Liapunov function is sought which is a
generalization of the energy for a mechanical system in the sense that it must be
a positive definite function of the variables, i.e., power, temperature, etc., and
possess a negative definite time derivative. If such a function can be found, then
for the range of variables in which the function exists the system will be
asymptotically stable. The Liapunov function has been derived for certain cases 45
and SOrT ~ special treatments have been developed for improving on the results
obtained by the Liapunov direct method.46 There is, however, no general
approach to the determination of the Liapunov functions.

From the practical standpoint, nonlinear stability analysis has proved to be
much less important than the analysis of linear models. For one thing, nonlinear
analysis does not lend itself to general experimental verification. On the whole,
studies of nonlinear feedback have indicated that the results obtained from
linear theory are not likely to be misleading when applied to problems of
reactor stability. In particular, if a reactor is operating in a region of power,
temr~rature. and flnw conditions for which stability is well assured according to
the Itneariled equations. it is unlikely that nonlinear effects willlead to instability.
It should be realized. however, that when a linearized model predicts instability,
an analysis of the nonlinear system must be considered before the physical
con~equences of the instability can be understood.

Se••'eral e\perimental techniques have been used for measuring the transfer
function. If(jw}. and thereby in\'estigating the feedback and stability of operating
reactors. By comparing the e~perimental results with calculations of the am-
plitude and pha~ as a function of frequency, it is possible to check whether the
reactl\it} feedback is more or less as expected from the design. Furthermore,
Inclpt~nt an~tablhtin can be detected by the existence of resonance peaks in the
amplitude of the transfer function observed at low power.t7 Provided the feed-
back mcchani'm' do not change abruptly with the power, conditions which
Yfould be hazardous. at hi&h power can then be corrected. In addition, it is



possible to detect the malfunction of a reactor component by observing a change
in the reactor transfer function.48

At the present time it is consequently the common practice to determine the
transfer function of a reactor before it is operated at full power. Among the
most important methods employed for this purpose are those based on reactor
oscillator experiments and on what is known as spectral correlation. These
techniques are described below.

9.Sb The Reactor Oscillator Method

The simplest method conceptually for measuring the transfer function of a
reactor is based on equation (9.47). Although this expression was derived for
a system without feedback, it can readily be shown that it is applicable to a
reactor with feedback with H(iw) replacing PoR(iw). The reactivity is subjected
to small sinusoidal oscillations, for example by the in-and-out motion of a
control rod; the resulting changes in power, both in amplitude and phase,
relative to the imposed reactivity variation, are then measured as a function of
the frequency of the variations.49 The reactivity oscillations must be small so
that the linearized kinetics equations are applicable. Spatial effects may also
have to be taken into account, as discussed in §9.3c, but they will not be
considered further here.

In the employment of the oscillator method (or experiment) some interesting
problems arise. First, no matter what kind of instrument is used for measuring
the reactor power level, e.g., a neutron detector, it wiII not give a perfectly
steady reading but will exhibit small statistical fluctuations. Consequently, if a
clear signal is to be obtained on the detector. the reactivity variations must be
substantial; they must not be so large, however, as to invalidate the linear
analysis or to perturb the flux sufficiently to make the point-reactor model
inapplicable.

Second, the reactivity variations achieved by the movement of a control rod
are not perfectly sinusoidal: hence, various harmonics of the fundamental
frequency will be excited. To avoid the difficulties arising from the presence of
these harmonics, a Fourier analysis can be made of the output in order to
determine the fundamental response only.

In fact, the Imposed reactivity variation does not even have to be periodic,
provided it ex.cites a broad band of frequencies in the output. It can be seen
from equation (9.60) that if bpn{r) could be made a Dirac delta function, then
the impulse response function h(r) could be derived directly from oP(t). The
transfer function, H(s), would then be simply proportional to the Laplace
transform of SP(r). The difficulty in applying this method of obtaining the
transfer function is that it is impossible physically to realize a delta function
change in reactivity. By the use of the cross<orrelatioflmethod, described in the
next 5Cction, it is possible, however. to simulate a delta function and thereby
determine transfer functions in a relatively simple manner.
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9.5c Correlation Methods

The input reactivity and output power of a reactor are related by the convolution
int~gral in equation (9.60). This can be extended to allow for reactivity variations
at arbitrarily early times by writing

oP(t) = J~ a)0Pex( -r)h(t - -r) d-r = Joa) 0Pex(t - -r)h( -r) d-r,

where, as before, the transfer function, H(s), is the Laplace transform of the
impulse response function, h(t).* Equation (9.71) forms the basis of the cross-
correlation experiments for measuring h(t) or H(S).50

The autocorrelation of a function x(t) is defined by

I JT9'xx(-r) == 2T -T x(t)x(t + -r) dt

I JT9'xi-r) = 2T -T x(t)y(t + -r) dt,

where, if the functions are periodic, T is the period, and if they are not periodic,
then the limit is to be taken as T -+ 00. With these definitions, it follows that

9'xxC -r) = 9'xxC - -r) and 9'xi -r) = 9'l/xC - -r).

In particular. the cross correlation between reactivity and power is

9'op(-r) = 2
1
TJ~T 0Pex(t) oP(t + -r) dt = 2

I
T J~T 0Pex(t - T) oP(t) dt. (9.74)

Upon using equation (9.71) and rearranging, this becomes

ct'op(T) = 2
1
Tf~T 0Pex(r - -r) [faa) 0Pex(t - u)h(u) dU] dt

= Joa: h(u) [21T J:T oPex(t - -r) oPeir - u) dr] du

= fo<Xl 9'OD(-r - u)h(u) du,

where u is an integration variable. If this result is compared with equation (9.71).
it is seen that the cross correlation between reactivity and power is related to

• In order to obtain the desired relation apes) = ap•• (s)H(s), it is here necessary to take the
two-sided Laplace transform, i.e., with the integration limits between - co and co. or the
Fourier transform, because reactivity variations at all times prior to the time t are included in
equation (9.71). It should be noted that since h(-r) must be zero for negative T. the lower limit
in the second intearaJ in equation (9.71) may be set to - co. in which case the intqraJ has the
typical convolution (or faltung) fonn for Fourier transforms.



the reactivity autocorrelation, CPPIl> in exactly the same way as the power response
is to the change in reactivity. Upon taking the Fourier transform (see footnote
on p. 511) of equation (9.75), it is found that the transfer function is given by

is called the cross spectral density and the corresponding expression for ff{cppp( T)}
is referred to as the reactirity (or input) spectral density.

In the application of equation (9.76) to the experimental determination of the
transfer function of an operating reactor,51 the reactivity is varied over a narrow
range in a random manner by the insertion and removal of a small neutron
absorber; the corresponding variations in the power are recorded. * The
reactivity autocorrelation function, rpop, at time t, is obtained from the values of
SPeit) and Spex{t + T) for a series of delay intervals T increasing in discrete
steps of ~T, about 0.01 sec. The cross correlation function rpop is derived in a
similar manner from measurements of SPex{r) and SP(t + T). The integrals in
equations (9.72) and (9.73) are then evaluated numerically; the integration (or
equivalent summation) is carried over the period of observation, usually 5 min
or so.

The Fourier transforms of rpop and f{-jlP which appear in equation (9.76) are
determined by numerical techniques. Thus. equation (9.77) for the cross spectral
density may be written as

J{lfOp(T)} ::: "5 'Pop(n ~T)(COS nw ~T ..•. i sin nw ~T) ~T,.....-
rt

where n is an integer ranging from large negative to large positive values. A
similar expression is applicable to J\lf •.•,,(1 )l. Smcc both real and imaginary
parts of the Fourier transforms can be determined In this manner, it is possible
to obtam bllth the amplitude and phase of the transfer function for a series of
values w.

A simplification of the foregoing procedure can be achieved by making use of
reactivity inputs Sp •.• (r) which have autocorrelation functions resembling Dirac
delta functIOns. Almost any broadband (nOise) input signal will satisfy this
requirement; in particular, if 0Pn is made to auume positi\e and negative values
at random times, then

, I
II ',I
j

ri! .-

'j',:
~5



where A is a constant and O{T - u) is a delta function.52 For this kind of
reactivity variation, it follows from equation (9.75) that

eppp(T) ~ Ah(T)

~{eppp(T)} ~ AH( -iw).

Consequently, both the amplitude and phase of the reactor transfer function
can be computed as a function of w from the cross-correlation data alone.

Experimentally, it is neither possible nor necessary to provide a strictly
random reactivity input through the motion qf an absorber. In fact, it is con-
venient to use a periodic inpu,t which changes from positive to negative at
definite times, so that the reactivity autocorrelation function is nearly a delta
function.53 Such a reactivity input, which is called a pseudorandom binary
signal, has been used for the measurement of transfer functions.

A particularly simple method for determining the amplitude, but not the phase
angle, of a reactor transfer function depends on the observation of reactor
••noise." This refers to the more-or-less random variations in the power that
take place continuously during the normal operation of a reactor. All nuclear
processes have a statistical basis and the actual neutron population in a reactor
will be fluctuating about the average value. Moreover, there are usually minor
fluctuations in temperature and in densities, such as those associated with bubble
formation in a boiling water reactor. These variations will affect the reactivity
and hence generate reactor noise. In the following, it will be convenient to regard
the power fluctuations as being induced by unspecified random variations in
reactivity.

To relate the noise to the transfer function, consider the autocorrelation
function of the power; this may be written as

I fT (00 (GO
cppp{T) = 2T _T dr Jo h(u) SPex(r - u) du Jo h(l') SPu(t + T - v) drJ

== folIO h(u) du foGO h(v) dV[2
1

Tf:r Speir - u) Spu(t + T - v) dt]
- fo· h(u) du folIO h(v) dv[cppp(T + u - v)).



IH(iw)12 = ffttppp( r)}.
ff{cppp( r)}

The square of the magnitude of the transfer function is thus equal to the ratio
of the power and reactivity spectral densities derived from the respective auto-
correlation functions.

The power autocorrelation is in principle obtained quite easily; all that is
required is an accurate recording of the reactor power. From this, values of
oP(t) and oP(t + r) can be obtained and hence cppp( r) can be ca1cula ted; the
Fourier transform is then derived in the manner already described. The fluctua-
tions in the· reactivity, being of internal origin, cannot be measured. If these
variations are random, however, cppo( r) is expected to be equivalent to a Dirac
delta function in time; hence the Fourier transform is a constant. The amplitude
of the transfer function can then be determined directly from the normal
fluctuations of the reactor power, i.e., the reactor noise.54

The noise method has the great virtue that measurements of the transfer
function of a reactor can be made without interfering in any way with normal
operation. In this way, the stability can be monitored continuously. The draw-
backs are that unless the reactor is noisy, i.e., exhibits substantial inherent power
fluctuations, the variations may be so small as to give inaccurate values of
(H(iw)l. The assumption that ~[epoo( r)] is constant may also introduce errors.
Moreover, only the amplitude, but not the phase, of H(iw) can be evaluated
from the reactor noise. Finally, there is the problem that the reactor power must
be measured with a detector which itself will introduce some noise into the
measurement 55; corrections must thus be applied for the detector noise.
Experiments have been reported in which correlations between the outputs of
two detectors were used to monitor continuously the reactivity of a reactor in a
subcritical state.56 This approach appears to have advantages over the single
detector correlation method described above.

Two examples of measured transfer functions which indicated possible reactor
instabilities at sufficiently high operating powers are of interest. The first
example is concerned with one of the early fast reactors, the Experimental
Breeder Reactor-J (EOR-J); incidentally, the determination of the transfer
function in 1955 was one of the first of such measurements to be made with a
reactor. Under certain conditions, an oscillatory behavior of the power was



observed in the Mark II core of the reactor. Consequently, the transfer function
was determined under a wide variety of conditions, using the oscillating-rod
technique. Some of the results are reproduced in Fig. 9.17; they refer to three
operating powers at a constant flow rate (95 gallons/min) of coolant.57 In agree-
ment with the arguments presented earlier, the reactor is stable at low and
moderate powers, but a pronounced resonance, suggesting the approach of
instability, appears at a higher power.

Power oscillations that precede the onset of this instability are inconvenient
but not necessarily hazardous. In the case of the EBR-I, the frequency at the
resonance was about 0.2 radian (0.03 cycle) per see, as seen from Fig. 9.17.
Hence, the period was approximately 30 sec. An oscillation of this frequency
can be readily controlled by the normal operation of the control rods, especially
if they respond automatically.

The physical causes of the resonance (or instability) in the EBR-I have not
been completely elucidated, but it is known that the reactor had a prompt
positive fuel feedback coefficient and a larger negative delayed coefficient. As
seen in §9.4f, this situation can lead to instability at a sufficiently high operating
power. The prompt positive coefficient is believed to have been caused by
bowing of the fuel rods toward the center of the reactor, where the fission rate
and temperature were above the average values. The delayed negative feedback,
on the other hand, was probably due to mechanical motions of the plate support-
ing the fuel rods.58 Since the bowing of fuel elements could occur in a reactor
of any type, thermal as well as fast, precautions are taken to minimize it.
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It should be mentioned that the partial meltdown of the core of EBR-I,
Mark II, which occurred in 1956, was not due to the instability referred to above.
The overheating developed during an experimental power excursion and was
caused by a combination' of circumstances which could have been avoided. 59

However, because of the meltdown, it was not possible to examine the feedback
mechanisms in this case.

The Experimental Boiling Water Reactor

In boiling water reactors, the formation of steam voids represents an important
feedback mechanism whereby the reactor power affects the reactivity. In the
early consideration of such reactors,60 it was accepted that they should be
designed so that formation of steam voids would decrease the reactivity. It was
feared, however, that because of the time delays between power generation and
bubble formation, the reactor might exhibit instability or oscillatory behavior

. (§9.4g).
Measurements of the transfer function were made on the Experimental Boiling

Water Reactor (EBWR), a heterogeneous reactor moderated and cooled by
ordinary water, with natural (convection) circulation. Some of the results
obtained, at an operating pressure of 550-600 psig. are shown in Fig. 9.18;
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there are indications of a resonance at a power close to 20 megawatts, and it is
quite marked at 50 megawatts. Fairly good agreement with the observed transfer
functions was obtained from calculations based on feedback mechanisms
arising from various effects, including the formation of steam voids.61

The resonances in Fig. 9.18 occur at frequencies in the vicinity of 10 radians
(1 or 2 cycles) per sec; the oscillation period is thus 0.5 to 1 sec, which may be
too short to be controlled. Hence, the design or operating conditions of a
reactor must be adjusted to avoid the instability.62 Fortunately, it is possible to
design boiling water reactors so that these instabilities do not occur even at high
power, and currently such reactors are operated at power levels up to 1000
megawatts.

In addition to the oscillations referred to .above, as implied by the transfer
function, spontaneous power oscillations of small amplitude were observed in
the EBWR at about the same frequencies. But they presented no hazard during
operation and they are not important in modern boiling water reactors.

Large power excursions are of interest in a variety of situations, both real and
hypothetical. 63 These include (a) pulsed reactors, such as Godiva, TREAT,
and TRIGA. (b) intentional large increases in reactivity, as in the SPERT,
BORAX. and KEWB tests, and (c) the analysis of postulated reactor accidents.
In all of these cases a system is brought rapidly to a state above prompt critical,
so that the neutron population then begins to multiply at a rapid rate. The
normal cooling cannot remove the heat being generated and so the temperature
rises until some compensation sets in that reduces the reactivity to zero, thereby
terminating the excursion. In practice, the manner in which the reactivity is
reduced may depend in detail on the reactor design and on the rate at which
the neutron population (and power) increases. Hence, for computing the
reactivity reduction. a point-reactor model may not be adequate. Nevertheless
some useful conclusions can be drawn from such a model of the excursion in
which the reactivity reduction is included as a simple feedback parameter. This
treatment is sometimes known as the Fuchs-Hansen model,64 although similar
concl usions were reached independently. 65

Suppose that the reactivity is suddenly increased, i.e., as a step function, thus
bringing the value to p' above" prompt critical, i.e., p' = p - fl, where p is the
actual reacti"ity. The assumption is now made that the feedback reactivity is
proportional to the energy generated. Since the response to the sudden increase
in reacti\'ity is fast, it is justifiable to neglect the delayed neutrons while the
transient is under way; hence. equation (9.8) becomes

dP(t) = p(t) - P P( )
dr A r ..



p(t) - ~ = p' - yE(t) = p' - y f~P(t') dt',

where y represents the energy feedback coefficient and E(t) is the total energy
generated between time zero and time t. Upon combining equations (9.80) and
(9.81), the result is

dP(t) = P(t) [ao - b (t P(t') dt'],
. dt Jo

,
ao =!!.- and b = 1..A A

It will be noted that at t = 0, dP(t)/dt = aoP(t), and hence ao is the initial
multiplication rate constant.

Equation (9.82) can be solved in closed form (see §9.7 for the solution); it is
found that

A number of interesting results can be derived from these solutions. In a
pulsed reactor. it is the general practice to start from a low power in order to
obtain a good approximation to a step function increase in reactivity. By starting
from a high power, it may not be possible to add reactivity fast enough to do
this. If the initial power is low, however, it is easier to increase the reactivity
before the feedback term, i.e .• yE(t) in equation (9.81), becomes appreciable;
there is then effectively a step increase in the reactivity. In fact. it has been found
experimentally.66 in agreement with theory,87 that a pulsed system, such as the
Godiva device of unretlected uranium-235 metal (§5.4c), can be operated with
such a weak neutron source that there is a high probability of assembly to a
prompt critical state before a divergent chain reaction begins.



If, therefore, the power is assumed to be low before the reactivity is increased,
c ~ 0:0 from equation (9.85), and then from equation (9.86)

20:2
A ~ bP: » 1.

It is seen, therefore, from equations (9.83) and (9.84) that, at early times, E{t)
and pet) increase exponentially with time in proportion to eaot• The power then
reaches a maximum at a time which can be found by setting dP{t)Jdt equal to
zero, I.e.,

dP{t) 2c3A e-ct[Ae-ct - 1]
--=------=0dt b [Ae-ct + 1]3 .

Hence, the power is a maximum when

Ae-ct = 1,

In A In Atp = --~ -_.
mu C 0:0

The value' of the peak power is thus found from equation (9.84) to be

'" o:~ (p'?
Pmax '" 2b = 2Ay'

At late times. beyond the maximum, the power decreases exponentially as
e - Qat; the power pulse (or burst) is, therefore, approximately symmetrical in
time. The po"cr does not drop directly to zero but it tails off because of the
fissions due to delayed neutrons, which have been neglected in the foregoing
treatment. The contribution of these neutrons can be determined by calculating
the number of delayed-neutron precursors produced during the prompt pulse
and treating their decay as a neutron source at late times.58

The total energy released up to the time the power reaches its peak va:ue, i.e.,
at the time gl\en hy equation (9.87). is obtained from equation (9.83) as

The total energy generated is the value at asymptotically large times, namely,

20:0 2p'£(t) ) - =_.
'-Ill b y

This again JndiC3tes the symmetry of the power pulse, apart from the effect of
dd~)ed ncutrc..lns.

The resultl dncribed above have an important bearing on the problem of
reactor accidents arilin. (rom sudden reactivity excursions. In an excursion
startin, at a low Opcratinl pov.-er, the total energy release, as just seen, is 2p'/'Y,



and is thus independent of A, the prompt-neutron lifetime. The essential
parameters are then the excess reactivity and the feedback coefficient, and it is
immaterial whether the reactor is thermal (A ~ 10-4 to 10-3 sec) or fast
(A ~ 10-8 to 10-7 sec). The peak po~er, on the other hand, is inversely
proportional to the prompt-neutron lifetime. This indicates that the peak
pressures and accelerations, caused by material expansion, would be much
higher in a reactivity excursion in a fast reactor than in a thermal reactor even
though the energy releases may be comparable. In fact, in some models, the
peak pressure is found to be propor~ional to dP/dt and hence, approximately,
to (p')3/ A2y; it is thus strongly dependent on the neutron lifetime.

It will be observed that the peak power, peak pressure, and total energy
released in the excursion are all inversely proportional to y, the energy feedback
coefficient. From the point of view of reactor safety, it is desirable therefore that
the system should have a large (negative) energy coefficient of reactivity. Since
the temperature increase will be roughly related to the total energy release, this
means a large negative reactivity temperature coefficient will tend to minimize
the consequences of a reactivity excursion.

Although the foregoing discussion has referred in particular to a sudden (or
step) increase in reactivity, it is also applicable, under certain conditions, to
ramp reactivity excursions, i.e., in which the reactivity is increased at a constant
rate. If the system exceeds prompt critical before the reactivity feedback becomes
appreciable, then the behavior is similar to that for a sudden excursion.59

The model described above has the ad,'antage of containing only two param-
eters, namely, uo( = p', .\) and h( = y'.\). Because of its simplicity and physical
content, it has been used extensively for the interpretation of pulsed reactor
experiments.-:o A good example is provided by Godiva II. a critical assembly of
bare. highly enriched uranium (about 93.50-0 uranium-235) metal. By means of
adjustable rods of the same material. the reactl\lt} can be increased suddenly by
specified amounts. thereby causing a power excursion. This is terminated by the
increase in temperature causing the fuel to ex.pand, thus decreasing its density.
The resulting decrease In the macroscopic cross sections produces a negative
feedback of reactl\ ity "hich makes the assembly subcritical within a short time.
The power production (or fission rate) is determined as a function of time by
neutron and gamma-ray detectors; the value of ao is calculated from the initial
increase in the fission rate.

The results of a series of pulse ex.periments with Godiva II are shown in Fig.
9.19 for the various Indicated values of I 'ao. the initial reactor period.71 The
time. at \\ hich the power max.imum is attained is approx.imately inversely pro-
portional to Uo and the maximum power is roughly proportional to ~. as
required by equations (9.87) and (9.88). There is some deviation from theory
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fpf the rn\'fe \I\'lent e\cursions. with ao greater than 5 x 10" sec-1 (i/ao less
than ~O .1'''o(."C l. tll "hlch reference will be made below. The power pulses are seen
t,1 be r"u~hl~ \~ mmetncal about the maximum except for late times when the
dela)C'd neutwn, r.ecome important.

The: hltal ('nerg~ generated per pulse was computed both from the increase in
temperature and the total activity induced in sulfur by the (n, p) reaction. The
resulb are rll)tted. on Imear ~Ies. in Fig. 9.2072; the circles are experimental
p<llnh and the full Ime is deri"ed from equations (9.88) and (9.89) as 4Pmu/ao.
The a~rccmcnt bct-.een o~n·ation and the simple theory is seen to be good up
to CI.o \aluC1 of about S x 10· see - 1, The deviations for more violent excursions
arc due to locrtlal etrC'Ct~-. hJch slow down the expansion; in other words, the
c~panSJon. and hence the auociated negative reactivity feedback, lags behind
the kmperalurc of the fuel. This time delay may be expected to be significant
••hen J'CI.g Ii comparable to (or less than) the time required for a sound wave to
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cross the assembly. The effect of inertia is thus not noticeable until the initial
reactor period is small, less than 20 fLsec for Godiva II.

As a result of the time delay between the energy release (or temperature
increase) and the expansion of the assembly, the duration of the pulse is longer
than expected in the absence of inertial effects. Consequently, the total energy
generated will be appreciably greater than the value indicated by the theory
developed in the preceding section. That this is the case is shown by the data in
Fig. 9.20. The dashed curve in the figure, which is seen to agree well with the
experimental results at the higher values of no, was obtained by applying an
approximate correction based on the estimated mechanical vibration period of
the as~mbly. This is essentially the time required for a sound wave to traverse it.

9.6c Analysis of Fast-Reactor Accident

From the results given earlier, it is evident that, because of the much shorter
neutron lifetime, the peak powers and pressures accompanying a reactivity
excursion in a fast reactor can be very much greater than in a thermal reactor.
Furthermore, a fast reactor contains so much fissile material that if the coolant
could be removed and the core compacted by melting to fill the resulting voids,
several critical masses would be present. In some circumstances there might
conceivably be an explosion resembling that of an (inefficient) atomic bomb.
For these reasons, there has been much interest in estimating the maximum
credible explosions that might result from a fast reactor excursion.



In such studies, consideration is given to quite violent accidents. For example,
a complete loss of coolant might be postulated; the reactor might then shut down
but heating accompanying decay of the fission products could lead to melting
of the fuel. This might be followed by collapse of the core into a compact
highly supercritical configuration under the influence of gravity. Clearly, the
course of such an accident could not be predicted in detail, but in order to discuss
the subsequent excursion it is necessary to specify only a few important proper-
ties of the collapsing system. In particular, these are the gross geometry, the
initial power level, and the rate of reactivity increase during the supercritical
phase.

To see how the last two of these factors are involved, consider the collapsing
core as it approaches prompt critical, at t = O. At this time, the power level is
possibly very low, and it must build up to a much higher level before feedback
effects can be felt; during this time the system will become highly supercritical.

In order to determine the extent of the supercriticality, the delayed-neutron
precursors can be omitted from the kinetics equations, as in the preceding
section. because the times are so short. Hence, equation (9.80) is applicable and
it may be written, for simplicity, as

If the reactivity is increasing in a linear manner with time, and since the system
is (prompt) critical at r = 0, it follows that

where p ( = JpIJr). the rate of increase of reactivity, can be estimated from a
model pf the collapsing core. A solution to equation (9.90) is sought for r > 0
in term, of the initIal power level. P(O), which is the value at prompt critical.
Equatll'n (9.lX»)can be e:<pressed as

dP p
- = - r dlP A

Sup~~ the f«dback is negligible until the total energy generated is £1. If
thl' encrg) h4U been produced by time I h the corresponding reactivity is then



where t1 is defined by

£1 = J:l P(t) dt = P(O) I:l eXP(iA t2) dt.

In order to approximate the integral on the right of this equation, represented by
I, let

dudt =-.2vU
The integral thus becomes

I = ~s:rexp(iA u) ~.
Repeated integration by parts then gives

I = ~ [exp (-1-. tt) - 1][I + ~2 + ... J .
pl1 2A pt1

Since the exponential term is very large, equation (9.93) can be written as

E ,.."P(O)A exp (..L (2) •
1"'" pl

1
21\ 1

A rough approximation to 11 can. be found by taking the logarithm of equation
(9.94), writing the result as

'). 2A [E1P ]
11 = -;; In P(O)A + In II '

and solving by iteration as follows. The term in lion the right is first ignored
and the result is then substituted in In lIt and so on. The second approximation,
neglecting the In In term, is

I{ ~ ~ [In (P~~A)1·
If this is inserted into equation (9.92), it is found that

This is the excess reactivity, above prompt critical, that is reached when feedback
becomes significant. It is seen to vary roughly as the square root of the neutron
lifetime and of the rate of reactivity increase. but it is relatively insensitive to £1
and P(O). For some typical postulated fast reactor accidents, P(11) - P may
range up to about a dollar in reactivity. i.e .• P(11) ~ 2/1.



To analyze the excursion further, feedback mechanisms must be postulated.
As a rule, the Doppler coefficient of reactivity is about the only temperature
(or power) coefficient which can be relied upon in the partially molten and
collapsing state of the reactor core. Consequently, if there is a Doppler coefficient
(§8.4e), it should be taken into account, since it may have an important effect
on the progress of the fast-reactor accident.73

In the Bethe-Tait analysis,74 it is postulated that there is no feedback mechan-
ism, except perhaps for the Doppler effect, for reactivity reduction until the
total energy generated in the core reaches a critical value, E*; then the core
material begins to vaporize. As further energy is added, more material is
vaporized, thereby building up a pressure which tends to expand the core. With
the increase in volume, the reactivity is d-ecreased and the excursion is eventually
terminated. The course of the excursion has 'been estimated by using perturba-
tion theory to predict the reactivity changes due to material motions caused by
pressure gradients, and hydrodynamic equations to evaluate these motions.
From this treatment approximate results have been obtained in closed form.75

Subsequently, these results were improved upon by numerical calculations using
coupled neutronics andhydrodynamics.76

The important parameters for a severe accident, which have also been found
to be significant for more moderate accidents, can be derived from relatively
simple dimensional arguments. Consider a system which has achieved some
degree of excess reactivity, ti.p, given approximately by equation (9.95) for
£1 = £ •• where feedback commences. For the present treatment, the Doppler
effect is assumed to be absent. As the energy approaches E*, the power and
energy release are increasing as exp (t ti.pl A). During the accompanying expan-
sion. there is insufficient time for any further increase in reactivity; hence, the
reactivity may be assumed not to become larger than ti.p. When the energy, E,
exceeds £-. its value is given by

where £ •• £. when 1 = r-.
Suppose that the pressure. p. near the center of the core is proportional to

£ - £-; for a very severe accident, however, £» E*, so that at times when
the pressures are large

p oc E ex:. exp (~ 1) •

If R is the initial radius of the assembly, i.e., when 1 = 1*, the pressure gradient
tmdan. to blow the core apart is roughly proportional to pI R, that is,

p 1 (AP)IV,I ex: - ex:. - exp - t .R R A



This pressure gradient produces radial accelerations, such that

_ I I Cl (llp)rOC Vp = R exp At,

where Cl is approximately constant. Upon integrating this expression twice and
neglecting small quantities, it is found that

The expansion eventually decreases the reactivity to zero; hence, the excursion
is largely terminated when r has undergone a fractional increase proportional
to IIp, i.e., when

r = R(1 + C2llp),

where C2 is a constant. From equation (9.96) it is seen that this happens when

exp (D.P t) = C2(llp)3R2.
A Cl A2

At this time, the energy generated will be

(llp)3R2

E oc A2 .

It will be noted that, in the present model, the energy generated is proportional
to A - 2, whereas in the Fuchs-Hansen model the energy release, given by
equation (9.89), is independent of .\. The reason is that in the latter case the
reactivity was assumed to change as soon as energy is generated without any
account being taken of delays due to inertial effects; hence, the excursion was
terminated when a certain amount of energy was released, regardless of the
value of .\. In the Bethe- Tait model, however, inertial effects are assumed to be
dominant; the reactivity cannot decrease until the pressures have had time to
move material and during this time additional energy will have been generated
and the amount depends on A. The circumstances will, of course, determine
which of the two models is to be preferred.

Although the arguments used in deri\<lOg the result in (9.97) are not
rigorous, detailed numerical calculations 7'7 have indicated that the propor-
tionality gi\en abo\e is quite good for SC'OCfC accidents. For mild accidents, the
Bc:the-Tait model predicts that

(.£_) [(~p)3R~1J.
£. 1 ex: At -J •

and results of numerical computations of the energy haYC indicated thal this is
qualitatively correct. The same paramcten are thus involved in both mild and
seven: fast-reactor accidents..



For fast reactors having comparable values of R, the main parameters
affecting the severity of an accident are l:1p and A, in the combination (l:1p )3/ A2•
According to equation (9.95), l:1p is roughly proportional to ~; hence

(l:1p)3 (iJ)3/2
-- ex:: --.A2 VA

.It follows, therefore, that the rate of reactivity increase is the single most impor-
tant factor in determining how serious a fast-reactor accident might be. It is,
however, one of the most uncertain and arbitrary aspects of a postulated
accident of this kind.

In designing structures to contain a maximum credible fast-reactor accident,
it is important to know how much of the fission energy is released as kinetic
energy and how much as internal energy. These qualltities must, therefore, be
calculated for a detailed hazards analysis. It happens that they appear as a
normal part of the numerical calculations 78 and they can also be estimated
from the Bethe-Tait analysis.79

In connection with the hazards analysis of the Fermi fast reactor, for example,
calculations were made of the energy release to be expected for several high
rates of reactivity increase.8o For a uniform collapse of the core under the
action of gravity, the Bethe-Tait approach indicated a possible total energy
release of about 6 x 108 calories, which is equivalent to 600 kilograms of con-
ventional (chemical) high explosive, for an initial operating power level of 100
megawatts.

In order to solve equation (9.82), let

ao - b f~P(r') dr' = yet},

dy and d2y -b dP(t).
dt = -bP(t) dt'J = dt



The constant c can be found by noting that initially y(O) = ao and dyjdt = -bPo•
It follows, therefore, that

c = Va~ + 2bPo.

1
y = u(t) + c,

equation (9.98) can be converted into the linear form

du 1- + cu = --,dt 2

1 '
u(t) = u(O)e-ct - - (l - e-ct)2c

1 (1 c + tto -ct)= -- + . e ,
2c c - ao

where use has been made of the initial condition on u, namely, u(O) = I/(ao - c).
Hence, y can be determined and E(I) is found to be given by equation (9.83).

1. Show that equation (9.1) is obtained when equation (9.3) is solved for CJ and
the result is inserted in equation (9.2).

2. Carry out in detail the derivation of equations (9.8) and (9.9).
3. Prove that for six groups of delayed neutrons equation (9.26) has seven roots,

WI" of which six have negative values.
4. Derive equations (9.27) and (9.28).
S. Verify equation (9.47) by inverting the Laplace transform and retaining the

transient terms.
6. Calculate the amplitude and phase angle as a function of frequency, for the

zero-power transfer function, assuming one group of delayed neutrons with
p 00: 0.0070, A == 0.08 see - I, and A ••• 10- 4 sec. Compare the results with those
in Fig. 9.3.

7. Compute the transfer function H(iw) for the model on p. 504 with Po = 0.25
and 0.5. Plot the results as a function of wand discuss them.

8. Derive equation (9.78).
9. Derive equation (9.96) and verify that the neglected temu are small; assume

that r =- Rand d,/dt - 0 when' - ' •.
10. Suppose that just after the prompt-neutron bunt described in §9.6a, the

reactivity of the system is reduced by ~p, by mechanical means. By neglecting
subsequent cooling.. estimate (0) the toul power aenerated by decay of the
delayed-neutron precunon, as compared with the power in the prompt pulse,
and (b) the initial rate of CDer'lYaencratton due to precunor decay. [Hint:
remember to compute the reactivity when the prompt bunt terminates.] Note
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that in the use of repetitively pulsed reactor sources for time-of-flight measure-
ments, this decay of the precursors would lead to a neutron background.81

REFERENCES

1. Keepin, G. R., "Physics of Nuclear Kinetics," Addison-Wesley Publishing Co., Inc.,
1965, Chap. 4.

2. Keepin, G. R., Ref. 1, pp. 126,207, et seq.
3. Andrews, J. B., II, and K. F. Hansen, Nucl. Sci. Eng., 31, 304 (1-968); J. B. Yasinsky,

M. Natelson, and L. A. Hageman, ibid., 33, 355 (1968); R. Froelich, et al., ibid., 36, 257
(1969); W. R. Rhyne and A. C. Lapsley, ibid., 40,91 (1970).

4. Keepin, G. R., Ref. 1, Chap. 5; W. W. Graham, III, D. S. Harmer, and C. E. Cohn,
Nucl. Sci. Eng., 38, 33 (1969).

5. Harris, D. R., in "Naval Reactors Physics Handbook," Vol. I, A. Radkowsky, ed.
U.S. AEC 1964, pp. 1104 et seq.

6. Henry, A. F., Nucl. Sci. Eng., 3, 52 (1958); see also, E. P. Gyftopoulos, Chap. 3 in
"The Technology of Nuclear Reactor Safety," T. J. Thompson and J. G. Beckerley,
eds., The M.LT. Press, Vol. I, 1964; M. Becker, Nucl. Sci. Eng., 31, 458 (1968)~ W. M.
Stacey, Jr., "Space-Time Nuclear Reactor Kinetics," Academic Press, 1969.

7. Gyftopoulos, E. P., Ref. 6.
8. Glasstone, S., and M. C. Edlund, "The Elements of Nuclear Reactor Theory," D. Van

Nostrand Co .. Inc., 1952, §1O.24; J. R. Lamarsh, "Introduction to Nuclear Reactor
Theory," Addison-Wesley Publishing Co., Inc., 1966, p. 424.

9. Glasstone, S., and M. C. Edlund, Ref. 8, §7.34; J. R. Lamarsh, Ref. 8, p. 263.
10. Henry, A. F., Ref. 6; G. R. Keepin, Ref. 1, pp. 104, 178, et seq.
11. Scalettar. R.. in Proc. CoM. on Neutron Dynamics and Control, D. L. Hetrick and L. E.

Weaver. eds .• CONF-650413 (1966), p. 342; see also S. Kaplan, et al., Proc. Third U.N.
Con! on Peaceful Uses of At. Energy, 4, 41 (1965).

12. Yasinsky. J. B.. and A. F. Henry, Nucl. Sci. Eng., 22,171 (1965); K. O. Ott and D. A.
Mendey. in Proc. Conf. on Industrial Needs and Academic Research in Reactor
Kinetics, Brookhaven National Laboratory Report BNL-50117 (1968), p. 192; Nucl.
Sci. Eng .. 36, 402 (1969).

13. Otto K. 0.. Nucl. Sci. Eng., 26. 563 (1966).
14. Ott, K. 0..and D. A. Meneley, Ref. 12.
15. Otto K. 0..and D. A. Meneley, Ref. 12.
16. Cohn. C. E.. R. J. Johnson, and R. N. Macdonald, Nucl. Sci. Eng., 26, 198 (1966).
17. See. for example. G. R. Keepin, Ref. I, Chaps. 7 and 8.
18. Churchill. R. V.... Operational Mathematics," McGraw-Hill Book Co. Inc., 2nd ed.,

1958. Chap. I.
19. Churchill. R. V.. Ref. 18, Section 66.
20. Henry. A. F.. Ref. 6.
21. Hansen. G. E.. and C. Maier. Nucl. Sd. Eng., 8.532 (1960).
22. Cohen. E. R .. Proc. S~cond U. N. Con/. on Peaceful Uus of At. Enugy, 11, 302 (1958).
23. Kec:plO. G. R.. and C. W. Cox. Nucl. Sci. Eng .• 8, 670 (1960); K. F. Hansen, ~t al.,

ibid .• 22. 51 (1965); T. A. Porsching, ibid., 25, 183 (1966); J. C. Vigil, ibid., 29, 392
(1967); K. F. Hansen. n al., Trans. Am. Nucl. Soc., 12,617 (1969); P. A. Seek.er.•Jr.,
ibid .• 12.618 (1969).

2.•. Canosa, J .• Nulcl~onilc, 9, 289 (1967); W. L. Hendry and G. I. Bell, Nud. Sd. En,.,
35. 240 (1969); see also G. Birk.hoff, "Numerical Solution of the Reactor Kinetics
Equation," in "Numerical Solutions of Non-Linear Differential Equations." D. Green-
span, ed .• John Wiley and Sons, Inc .• 1966.

25. Churchill. R. V., Ref. 18. Chap. 6.
26. Keepin. G. R., Ref. I. p. 332.
21. Keq)in, G. R., Ref. I. Appendix C.
21. Cohn. C. E.. rt al.. Ref. 16.
29. Cohn. C. E., rt al.• Ref. 16.
30. GYftopoulos., E. P., Ref. 6.



31. For review see W. E. Nyer, Chap. 7 in "the Technology of Nuclear Reactor Safety,"
T. J. Thompson and J. G. Beckerley, eds., The M.I.T. Press, 1964, Vol. l.

32. Thie, J. A., in Ref. 31, Chap. 8.
33. Churchill, R. V., Ref. 18, Section 13.
34. Gyftopoulos, E. P., and H. B. Smets, Nucl. Sci. Eng., 5, 405 (1959).
35. Schultz, M. A., "Control of Nuclear Reactors and Power Plants," McGraw-Hill Book

Co., 2nd ed., 1961, Chap. 14.
36. Gyftopoulos, E. P., Ref. 6, see p. 188.
37. Schultz, M. A., Ref. 35, Chap. 5. Methods have been developed for assessing stability'

even when the roots cannot be found explicitly; see M. A. Schultz, Ref. 35, p. 77.
38. Bethe, H. A., "Reactor Safety and Oscillator Tests," Atomic Power Development

Associates Report APDA-1l7 (1956); M. Ash, "Nuclear Reactor Kinetics," McGraw-
Hill Book Co., Inc., 1965, Section 3.4.

39. Welton, T. A., Proc. Symp. Appr. Math., Xl, Am. Math. Soc., 1961, p. 309.
40. Baran, W., and V. Meyer, Nucl. Sci. Eng., 24, 356 (1966); H. B. Smets, ibid., 25, 236

(1966); S. Tan, ibid., 38, 167 (1969).
41. Welton, T. A., Ref. 39.
42. Akcasu, A. Z., and A. Dalfes, Nucl. Sci. Eng., 8,89 (1960); A. Z. Akcasu and P. Akhtar,

in Prec. Conf. on Industrial Needs and Academic Research in Reactor Kinetics,
Brookhaven National Laboratory Report BNL-50117 (1968), p. 140.

43. Shotkin, L. M., Nucl. Sci. Eng., 35, 211 (1969).
44. LaSalle, J., and S. Lefschetz, ••Stability by Liapunov's Direct Method and Applica-

tions," Academic Press, 1961.
45. Popov, V. M., Proc. Second U.N. Con! on P~actful Uses of At. Energy, 11, 245 (1958).
46. Gyftopoulos, E. P., Nucl. Sci. Eng., 26, 26 (1966); J. Devooght, and H. B. Smets,

ibid., 28, 226 (1967); H. B. Smets, ibid., 39,289 (1970).
47. Bethe, H. A., Ref. 38.
48. Perry, A. M., in Pree. Conf. on Industrial Needs and Academic Research in Reactor

Kinetics, Brookhaven National Laboratory Report BNL-50117 (1968), p. 213.
49. Thalgott, F. W., et al., Proc. Second U.N. Con! on P~actful Uses of At. Energy, 12,242

(1958).
50. Moore, M. N., Nucl. Sci. Eng., 3, 387 (1958); J. A. Thie, ••Reactor Noise," Rowman

and Littlefield. Inc., 1963; see also E. P. Gyftopoulos. Ref. 6.
51. Rajagopal. V.. Nucl. Sci. Eng., 12, 218 (1962).
52. Balcomb, J. D., H. B. Demuth. and E. P, Gyftopoulos. Nucl. Sd. Eng .• 11. 159 (l961).
53. Balcomb, J. D., ~t 01., Ref. 52; R. A. Rydin and R. J. Hooper, Nucl. Sci. Eng., 38, 216

(1969).
54. Thie. J. A.• Ref. 50; C. E. Cohn. Nuc/. Sci. Enz .• 5, 331 (1959).
55. Pearson. A.. and C. G. Lennox. Chap. 6 to Ref. 31. Vol. 1.
56. Seifritz., W.. and D. Stegemann. TrQlU. Am. NI,.c1. Soc., 11,565 (1968).
57. Thalgott, F. W., ~1 01.• Ref. 49.
58. Smith. R. R., ~t 01., "An Analysis of the Stability of EBR·J. Marks I to Ill, and Con-

clusions Pertinent to the Desiln of Fast Rc.aeton, ••an •• Ph~ of Fast and Intermediate
Reactors," IAEA. 1962, Vol. III, p. ·43.

59. Thompson. T. J., Cb.p. J I in Ref. 31, Vol. I.
60. Kramer. A. W., ••Bailinl Water Rc:aeton." Addison.Wesky Publishing Co., Inc.,

1958, Chap. 2.
61. Harrer, J. M., ~I al., Proc. Sffo,J U.N. COIf/. CHI 'H«{.} UK' DI AI. EMrgy. 9, 264

(19S8); T. Snyder and J. A. Thac, ib4J.• II. "n (1951); J. A. Thic.. ibUL. 11,440 (1958);
A. bkenderian, ~I al., in "Operatina Expcnencc WIth Power ReactOR." IAEA, J963,
Vol. I. p. 3S5.

62. Thie, J. A., Chap. 8 in Ref. 31. Vol. I.
63. Nyer, W. E., Chap. 7 in Rd'. 31, Volt
64. Fuchs.. K..••• Efficiency for Very Slow Auembfy." l..ot A1amoI Scientific Laboratory

Report LA·S96 (19%); Hamen, O. E....••Bunt Chanc'&cristla Astociated with the
Slow ASlCmbly of Fiuionabtc MatcriaJa;· 1..01 AJamoa SQarti6c Laboratory Report
LA·I •• I (l9S2).



65. Nordheim, L. W., Uphysics Section II," Manhattan Project Report CP-2589 (1945),
pp.32-36.

66. Wimett, T. F., et al., Nud. Sci. Eng., 8, 691 (1960).
67. Bell, G. I., NucJ. Sci. Eng., 16, 118 (1963).
68. Wimett, T. F., et aJ., Ref. 66.
69. Nyer, W. E., Ref. 63; J. Canosa, Nukleonik, 10,41 (1967); 11, 131(1968); R. Froehlich

and S. R. Johnson, ibid., 12, 93 (1969).
70. Nyer, W. E., Ref. 63.
71. Wimett, T. F., and J. D. Orndoff, Proc. Second U.N. Con/. on Peaceful Uses of At.

Energy, 10, 449 (1958).
72. Wimett, T. F., and J. D. Orndoff, Ref. 71.
73. Meyer, R. A., and B. Wolfe, uFast Reactor Meltdown Accidents using Bethe-Tait

Analysis," in Adv. NucJ. Sci. Tech., 4, 197 (1968).
74. Bethe, H. A., and J. H. Tait. "An Estimate of the Order of Magnitude of the Explosion

when the Core of a Fast Reactor Collapses," Nuclear Development Associates Report
NDA-I4-170 (1957); see also, W. J. McCarthy, Jr., and D. Olaent, Chap. 10 in Ref. 31,
Vol. I.

75. Bethe, H. A., and J. H. Tait, Ref. 74; W. R. Stratton, T. H. Colvin, and R. B. Lazarus,
Proc. Second U.N. Con/. on Peaceful Uses of At. Energy, 12, 196 (1958).

76. Stratton, W. R., et al.• Ref. 75; W. J. McCarthy, Jr., and D. Olaent, Ref. 74. For
calculations relating to a hypothetical coolant failure accident, see A. K. Agrawal, et al.,
••SASIA. A Computor Code for the Analysis of Fast Reactor Power and Flow Trans-
ients," Argonne National Laboratory Report ANL-7607 (1970).

77. McCarthy. W. J., Jr., and D. Okrent, Ref. 74.
78. Okrent, D., et al., "AX-I, A Computing Program for Coupled Neutronics Hydro-

dynamics Calculations," Argonne National Laboratory Report ANL-5977 (1959).
79. Meyer, R. A., and B. Wolfe, Ref. 73; H. A. Bethe and J. H. Tait, Ref. 74; W. R.

Stratton, et a/., Ref. 75.
80. McCarthy, W. J., Jr., and D. Okrent, in Ref. 31, Vol. I, p. 602.
81.•• Pulsed Fission Neutron Sources," Session III, Conf. on Intense Neutron Sources,

CONF-660925 (I966).



10. SPACE-DEPENDENT
REACTOR DYNAMICS
AND RELATED TOPICS

10.1 SPACE AND TIME DEPENDENT NEUTRON
TRANSPORT PROBLEMS

10.1a Methods of Solution

In this chapter, consideration will be given to time-dependent problems in
which the space (and energy) variation of the flux cannot be neglected or
approximated as in the point-reactor model emphasized in Chapter 9. It was
mentioned in §9.2c that although the reactor kinetics equations (9.8) and (9.9)
are exact, they are purely formal unless a good estimate is available of the flux
shape factor !jJ(r,n, E, t) at all times. so that the reactivity and other parameters,
defined by equations (9.10), etc., can be found. As already seen, the shape factor
can be approximated by a time-independent function in certain circumstances,
thereby leading to a point-reactor model, or. somewhat more generally, it may
be obtained from an adiabatic approximation. Furthermore, in many cases ifi
may be found from a quasistatic approximation. A comparison of these three
approximations will be made in an example in §IO.lc. but first other methods
will be considered for solving problems in which the neutron flux is dependent
upon both space and time.

It is possible to obtain direct numerical solutions of the time and space
dependent neutron transport equation and several computer programs are
available for obtaining such wlutions..1 Unfortunately. even for simple approxi-
mations to the transport equation~ e.g.. diffusion theory. the procedures arc quite
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time consuming. It is probable ~hat progress will be made in accelerating the
direct numerical methods; for example, some of the quasi static approximations 2

or improvements of the zero prompt-neutron lifetime approximation should
yield valuable computer programs for obtaining direct numerical solutions.

At present, however, it is perhaps best to regard the direct numerical method
for solving the transport equation with dependence on space and time as a
••brute force" approach. Its main use is in the solution of important problems
of practical interest or for comparison with the results given by approximate
procedures. The direct numerical methods will, consequently, not be emphasized
in this book.

Another approach to the problem is that of "nodal" analysis in which the
reactor is divided into a number of regions or nodes. Each node constitutes a
space point in the problem and the parameters that couple the flux at various
nodes must be specified.3 Techniques of this kind have been found to be especially
useful for the analysis of coupled cores, such as have been proposed for nuclear
propulsion systems and for fast breeder reactors.4

Finally, there is a method which is familiar in other br-anches of mathematical
physics, namely, expansion of the neutron flux in the normal modes of the system.
This procedure, as applied to space-dependent reactor dynamics, will be ex-
amined here. The first point in this connection is to decide on the nature of the
modes in which the expansion is to be made. In many aspects of mathematical
physics involving inhomogeneous or time-dependent problems, the solutions are
ex.panded as a series of eigenfunctions of a homogeneous time-independent
problem. Such an approach may be used for solving the time-dependent
neutron transport equation, but a number of difficulties arise both in principle
and in p'ractice.

Suppose, for ex.ample, that the solution to the time-dependent transport
problem is ex.pressed in the form

<1>(r, n, E, t) = L Tt(t)<1>t(r, n, E),
t

where the functions {<1>.} are the eigenfunctions of the time-independent problem
corresponding to the period eigenvalues {at} or to the multiplication factor
eigen' •.aluC'S {k I}, such as were discussed in earlier chapters and especially in
§6.1m. There are uncertainties in connection with such an expansion since, for
general transport problems, little is known concerning higher eigenvalues and
eigenfunetions and, in particular, it is not known that the discrete eigenvalues
form a complete set so that the ex.pansion can be made with confidence (§§1.5b
~I Hq.). Indeed, it has been seen that for some simple problems the discrete
eigenvalues are not complete but must be supplemented by an integral term,
i.e .• a contribution from a continuous spectrum.

In the solulion or practical reactor problems involving space and time
dependence of the neutron ftux, simple approximations to the transport equation,



e.g., few-group PI or diffusion theory, are generally used. For these approxi-
mations, much is known concerning the ex and k eigenfunctions (cf. §§4.4c et
seq.). Moreover, when these approximations are expressed in the form of
difference equations, the eigenfunctions have been shown to be complete (§6.1m);
hence, in these circumstances, an expansion of the form of equation (10.1) is
permissible using either period or multiplication factor eigenfunctions.

There are, however, difficulties in finding the higher eigenfunctions and, in
addition, the expansions may not converge rapidly. Furthermore, for deter-
mining the expansion coefficients, ~(t), the adjoint eigenfunctions are also
required, as seen in §6.1m, and this increases the amount of effort involved in
solving the problem.

10.1b Mode Synthesis and Expansion Methods

For the reasons given above, explicit expansions of the neutron flux in terms of
ex or k eigenfunctions are not particularly useful for the solution of practical
space and time dependent problems. Such eigenfunctions are, nevertheless,
conceptually important and in §1O.1dit will be shown how they can be general- I,
ized to include delayed neutrons. For practical purposes it has been found
convenient to choose the modes to be used in equation (10.1) on the basis of
physical considerations. The essential requirement is that the actual neutron
flux in the calculation should be well represented at all times by the sum of two
(or a few) such modes. Symmetry considerations sometimes suggest a simple
choice of modes. Examples illustrating mode selection will be given later, but
mention may be made here of one special case.

The solution to a diffusion-theory problem in simple geometry might be
expanded in terms of the lowest few eigenfunctions of the Helmholtz equation

V24>(r) + B~4>(r) = 0,

subject to a zero-flux boundary condition on the extrapolated surface of the
reactor.5 These modes would be orthogonal and complete6 for representing
functions of r but, except in the simplest cases, it might be necessary to use
many modes to represent the solution with sufficient accuracy.

Frequently. however. when strictly physical considerations determine the
selection of the expansion modes to be used in a transport problem, the modes
do not have any simple orthogonality or completeness that can be employed to
determine uniquely the expansion coefficients~Tl(t), in equation (10.1). In these
circumstances, it is customary to refer to the approach as a mode synthesis
m~thod,7 rather than as a mode expansion method. This terminology indicates
that an attempt is made to approximate the neutron flux by a sum (or synthesis)
of physically reasonable modes, rather than by a mathematically exact expansion
in some complete set of modes.

In mode synthesis~ there is considerable freedom in determining the expansion
coefficients. Variational methods can be used' in a manner analogous to that



described in the example in §6.4h. In the latter, the flux was synthesized by
assuming PI multigroup' form and then the expansion coefficients' appropriate
to that form were sought by means of a variational principle.

A more general procedure for obtaining the expansion coefficients is a method
of weighted residuals.s Suppose that the expansion (10.1) is inserted into the
transport equation, e.g., equation (9.1) or some approximation thereof, using I
modes. The result is an integro-differential equation involving I unknown
expansion coefficients, ~(t), multiplied by functions of r, n, and E. If this
equation is multiplied by a more-or-Iess arbitrary weighting function wk(r,n,E)
and integrated over the variables r, n, and E, there will be obtained an equation
involving the I functions Ti(t) multiplied by constants.

When this is done, using..as many independent weight functions as modes,
there will be obtained I integro-differential equations for the I expansion co-
efficients. These equations can be readily solved by numerical methods. In
practice, good results have been obtained by using adjoint fiuxescorresponding
to the synthesis modes as the weighting functions.lo For some problems, the
mode fluxes themselves would serve as reasonable weighting functions.ll

It is of interest that the kinetics equations for the mode expansion coefficients,
T,(t), are similar to the point-reactor kinetics equations. To show that this is
the case, the transport equations (9.2) and (9.3) are written in the form

1 o<1>(r. n. E. t) n V'" '"- . +. 'V + 0''1'[,' ct

= S<1>+ x,,(l - ~)F<1>+ L AJXfCJ(r, t) + Q(r, n, E, t) (10.2)
f

where the time-dependent operators indicated by Sand F, to suggest scattering
and fi~slon.respectively. are defined by

S~ • II 2: aJ.(r; n', E' -+ n, E; t)<1>(r, n', E', t) dn' dE'
11_1

i,(1 - P>F~ & II i.(1 - fJ)VC1f(r, E', t)<1>(r, n', E', t)dn' dE'

IJ,F4) • I lJt"Uf(r, E', 1)<1>(r,n', E', I) dn' dE'.

The mode expansion [equation (10.1)] for <1>(r,$1, E, t) is now inserted into
equations (10.2) aDd (10.3). Then equation (10.2) is multiplied by w~r, n, E)
aDd intqrated tn'a' the variables r, 0, E, and equation (10.3) is multiplied by



WkXj(E) and integrated over the same variables. The results can be expressed in
the form

.L Aki B~~t) = L [pet) - ~(t)]k.~(t) + L >"jCjk(t) + Qk(t) (l0.4)
• i j

BC;?) + >"jCjk{t) = L [Blt)]k.T.(t)
•

where, using the inner product notation (§6.la) to indicate integration over r,
n, and E,

[pet) - ~{t)]k. = (Wh{-n.V<1>1 - <1<1>1+ 5(t)<1>. + Xp(l - ,B)F(t)<I>.})

[BtCt)h. = (Wk, Xt,BjF<I>I)

Cjk(t) == (wk, xiCJ.r, t»

Qk(t) = (Wk, Q).

If the expansion consists of a single mode. for which T1Ct) = pet), and if Wk

were chosen to be <1>tIF, in the notation of §9.2b. equations (l0.4) and (10.5)
would reduce to the point-reactor kinetic equations (9.8) and (9.9), although
with different normalizations for the quantities CJ and Q. In the mode synthesis
approach, suppose that 1 modes are used. i.e.. i = I, 2, ...• I .. Then the same
number of linearly independent weight functions ""Ie must also be used, i.e.,
equations (10.4) and (10.5) hold for k = 1,2 •... ,1. The resulting system of
equations may be written in a compact form by introducing the l-component
vectors, T, Q, and ct; thus,

or(t) 2A -~ - = (p - p)T(t) + AtCf(t) + Q
cJl

f

where A, p - ~. and ~J are to be regarded as square matrices having the com-
ponents Atn• [p - ,B]Ie.' and LSJlkt defined above. In equations (10.6) and (1O.7),
all quantities are known except T and Ct. By starting from some initial conditions,
it would then be possible to solve for tnese unknowns just as the point-reactor
kinetics equations can be solved for P(t) and cAt). Thus, equations (10.6) and
(10.7) represent a natural generalization of the point-reactor kinetics equations.

10.1c An Example Involving Extreme Flux Tilting

Some of the procedures outlined above for computing the time and space
dependent behavior of a neutronic JYlkm will be illustrated byrrieans of

I
.,.J



·
postulated situations devised to simulate severe spatial transients in the core of
a large thermal, water-moderated reactor.12 For simplicity, the large core is
represented by a homogeneous slab, 240 cm in thickness, together with a
transverse (radial) buckling correction for the radial leakage, much as in
equations (6.145). The neutron transport is treated by a two-group diffusion
theory approximation.

The core is divided into three regions: region I from 0 to 60 cm, region II
from 60 to 180 cm, and region III from 180 to 240 cm. The transverse bucklings
differ in the three regions, with the value for the middle region being larger than
for the other two; hence maximum radial leakage occurs in this region. The initial
flux consequently peaks in the outer regions as shown by the bottom curve in
Fig. 10.1. Before introducing the perturbation, the reactor is assumed to be at
delayed critical.

In the calculations, various spatial transients were induced by changing the

10~
u e
w c(J')
I

N

:E 10·u...••.•
(J')

z
0
cr
~

103:l
w
Z-x
:l

b...J
102 (a) t = 0Li.

z (0) t = 25 MS€C
0

(e) t = 5.0a:•...
(d)t=7.5:l

w (j!l) t = 10.0
Z
I~

(J')

~
Li.

10-1
/' .,.~ --........a

'0-2

0 60 120 180 240
DISTANCE, CM

FIG. 10.1 CALCULATED SPATIAL DISTRIBUTION OF FAST-NEUTRON FLUX AS
RESULT OF STEP INCREASE IN REACTIVITY (AFTER J. B. YASINSKY AND A.F. HENRY.
REF. 12).



number of neutrons per fission,in region I. Such a localized perturbation might
simulate the gross effect of moving a bank of control rods in this region; some
of the postulated changes are, however, considerably more violent than would
be reasonable for normal control-rod motion. In all cases, direct numerical
solutions to the two-group diffusion equations were obtained; these provide
the" exact" results for comparison with those calculated by various approxima-
tion methods.

In one example, the reactor was brought above prompt critical by a step
increase in v by about 9.5% at t = 0 in region I; this was then followed by a
linear (ramp) decrease in v over a time interval of 0.01 see to a value about 9.5%
below the initial (unperturbed) state. Because the transients are so fast, delayed
neutrons may be neglected throughout. As a result of the foregoing changes,
there was pronounced "tilting" of the neutron flux; that is to say, the plot of
flux versus distance across the slab core had a marked slope. The values of the
fast-neutron flux, computed by numerical methods, at several times after t = 0
are given in Fig. 10.1.12 It is evident that soon after the transient is initiated, by
increase of v in region I, the flux is strongly concentrated toward this region
(curve b); at the end, when the ramp decrease in v is complete, the tilt, although
somewhat smaller, is in the opposite direction (curve e).

The numerical results may be used to help in the interpretation of reactor
kinetics theory. Consider, first, the equations (9.8) and (9.9); these are exact
when the reactivity, p, and other parameters are defined by equations (9.10)
through (9.16). The shape functions derived from the calculated flux distributions
in Fig. 10.1 were used to determine an ••exact" reactivity as a function of time

FfG.10.2 REACTIVITY OBTAINED FROM VARIOUS CALCULATIONS VS TIME (AFTER
J. B.YASINSICY AND A. F. HENRY, REF. 13).
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by means of equation (9.10). The result is indicated in Fig. 10.213; it is seen
that the reactivity first increases rapidly as the flux tilt toward region I
becomes effective, although the value of v is decreasing over the whole time
interval.

Another point which was examined was the extent to which the amplitude
function is actually proportional to the power in the transient (§9.2a). In Fig.
10.3, the ratio of the power (or fission rate) to the calculated amplitude function
is plotted as a function of time during the transient. The results show that the
power and amplitude function do not differ by more than 10 percent. although
both change by a factor of about 106 during the transit.

The problem considered above has also been treated by several approximation
methods. First, a conventional point-reactor treatment was made in which the
shape factor used in equations (9.10) through (9.16) was taken to be the un-
perturbed shape function. In view of the marked tilting of the actual flux, as
seen above. it is not surprising that this approximation was very poor, under-
estimating the peak thermal-neutron flux by a factor of about I~ (Fig. 10.4).
The corresponding reactivity variation during the transient is also quite different
from that given by numerical methods (Fig. 10.2).

In a second calculation, the adiabatic approximation was used in which the
shape function at each time was taken to be the k eigenfunction computed from
the conditions at that time. As seen in Fig. 10.2, and also in Fig. 10.4 w?ich
shoW'Sthe ~lated spatial distribution of the thermal-neutron flux at 7.5 x 10-'
see after the initial step increase in reactivity, this (adiabatic) approximation is
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much better than the simple point-reactor KinetiCS,but it is still not \cry accurate
for the violent .transient under consideratIOn. Moreo\er. it should be noted that
delayed neutrons play no part in the pres,cnt problem and so it does not test
the effect of lagging due to these neutron~ (§9.~c~.

Finall). a modal synthesis approxlmatiOn cakulatlOn was made of the thermal-
neutron flux distributIOn. \\'hen only two modes were used. representing thc
unperturbC'd flux and thc flux from an c\act calculation at 2.5 x 10-3 see, the
results were poor; a third mode. thc flux at 7.5 x 10 - 3 see, was required to give
fairly good agreement with thc "cxact" \atues (Fig. 10.4). Thc synthesis of three
modC$ is seen to gl\e much better agreement than the adiabatic approx.imation.
Ifftux modes had not been available from the exact calculations, physical con-
siderations would have guided the choice. the number of modes being incrcased
until the results became insensitive to the number used.



In another series of calculations,14 the transients were induced by a linear
(ramp) increase in v in region I, i.e., by letting

vet) = v(O)(1 + At)

in this region. For a ramp with A = 1.508 and time in seconds, leveling off at
t = 11 X 10-3 see, the numerical results were also compared with those
obtained from various approximations except that a quasistatic approximation
was used instead of modal synthesis. In the quasistaticapproximation, the
shape function was computed from equation (9.18) with 8l/J/8t = O. The values
of the reactivity as a function of time obtained by the different procedures are
shown in Fig. 10.5. It will be noted that the adiabatic reactivity levels off at the
end of the ramp, whereas the "exact" and quasi static values approach the
adiabatic result gradually only after the delayed-neutron precursors have
adjusted to the new flux shape.

From the foregoing calculations the following conclusions can be drawn.
When considering transients involving marked changes in the shape function,
the point-reactor kinetics model using a constant shape factor may be grossly
misleading. The adiabatic approximation will give better results and will prob-
ably overcorrect as compared to the point model. A still further improvement
can be obtained by using the modal-synthesis or quasi static treatments. It
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should be emphasized that the transient perturbations were not meant to
represent any actual cases, but rather to illustrate some general points. Hence,
the magnitudes of the deviations among the various approximations must be
regarded as being qualitative only.

The problems considered above were designed to simulate situations of
extreme flux tilting in a large thermal reactor. For smaller reactors, having a
tighter neutronic coupling between regions, the changes in flux are less severe.
It would be expected, therefore, that the point-reactor and adiabatic methods
might then be applicable. Calculations, performed for a 60-cm slab reactor
subjected to a violent transient, similar to the one considered in connection with
the 240-cm reactor, indicate improved but still poor accuracy for these approxi-
mations.1s

It appears, therefore, that except for the smallest cores, the point-reactor and
adiabatic approximations will often fail to predict the course of violent transients
initiated by local changes in reactivity. In this connection, a violent transient is
one in which the flux shape changes markedly in a time interval less than (or of
the order of) a delayed-neutron lifetime. As mentioned earlier, the point-reactor
equations, with constant shape function, will usually be satisfactory for treating
very small changes in reactivity. Furthermore, the adiabatic approximation is
valid for all sufficiently slow changes of reactivity, such that

1 dp
$Adt«l,

where A is an average delayed-neutron decay constant, about 0.1 sec -1. This
criterion implies that the change in reactivity during the time 11 A should be small
compared with $ if the adiabatic approximation is to be used.

10.1d The Period Eigenfunctions and Delayed Neutrons

It '-'as mentioned in §lO.lb that, although the period (a) and multiplication
factor (k) eigenfunctions are natural modes for use in series solutions of space
and time dependent problems, they are not generally useful for that purpose.
These eigenfunctions are, however, conceptually important and it will now be
shown how the a eigenfunctions are generalized to include delayed neutrons.
The ideas which are developed here will be applied to a problem in space-
dependent kinetics in §lO.le.

It should be noted. first. that the k eigenfunctions (and their eigenvalues) are
not affected by the time lag in the emission of delayed neutrons. The reason is
that the k eigenvalue problem is one in which time-independent solutions of the
transport equation are sought. with the total number of fission neutrons, both
prompt and delayed. di\'ided by k. The period eigenvalue problem, on the other
hand, is markedly affected by the presence of dela»ed neutrons. In particular,
the long lifetimes of the precurson give rise to slowly decaying a modes (or



eigenfunctions) which are not possible with prompt neutrons. alone. In the
following development, the transport equations (10.2) and (10.3) will be used
with the cross sections being independent of time.

The period (or a) eigenvalue problem is defined by setting

0<1> oCj- = a<1> and - = aCj (10.8)ot ot'
and requiring that Q = 0, with the flux satisfying the usual boundary condition
of zero incoming neutrons. If al is an eigenvalue corresponding to the eigen-
functions <1>1and Cjl> it follows from equations (10.2) and (10.3) that

:1 <1>1 + n·V<1>, + u<1>1= S<1>, + xp(l - fJ)F<1>, + .L >'jXJCJ1 (10.9)
j

In addition, equation (10.10) can be solved for Cjl and the result substituted in
equation (10.9) to give

:,1 C1>1+ n·V <1>1 + uC1>1= SC1>1 + [XiI - fJ) + 2 a~J~,8~JF<1>,. (10.11)
J

Before discussing the possible eigenvalues, a" of equation (10.11), it is con-
venient to write down the equations for the a modes with prompt neutrons
only and for the k modes. Both were given in Chapter 1, but the notation did
not explicitly take into account the delayed neutrons. Let a~P) denote a period
eigenvalue with prompt neutrons alone and let <1>\P)represent the corresponding
eigenfunction. These will satisfy equation (10.11) with decay of the delayed-
neutron precursors being neglected; thus,

lJl )

~ ~P) + n·VC1>(P) + uC1>(P) - SC1>(P) + x- (I - fJ)FC1>~"·.I' 1 I 1 - 1 P

On the other hand. the k eigenfunctions are defined by setting the time derivatives
in equations (10.2) and (10.3) equal to zero and dividing the number of neutrons
per fi~~lOnby A:•• to reach criticality; thus,

Physical arguments will now be presented in order to deduce some properties
of the period eIgenvalues. a'e Although these properties have not been proved
ri.orouily for transport theory, they have been confirmed for approximations,
luch as few-group diffusion theory in simple geometry. Moreover, they have
dear phyUcaJ content even if they may be lacking in mathematical rigor. The
,men] result win be to divide most (and perhaps all) of the periOd modes
(eiaenfunctions) into two classes. namely (a) ~'delayed tt modes characterized by



small values of la/I, i.e., long delay times, and (b) rapidly decaying modes,
similar to the prompt-neutron modes, i.e., solutions of equation (10.12),
characterized by large values of lazl.

Consider, first, the delayed modes. These are solutions of equation (10.11)
with values of a/ of the same order of magnitude as the precursor decay constants,
Aj; that is,

For such small eigenvalues, the term a/f1>z/v can be neglected, to a first approxi-
mation, since az/v will be about 10-'-5 times (] even for thermal neutrons. Hence,
the terms involving a/ in equation (10. I I) serve primarily to change the amplitude
of the fission source, Ff1>/.*

In the k eigenvalue problem, however, the fission source is also multiplied by
a factor, namely l/km in equation (10.13), so as to achieve criticality. Letf1>m
be a k eigenfunction corresponding to the eigenvalue km and suppose that it is
possible to choose an eigenfunction <1>, such that

Strict equality would be possible in this last expression only if x)xp and (Jj were
true constants, but since they are functions of position and energy the equality
is approximate.

If these results are substituted into equation (10.13), there is obtained approxi-
mately the a eigenvalue equation (10.11), with all' set equal to zero. It follows,
therefore. that <1>/. which was selected as a solution of equation (10.14), is
approximately an a eigenfunction. Suppose, for simplicity. that Xj/Xp and {Jj are
treated as constants: then <1>1 can be equal to <1>", and equation (10.14) reduces to

L A ~ S -X (I - (J) + IX, ! = L.
II al + A1 kill

j

If there are six groups of delayed~neutron precu~o~. this equation will be
satisfied by six different values of a,. These six period modes will have the same
flux mode. 4>/. but since the (XI values are different, there will be six different
precursor abundances. according to equation (10.10). Each of the six period
modes has a small value of lall and is consequently called a delayed mode, to
indicate that it arises from the decay of the delayed-neutron precurso~.

• U the system contains several types or fiwle (and fissionable) nuclides in different regions.
the lituation is not quite as limpk since the quantities ~ and X are actually involved in some
orthe operaton in 110.1b. It is to be expected, however. that this win not have a great effect
on the seneraJ ~Iusions.



The foregoing argument suggests the following general conclusion. To each
k eigenfunction, <1>m, there correspond six delayed (period) modes, <1>lt such that
<1>1 ~ <1>m· The delayed modes differ as to their periods and precursor concentra-
tions, but all the eigenvalues, aI, are small in absolute value.

It remains, now, to consider the rapidly-decaying period modes; these are
similar to the prompt a modes which are defined as solutions of equation (10.12).
If the system is below prompt critical, it is known (§1.5a) that the prompt
fundamental eigenvalue, ag'l (ranging in magnitude, typically, from around
106 sec-1 for a fast reactor to about 103 or 102 sec-1 for a thermal reactor) will
be the least negative eigenvalue. * The higher prompt-modes will have eigenvalues
of larger magnitude, i.e., more negative!

Suppose that such a prompt~mode eigenfunction with eigenvalue a~1') were
inserted into equation (10.11). ft would be a proper eigenfunction except for the
delayed-neutron terms which would, however, appear divided by the -l'arge
eigenvalue. a?). and hence would be small. It may be concluded, therefore, that
the prompt modes are almost period eigenfunctions even when delayed neutrons
are included. It is then reasonable to expect that for each prompt-mode eigen-
function. $:JII. there will be a similar period mode, <1>1> i.e.,

<1><p) '" <1>
I '" I

Ph} sical arguments have thus been used to suggest that the period eigen-
functillm can be divided into the delayed modes and the rapidly-decaying
mode~. nftcn referred to loosely as the prompt modes. For simple models of
neutrl.lll tran\pllrt. these modes have been found explicitly.16 For more exact
treatments. ho\\e\er. it is not known if the modes enumerated above include aU
of the pertod modes and the mathematical treatment required for a full analysis
,,111 undoubtedly be difficult.

Tl.l cllnclude this section on eigenfunctions and delayed neutrons. the eigen-
functll1m. (11; • "~Ich are adjoint to the period eigenfunctions. will be considered.
By generahl.lng the methods of Chapter 6 to include delayed neutrons. the
adjOint clgenfunctll)nS can be shown to satisfy the relations 17
•

~r' '~'.. _ n Vet.. + /h'
••••• ••• I a'v /"

r

••• S'<P;' + [x,,(1 - ,B)Fr<1>j. + 2: ,BJ11(7,(r, E)CJdr) (10.16)
J

• for ruc10n modcrat~ by heavy water or graphite. t4r1 may be 10 see-lor even
amalia; the dKta"ctton bc1wecn the prompt and delayed period modes is then DOt clear.
For tudt ~ cf. caAnot be ncaJected in computing the delayed periods and lbc
ra~)l"" modes will be aft'ceted by the delayed neutrons.



where the adjoint operators st and LXp(1 - ,B)F]t are defined by

st<1>t = Jf.L uxfx(r; n, E -+ n', E')<1>t(r, n', E', t) dn' dE',
x.f.f

[xiI - ,B)F]<1>t= f I Xp(E')(1 - ,B)vuf(r, E)<1>t(r, n', E', t) dn' dE'.

In equations (10.16) and (10.17), at, is the eigenvalue, i.e.,

o<1>t,= _ atI'<1>t1,
at '

and the boundary conditions of zero outgoing adjoint are assumed.
The orthogonality relation between flux and adjoint eigenfunctions can be

obtained by combining equations (10.9), (10.10), (10.16), and (10.17); by using
inner products, the results may be expressed as

(<1>1" (10.9» + 2 I eJI' x (10.10) dV - «10.16), <1>1) - .LJ ej1 x (10.17) dV
f f

(al - an[ (<1>r.,~. <1>1) + 2 f (CI1·, Cfl) dV] = O. (10.18)
f

In addition, equation (10.10) can be solved for ejl and equation (10.17) for CJ1"
and when the solutions are substituted into (10.18) it is found that

t [( t 1 ) ~ f Aj,BjF<1>1(J f Xj<1>j,dn dE) dV] _
(al - al') <1>r,v <1>1 + L (Ai + a,)(Aj + an - O. (10.19)

J

It is possible to derive these orthogonality relations in a more elegant manner
by writing equations (10.9) and (10.10) in matrix form.Is They have been used
to suggest generalizations of the inhour equation (9.26) to space-dependent
problems.19 For this treatment. it is argued that, associated with each set of six
dela)'ed modes. there will be one prompt mode with a similar flux; furthermore,
this set of seven modes is regarded as representing the general form of the
inhour equation for the particular flux shape.

A problem of practical importance, which can be approached in several different
ways, is that of determining the reactivity of a subcritical reactor. For example,
the multipliCation of neutrons emitted by a steady source can be measured. It is
also sometimes possible to obtain information concerning the reactivity from a
determination of the power autocorrelation function at short times in a U Rossi-
alpha·· experi men t.20 One of the simplest methods, however, is to measure the



response of the reactor to a short pulse of neutrons and it is this technique which
will be considered here. It has been selected because it will serve to illustrate
some of the ideas of the preceding section.

Suppose that an instantaneous pulse of neutrons is injected into a subcritical
reactor at time t = 0 and the ensuing flux of neutrons is measured by means of a
neutron detector. A typical output of such a detector is indicated in Fig. 10.6,
in which the important features are emphasized. First there is a peak that dies
out very rapidly; this peak is due to prompt neutrons only, i.e., it represents the
contribution of the prompt modes to the detector reading. Subsequently, the
neutron signal decays more slowly and this represents the effect of delayed-
neutron emission.

As shown in Fig. 10.6, there may be a time interval during which the semi-
ogarithmic plot is linear; during this time the prompt neutron flux decreases
exponentially. The fundamental promp~-neutron mode is then decaying with the
time constant ~). At earlier times, the detector signal is affected by the prompt-
neutron harmonics, i.e., by prompt modes with more negative values of cr:(P).

Only after these prompt harmonics die out does the neutron population decay
with the time constant cr:b"). Some delayed-neutron harmonics also contribute to
the signal. as indicated in Fig. 10.6. These are usually less important than the
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prompt harmonics because the sources of delayed neutrons, i.e., the delayed-
neutron precursors, are distributed throughout the reactor in something like a
fundamental mode whereas the neutron-pulse source is localized.

There are several ways in which the detector output could be used to derive
the reactivity of the system. The basic ideas follow from the reactor kinetics
equations (9.8) and (9.9), which may be written as

together with the assumption that the detector output is proportional to pet).
The source has been represented as a Dirac delta function in time centered at an
arbitrarily small positive time, i.e., S+(t), multiplied by Q, the total number of
source neutrons. The solution of equations (10.20) and (10.21) is now sought,
subject to the initial conditions that P(O) = 0 and ciO) = O. Although these
equations could be solved directly for a point-reactor model, e.g., by Laplace
transform methods, it is fruitful to consider some features of the solution that
indicate possible experimental approaches when space-dependent effects are
important.

During the prompt-neutron pulse, i.e., neglecting decay of the delayed-neutron
precursors, the neutron population (and detector signal) will decay as

p - ~
P = Qeat with a = ,.\

where a is prompt-neutron decay constant and is equivalent to all». It would thus
appear that, from a measurement of the prompt-neutron decay constant, a, it
should be possible to obtain p if ~ and .\ were known for the given system. If
these two quantities are not known, but the prompt decay constant, ac, could be
measured at delayed critical, i.e., when p = 0, then

$
a == --.c: A

Hence, the reactivity in dollar units in the pulsed (subcritical) experiment w-ould
be given by

Although this procedure has been used for determining reactivities,21 it suffers
from the drawback that the parameters P and .\~ particularly A. in the subcritical
and critical systems are somewhat different.



To overcome this difficulty, another approach can be used. The area under
the prompt peak will be proportional to J: Pp(t) dt, with Pp computed from
equation (10.20) without delayed-neutron precursors; thus,

La:> Pp(t) dt = - A ~~~ (without delayed-neutron precursors). (10.24)

Upon integrating equations (10.20) and (to.21), however, with delayed neutrons
included, the result is

r QA·
Joa:> pet) dt = -p (with delayed neutrons).

The region marked "delayed-neutron area" in Fig. I0.6 is proportional to the
area with delayed neutrons, as given by equation (to.25) minus the prompt-
neutron area, given by equation (10.24). By combining these equations, it
follows that

- p Prompt-neutron area
T = Delayed-neutron area

By using this relation, the reactivity in dollars can he derived from measurements
on the subcritical system only, after injection of a neutron pulse.22

The relations developed above have been based on the simplest point-reactor
model. In fact. however, the source will be concentrated at so·me position within
the reactor and the neutron population in the reactor will probably be deter-
mined by a localized neutron detector. Hence, spatial effects will be present.
The source will then excite prompt-neutron harmonics, and so the prompt-
neutron area, and to a smaller extent the delayed.neutron area, will depend on
the positions of the source and detector. Consequent1y, when using an expression
such as equation (to.26), so also will the measured reactivity.

To avoid the effect of these prompt-neutron harmonics, it has been suggested 23
that attention be paid only to the fundamental prompt-neutron mode in Fig.
10.6. The prompt fundamental mode is extrapolated to zero time, according to
its decay constant, a, and this is used to obtain an ex.trapolated prompt-neutron
area for use in equation (to.26): thus,

- p Extrapolated prompt-neutron area
T = Delayed-neutron area

In still another method,24 the prompt-neutron harmonics are deemphasized
by evaluating a constant Q from the relation



It is then combined with the prompt decay constant, a, to give the reactivity in
dollars as

In the point-reactor kinetics, a can be evaluated by multiplying equation (10.20),
without delayed-neutron precursors, by eat and integrating the result over all
times. The term eat(dPldt) is integrated by parts and it is readily seen that
a = PIA; thus if a is obtained from 'equation (10.22), the combination leads
directly to equation (l0.28). The use of the latter for determining reactivities in
subcritical systems is generally known as the Garelis-Russell method.

It is thus seen that various procedures have been used to obtain reactivities of
subcritical systems from pulsed-source measurements, using either equation
(10.23), (10.26), (10.27), or (10.28) to interpret the experiment. Because of
spatial effects, the reactivities, except that from equation (l 0.23), are functions
of detector position. In the following discussion it will be shown how these
spatial effects can be taken into account.

Suppose that the neutron source is represented by

and that the neutron detector is characterized by a cross section ua(r, E), such
that the expected detector output signal, D(R, t) can be taken to be

D(R, t) = f f f ua(r - R, E)<1>(r,n, E, t) dV dQ dE,

where R is a positIOn vector locating the center of the detector. If the time
dependence of the detector signal were required, it would be necessary to com-
pute the neutron flux as a function of time. In fact, however, it is necessary
to know only the prompt-neutron area or the total area under the detector
output in Fig. ;10.6, and these areas can be readily computed in the following
manner.

Consider the signal due to prompt neutrons alone. This is caused by the
prompt flux which is evaluated by ignoring decay of the delayed-neutron pre-
cursors. The prompt flux., $I'(r, Q, E, t), then satisfies the transport equation,
expres~d in the notation of equation (10.2),

!a~" + n.Vct>" + act>" = S<l>,. + X,.(I - P)F<l>,. + Q(r, n, E) cS+{t), (10.30)
V cJl

subject to the usual free-surface boundary conditions and the initial condition
ct>,.(r, n, E.O) = O. Upon integrating equation (10.30) from I = 0 to I = 00

and defining

J
]

:,''-/



the result is
Q. V<l>p + u4>p = 8&p + xp(1 - fi)F4>p + Q(r, $1, E), (10.31)

where use has been made of the initial condition and the fact that

lim <1>p = 0,
t-co

since the reactor is subcritical.
It is seen, therefore, that the time integrated prompt-neutron flux, <$p, satisfies

the ordinary time-independent transport equation. Hence, <l>p can be determined
by any of the standard multigroup methods described in Chapters 4 and 5.
The prompt-neutron area in Fig. 10.6, as derived from the detector output, can
now be found by integrating equation (10.29) over time; thus

Prompt-neutron area = Ioco D(R, t) dt = I I I O'd(r - R, E)4>pdVdn dE.

The prompt-neutron area is evidently a function of detector position, R,
through the spatial dependence of O'd'

An analogous result can be obtained for the total area under the detector
signal. All that is necessary is to integrate equations (10.2) and (10.3) over all
time; it is then found that the total time-integrated flux, 4>(r, Q, E), satisfies
equation (10.31) with xp( I - f3) replaced by x. Hence, <I> can also be computed
by standard time-independent methods. The total area can thus be found and
the delayed-neutron area is then obtained by subtracting the prompt-neutron
area, I.e.,

Delayed-neutron area = I II O'd(4) - <Dp) dV dQ dE.

The spatial dependence of the reactivity can then be determined by the area-
method equation (10.26).

It is also possible to derive the fundamental prompt-mode decay constant,
a (or a~t), by using the methods of Chapters 4 or 5. Indeed, this is simply the
fundamental eigenvalue without delayed neutrons, ao, which has been discussed
in the earlier chapters of this book. Furthermore, the Garelis-Russell constant,
a, can be found in the folIowing manner. If equation (10.30) is multiplied by
~. the first term can be written as

eAt 8<1> I a av 8t ~ v at (eat<1» - v eGt<1>.

Upon integrating over aU times, it is found that the quantity

foCI eGt<1>p dr,

which is what must be used in the Garelis-Russell method, satisfies the same
equation as eft" Le.• equation (10.31), except that 0' must be replaced by a - (a/v).



Hence a may be interpreted as the negative concentration of a l/v-absorber. By
using standard time-independent calculational techniques, it is then possible
to vary a, by trial and error, until the condition

where D'P is the detector signal due to prompt neutrons, is satisfied.
In order to obtain the extrapolated prompt-neutron area, for use in equation

(10.27), it is necessary to derive the amplitude of the fundamental mode. For
this purpose, the prompt-neutron flux is expanded in terms of the prompt a
modes, along the lines used in §6.1m. As already stated, this expansion may not be
justifiable for transport theory, but it is known to be satisfactory for simple
approximations to this theory.

There is, however, one difference between the procedure to be used here and
the one in §6.lm. In the latter, the solution to an initial value problem was
expressed in normal modes, whereas here the solution to a source problem is
seught. The source Q(r, n, E) b+ (t) is, however, equivalent to an initial con-
dition on <1>p, namely,

This can be seen by integrating equation (10.30) over the time interval from
t = 0 to t = E. where E is very small but large enough to include the delta
function. All the integrals are small except for those of the first and last terms,
and these give

I ...- [<1Ip(r, n, E, E) - <1Ip(r, n, E. 0)] = Q(r. n, E).
l"

In this equation, <t'1'(1 = 0) is zero according to the initial condition and con-
sequently <1>1'(1 = E) = rQ. But since ( is very small, it may be set equal to zero
and hence the result in equation (10.32) rollow~.

By using the initial condition deri\ed ab()\e, together" ith equation (6.45),
itis found that the flux in the fundamental pwmpt mode IS gi\en by

FI . _-J (<1>~. Q) ,., n E ( 11'/ )ux 10 prompt moue = « I ...•." .t) ('-o(r, , ) exp ao t ,
.'l )'Vo, ~ 0)

where <1>0 and <t>~ are the fundamental prompt-a mode eigenfunction and its
adjoint, respecti\e1y. The e:\trapolated prompt·neutron area in the detector
signal diagram (Fig. 10.6) is then obtained upon multiplying this expression by
a. and integrating o\'er all variables induding time from zero to infinity. The
result is

Ex I I (~~.Q) <t>trapo ated prompt-neutron area - 1-\.'" ( If )<t>t <t> ) (a.. 0)' (10.34)
""<I. I ( Ie o. 0



In order to calculate this quantity, the fundamental prompt-a mode and its
adjoint must be computed, but here again standard time-independent methods
can be used.

In principle, it should now be possible to predict, from time-independent
calculations, the reactivity of a subcritical reactor as a function of position,
according to the various methods described earlier. The results obtained in this
manner may be cOffiIi'ared with those derived from the plot of the observed
detector output against time, as in Fig. 10.6, with the detector at a number of
different locations.

Before making this comparison, it is pertinent to inquire if there is a unique
reactivity which these experiments could be designed to yield. In this connection
it may be recalled, first, that equation (9.10), which has been used as the definition
of reactivity in the reactor kinetic equations, does not define the reactivity
uniquely. The reason is that there are no unique cross-section changes which
bring the system to critical and a variety of choices can be used for 6.a and <1>t
in equation (9.10). In practice, however, the resulting reactivities might differ
very little. Several other definitions of reactivity, which are appropriate to the
situation under consideration here, have been proposed.25

One of the most attractive of these definitions is based on the following
considerations. It was s~en in §9.2b that p is analogous to a quantity (k - 1)/k
\1,'hich was derived in the treatment of perturbation theory. Hence, a static
reacril"ity in dollar units can be defined by the relation

-p
7=

1 - k
kP

This definition has the virtue that the eigenvalue k is a unique integral quantity
for the system. Moreover. it can be calculated by multigroup (or other) methods.
Further arguments have been offered in favor of the static reactivity,26 which is
sef:n to be closely related to the various experimental quantities discussed earlier
i.n this section. In the treatment which follows, the static reactivity will be
compared with experimental values based on the methods already described.

Pulsed-neutron ex.periments have been performed on a critical assembly
moderated and reflected by ordinary water to determine the reactivity according
to (a) the simple area method by equation (10.26), (b) the extrapolated area
method by equation (10.27). and (c) the Garelis-Russell method. A source of
14-MeV neutrons was introduced on the midplane of the assembly at the core-
reflector interface, and boron trifluoride neutron detectors were located at three
pOSitions on the midplane. Calculations were also made along the lines described
abo\'e to predict the space dependence of the various reactivity determinations.
The calculations were performed on a one-dimensional model of the assembly
using multigroup diffusion theory, and were normalized so as to give the
obsen-ed prompt decay constant, 41• Some of the results are compared in Fig.
10.7M; the points are based on detector readings at the indicated three locations
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whereas the curves are calculated using a prompt decay constant, a6"l, of 1706
sec -1.

It will be observed that there is a qualitative agreement between the reactivities
derived from the detector readings and those calculated from transport theory.
Much of the difference between the calculated and observed values is probably
due to use of a simple one-dimensional model of the subcritical assembly.
Surprisingly, it appears that the simple area method gives results most nearly
independent of position; this is probably a fortuitous circumstance arising from
the cancellation of harmonic effects in the particular assembly used in the
experiments.

10.1f Other Space and Time Dependent Problems

Several other space and time dependent problems have been analyzed. Among
these, mention may be made of the pulsed-sourcc2' and neutron-wave28 experi-
ments discussed in Chapter 7 as methods for studying the thermalizing proper-
ties of various media. In such experiments there is no fissile material present;



hence, there is no fission and no delayed neutrons. The mode-expansion method
is used.to interpret the measurements, and the characteristics of the fundamental
mode are determined.

In the pulsea-neutron experiment, the decay constant, ao, of the fundamental
period mode is of greatest interest. As noted in §7.6f, by studying the variation
of ao with the size (or buckling) of the system, such parameters as the thermal
diffusion length and the diffusion cooling constant of the medium can be derived.
In the neutron-wave experiment, the fundamental mode is sought as a function
of space for a source varying periodically in time. From the variations of mode
properties with source frequency, the thermal diffusion length arid other param-
eters can be determined.29 In each of these experiments, the effects of higher
modes, in particular the spatial harmonics, should be considered, either to
establish that they are negligible or to correct for them.

10.19 Xenon-Induced Power Oscillations
It is well known that the fission product xenon-135 (half-life 9.2 hours) has a
very large absorption cross section for thermal neutrons, about 3 x 106 barns
at 300~K. A smaIl fraction of this nuclear species is formed directly in fission,
but the major portion results from the decay of iodine-l35 with a half-life of
6.7 hours. lodine-135 is itself a decay product of teIlurium-135, which has a half-
life of less than 2 minutes. Consequently, for all practical purposes it may be
assumed that the production of xenon-135 is determined solely by the decay of
iodine-135. and that the rate of formation of the latter is proportional to the
fission rate.

In addition to the familiar poisoning effect due to xenon-135 which occurs in
thermal reactors operating at a sufficiently high neutron flux,30 there is a
possihility that it can cause localized oscillations in the power in a large reactor.
The flu, (or po"er) may then vary in space and time. For studying the dynamics
of su..:h xcnon-induced oscillations. the modal expansion method provides a
comenlcnt approach.

The~e (l~cillatil.)ns generally arise as a consequence of a localized perturbation
leading III an increase in the neutron flux. As a result, the rate of xenon-135
cOll\Umptll'n (or burnup) by neutron absorption increases, but since its replace-
ment dc:rend~ on the decay of iodine-135, there may be_a temp?rary decrease in
the local amount of xenon-135. This wi'll permit the neutron flux to-increase still
further. unless it is compensated by the negative power (or flux) coefficient of
reactl\'ity.

E\en ~ hen there is compensation, so that the power does not diverge con·
tinuously. the increased power level will cause an increase in the concentration
or iodine-13S. Within a short time. dectly of the latter will result in an increased
local amount of xenon·13S. thereby decreasing the power. Thus, oscillations in
the reactor po~-er can arise with a period of the order of the iodine· I35 lifetime.
Whether the oscillations will be damped (stable), undamped, or growing (un-
stable) will depend on the flux level in ·the reactor and on9ther conditions, as



will be seen shortly. Under particularly unfavorable conditions, the power could
diverge without oscillation.31 ~

Local oscillations in power, caused by xenon-135, have been~ observed in
several large thermal reactors.32 The reactor must of course be ther~al, because
in the neutron energy spectrum of a fast or intermediate reactor the absorption
cross section of xenon-135 is quite small. Furthermore, it is necessary for the
reactor to be large, with dimensions large compared to a neutr<?n migration
length, because only in such systems can the spatial harmonics <ff the flux be
excited to an appreciable extent.

In order to simplify the following treatment of xenon-induced oscillations by
the modal expansion method, without affecting the basic physics of\the problem,
a number of approximations will be made. In the first place, it wil~be assumed,
as noted at the beginning of this section. that all the xenon-135 isproduced by
the decay of iodine-135, the rate of formation of which is deterri'ined by the
fission rate. Next, since the oscillations are significant only for large, thermal
reactors, one-velocity diffusion theory should be adequate for tre~ting neutron
transport. Furthermore, since the expected oscillation periods a~ long, e.g.,
several hours, it is a good approximation to treat the delayed neutr~'ns as if they
appeared promptly.33 A homogeneous reactor core with plane ge0tnetry will be
assumed.

--

In considering the feedback effects of power and xenon-135, th<i former may
~

be assumed to be instantaneous. For the present purpose. it is ct'nvenient to
express this in terms of the neutron flux: the reactivity feedback ii then repre-

, . ~
sented by fe/>. where f is the power coefficient of reacti\ It) in appnipriate units.
The xenon-135 feedback is proportional to the concentration of thij nuclide. but
the effect is delayed by its dependence on the decay of iodine-135. In an operat-
ing reactor. the control system (automatic or manual) will modify ~he feedback
and this could be included inf<!>if required. The purp\l~ of the piesent discus-
sion. however. is to understand what would happen III the absence ot such adjust-
ment of control rods. f

The reactor kinetics equation for one-group diffusion thedry in plane
geometr)', based on the considerations indicated above, is \.

!i'~X, r) = D i-
2
tj, + (k _ I + f~)o ~ _ o· X~, I

r cr cx2 "lL ~

where k is the infinite medium multiplication factor. so that (k
infinite medium reactivity. OJ( is the micrO$('opk absorption Cfe

xenon-13S. and X is its concentration in nuclei per em'; a. is the
absorption cr~s section of the system without the xenon-13S.
at any time is related to the concentration I of iodint'-13S by

t)!k is the
section of
aeroscopic
\'alue of X

clex. r) ..L 1 ,
CI - Yr'l1? - '¥



8X(x, t) = 'AI _ 'A X _ A XrI-8t I X aX 't"

where 'AI and 'Ax are the decay constants of iodine-135 and xenon-135, respec-
tively, YI is the fractional yield of the former nuclide per fission, and at is the
macroscopic fission cross section.

The stability of the system to small perturbations about some stationary
solution will now be examined. In order to obtain simple modes in the expansion
of cP, I, and X, a slab reactor, of thickness a, will be assumed. It is supposed to
be well reflected, so that the steady-state flux is spatially uniform; hence, the
boundary conditions on the flux are 8cp/8x = 0 at x = 0 and x = a.

Let CPo, 10, Xo be the values of the respective quantities in the steady-state
system: then, since c2cpo/8x2 is zero in the postulated reactor, equations (10.36),
(10.37), and (10.38) become

Xo = 'A/o = YlatCPO , (10.41)
'Ax + uxCPo 'Ax + uxCPo

where k is the multiplication factor the reactor would have in the absence of
xenon-I3S and power feedback. If equation (l0.41) is substituted into (10.39)
and soh'ed for <Po. the result is

k-I4>0 = ---", -----,
°XYlat _ f

aa('Ax + ux<Po)

which will yield a solution provided that k > I and the power feedback
coefficient of reacti'ity. f, is negative.

Suppose nOIAthat the system is perturbed locally: let cP, I, and X represent
the small Jt'partures of the actual magnitudes from their steady-state values.
The Imearued equations. omitting terms of the second order in small quantities,
corresponding to equations (10.36), (10.37), and (10.38) are

c!-;-=ya.J..-'A!or I f't' I



The quantities 1>, I, and X are now expanded in a series of spatial modes.
Because of the simple geometry of the slab reactor, these modes can be taken
to be the complete set {cos (mTx/a»), with n = 0, I, ... , CXJ. Moreover, because ~o
has been assumed to be space independent, the modes are uncoupled; thus, if
the expansions are inserted into equations (10.42), (10.43), and (10.44), and then
multiplied by cos (m7Tx/a) and integrated over x(O < x < a), only the coefficients
of cos (m7Tx/a) remain. * If the expansions are made in the modes indicated above
and the Laplace transforms are taken, using the notation

• CX)

"" n7TX
!l'[1>(x, t)] = L An(s) cos a

n-O
CX)

!l'[J(x, t)] = 2: In(s) cos n:x
n-O

CX)

'" n7TX!l'[X(x, t)] = L Xn(s) cos a'
n-O

it is found, from equations (10.42), (10.43). and (10.44), that

sA" = _ D(n1T) 2
An + (k - I + 2frPo}OaA" - ox(XoAn + Xn~O)

l.' a

These three equations for the nth mode may be combined to yield a single
equation for A". the Laplace transform of the codllclent of the nth flux mode.
In the usual way. those values of s \I, hich are the poles of All wiIl be the reciprocal
penods of the nth mode that determine the stability of the mode. Upon solving
the equations for A,,(J) and eliminating k b)' means of equation (10.39) and Xo
by equation (l0.4 1). it is found that the poles of .4,,(5) are the roots of the
equation

U:YIO'''~
+ (Ax + ax~ )(.J + Ax + 0.•.•0)

Thi, is a cubic equation in s. the roots of \\ hich determine the three reciprocal
penods of the nth mode.

The condition for neutral stabilat), is that roots c~ist for pure imaginary
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s = iw. For a reactor in which all the variable parameters except f and tPo, i.e.,
D, a, and v, are fixed, there will be one curve in the f-<Po plane for which the
system has neutral stability for each mode. Such a curve for the fundamental
(n = 0) mode is shown in Fig. 10.8 for a slab reactor35; all points to the right
represent stable systems whereas those to the left are unstable. Thus, the
ordinates of the curve give the value of the steady-state flux at which the reactor
will have neutral stability against xenon-induced oscillations for the given
(negative) power feedback coefficient of reactivity (abscissa). Actually, for points
on the curve undamped xenon-induced oscillations in neutron flux (and power)
will occur in the absence of other factors, e.g., control rod adjustment.

The numerical data in Fig. 10.8 refer to a particular thermal (slab) reactor,
but the qualitative conclusions are of general applicability. It is seen that when
the steady-state neutron flux in a thermal reactor is sufficiently low, e.g., less
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than 109 neutrons/cm2-sec, the system is stable against xenon-135, regardless of
the (negative) value of the power feedback coefficient. At such low values of the
flux, the rate of burnup of xenon-135 by neutron absorption is relatively small
and the situation in the reactor is not affected significantly by the delayed
formation of this nuclide by the decay of iodine-135. It is instructive to consider
how the situation changes as the flux level is increased with a fixed feedback
coeffici en t.

At somewhat higher flux levels than those just considered, the fundamental
mode becomes unstable and the critical value of the flux for instability is
relatively insensitive to the power feedback, f, over a considerable range. In
this region, the destabilizing mechanism is the delayed growth of the xenon-135.
At still higher fluxes, i.e., above about 3 x 109 neutrons/cm2-sec in Fig. 10.8,
the power feedback begins to stabilize the system, and in the absence of xenon-
135 bumup, the system would be stable at high flux levels. At fluxes greater than
about 2 x 1011 neutrons/cm2-sec for the given system, however, burnup of
xenon-135 becomes an important destabilizing influence; it is not overcome by
the power feedback until the flux is around 1013 neutrons/cm2-sec. At flux levels
above 1015 neutronsJcm2-sec, which do not exist in ordinary thermal reactors,
the system would again be stable.

In addition, the possibility of exciting the first harmonic. i.e .. n = 1, mode
should be considered. This mode is readily stabilized by the power coefficient
until the flux is fairly high. namely. almost 1013 neutrons/cm2-sec in the case
under consideration. Instability can then arise. just as it does for the fundamental
mode at lower flux levels. from burnup of x.enon-135. The harmonic is always
harder to excite than the fundamental: that is to say. for a given value of the
power feedback coefficient. a higher neutron flux. is required for the harmonic
than for the fundamental mode. Thus. the curve of neutral stability for the first
harmonic lies to the left of the one for the fundamental: the broken curve in
Fig. 10.8. for example. refers to a particular case in which C1aa2! D = 1500.
It should ~ noted that since n appears with I /a in the term mrfa in the equations
given abo\e. the spatial oscillations for a gi\en n a~ easier to excite when a is
large. i.e .. for a large reactor. For a specified reactor. higher harmonics. with'

n ~ 2. are even harder to excite than the first harmonic.
It might appear at first sight that "hene'"er a ~actor is stable in the funda-

mental mode there would be no need to ~ concerned about ex.citing the
harmonics. but this is not necessarily the casc. The first harmonic can ~ excited
in a large. high-ftu~ ~aetor by a combination of circumstances involving the
locations of control rods and neutron (or power) detectors. Suppose that the
control rods are at the bottom of the core whereas the detectors are at the top.
Insertion of the rods to compcn~te for an increase in the already high neutron
flux will then not prevent the flux from Increasing ~tiJl further where the detectors
arc located. In this way the condition, for eXc:lLlhOn of the fint harmonic mode
might be realized.



The neutron flux (or power) oscillation period, corresponding to w of the
fundamental mode for neutral stability, is given in Fig. 10.9 as a function of the
steady-state flux for a particular reactor.36 At low fluxes, where delayed growth
of xenon-l 35 is the dominant factor, the periods are long, but they. decrease with
increasing flux because of the growing importance of the (prompt) power feed-
back. At a flux level in the vicinity of 2 x 1011 neutrons/cm2-sec where, as seen
above, the effect of xenon-135 burnup becomes important, the periods start to
increase again. Then when the flux is greater than some 1013 neutrons/cm2-sec,
the power feedback once more becomes dominant and the oscillation periods
steadily decrease in length.

Although the model on which the foregoing conclusions are based represents
a marked simplification, it embodies the physical effects which are important
in determining the conditions u'nder which oscillations due to xenon-135 can
occur. Hence, it has proved useful in the analysis and control of the oscillations.
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If the (negative) power coefficient of reactivity is large enough, troublesome
oscillations (or instabilities) will not occur for any reasonable values of the
operating flux. For safety reasons, however, additional negative feedback is
always provided by the control-rod system.

The theory used to derive the results described above is based on the linearized
equations (10.42), (10.43), and (10.44); hence, it cannot predict the behavior for
oscillations of large amplitude. Such oscillations would, of course, be very
undesirable in a reactor and the main purpose of the treatment is to indicate
how they may be avoided.

Because the xenon-induced oscillation periods are quite long, they can be
readily controIied. Power (or neutron flux) detectors are distributed throughout
the reactor in order that local changes may be observed; they can then be quickly
compensated for by the motion of appropriate control rods. Thus significant
oscillations can be avoided even apart from the effect of the power feedback.

Another aspect of reactor dynamics is concerned with the long-term changes in
the isotopic composition of the fuel, caused by exposure to the neutron flux
under various conditions of reactor operation. These changes, in both time and
space, have an important bearing on the operating life of a reactor core and
hence, on the reactor economics. In addition, they affect the stability and control
of a reactor. Consequently, such changes must be taken into consideration in the
design of a reactor system. The term •.burnup problems" has been commonly
used to describe the theoretical treatment of the changes in the fuel and their
effects on the reactor characteristics. Two burnup problems of special interest
will be treated in this section. namely, fuel depletion and burnable poisons.

During operation of a reactor. the fissile nuclides are consumed by fission and
about two hundred fission products are formed, some directly and others by
radioacti\e decay. A number of these fi~~i()nproducts have high or moderately
high cross sections for neutron capture: they consequently ha\'e a significant
influence on the neutron economy (and reactivIty) of the system. Furthermore,
the conversion of fertile to fissile nuclides has. of cours.e, an important effect on
reactor lifetime and control.

In addition, radiative capture of neutrons by both fissile and fertile species
leads to the formation of such nuclides as uranium·236. plutonium-240, uranium-
239, and so on. These can also capture neutrons or sutTer beta decay (or both),
so that many new heaVy isotopes (or heavy nuclides), i.e .• isotopes of thorium,
protactinium, uranium. neptunium, plutonium. etc., are present in the fuel after
a period of reactor operation. S1



A complete treatment of fuel burnup would require a knowledge of the cross
sections of all the fission products (as well as their yields and radioactive decay
constants) and of the heavy isotopes. In principle, the neutron transport equation
could then be solved for the conditions existing at various times. In practice,
however, this is not possible, partly because of the lack of data and partly
because of the excessive time that would be required to make the calculations,
even with a fa,st computer. Consequently, a number of gross simplifications are
made; although the results are not highly accurate, they nevertheless provide
useful general predictions of reactor behavior, as will be seen.

In order to reduce the number of nuclides that need to be included specifically
in a burnup calculation, two general principles are helpful. First, the only fission
products treated explicitly are those with particularly large capture cross sections.
In practice, this means that, for thermal reactors, the great majority of fission
products are lumped into one or a fe.w classes, to each of which is ascribed an
average cross section. Xenon-135 and samarium-149 are always considered
individually in thermal reactors; a dozen or so others, with fairly large cross
sections, may also be included in this manner in an accurate burnup study.38
In a fast-reactor neutron spectrum there are no exceptionally large cross sections,
and so all the fission products can be treated as one or a few classes with average
cross sections.

The second principle, which is useful in reducing the number of heavy nuclides
that must be included, is that any nuclide with a very short half-life can be
omitted from the burnup calculations; formally, in the equations given below,
such nuclides may be given a zero half-life. For example, uranium-239, with a
half-life of 23.5 minutes does not need to be considered. Consequently, the only
heavy nuclides usually treated in burnup problems are the following: uranium-
235. -236. and -238. and plutonium-239, -240, -241, and -242 in reactors using
natural uranium or uranium slightly enriched in uranium-235 as the fuel; and
uranium-:!33. -234. -235, -236, protactinium-233, and thorium-232 in reactors
containing thorlum-232 as fertile material.

In ~ome reactors. the introduction of a neutron poison, such as boron-IO,
~ hlch Ii consumed during the operation, can increase the core life. Since the
crou ~tions of such a burnable poison are usually well known, this substance
can be treatC'd e,phcitly.

The nuchdes ~ntioncd above are those which are important in determining
thr neutron economy of the reactor. In addition, there may be other nuclides
th.at are of interest for other reasons. For example, in a natural uranium reactor,
it 'Ny be dnired to follow the buildup of neptunium-237 and plutonium-238,
si~ the bucr is a useful isotopic power source. Another possibility is that the
amount of I particular fission product may be required as a radiochemical
indicator of the number of fissions that have occurred in a spent fuel elemenL
Hcacc.. the nudtdes induded specifically in a burnup calculation may frequently
aceed those dictated by neutronic considerations alone.



The fissile and fertile nuclides, fission products, heavy isotopes, and burnable
poisons can be treated from a uniform point of view in a burnup calculation.
Thus, let Nt(r, t) be the number of nuclei per unit volume (or concentration) of
some nuclide, indicated by i. Then the rate at which Nt changes with time may
be written as

d:1 = Formation Rate - Destruction Rate - Decay Rate. (10.45)

For simplicity, the nuclides may be considered to be formed and lost only as a
result of fission, neutron capture, and radioactive (negative beta) decay. The
various rates in equation (10.45) can then be expressed in the following manner.

Let N1-1 denote the concentration of nuclides which can be converted into
type i by neutron capture; that is to say, if i denotes a nuclide with mass and
atomic numbers (A, Z), then i-I implies the nuclide (A - 1, Z). Similarly,
let N1• be the concentration of nuclei which yield those of type i by negative
beta decay, i.e., with the composition (A, Z - 1); the decay constant for these
nuclides is represented by At', Finally, let Nf be the concentration of fissile and
fissionable nuclides, and let Yfl(E) be the probability that a type-i nuclide will be
formed as a fission product by absorption of a neutron of energy E by a nuclide
of type j. If the nuclide of type i is not a fission product then Yfl is zero.

With the foregoing definitions, and others which are self-evident, equation
. (10.45) may be expressed as

where the quantities with bars over them are averages which are defined below.
The first term on the right of equation (10.46) gives the rate of formation of

nuclides of type; resulting from fission of nuclides of type j, i.e.,

where 0,.,(£) is the microscopic fission cross section of type j nuclei for neutrons
of energy E. If ~r. I) is defined by

~(r. I) == Lie ~r, E, I) dE,

then from equation (10.41)

- I: y,.(E)Of.J(E}#.r, E, I) dE
y~/.J - .p(r, I) •



This quantity can be computed as a function of rand t, provided the neutron
flux and the required fission cross sections and fission yield data are available.
It will be independent of time if the neutron energy spectrum does not change
with time.

The second term in equation (10.46) represents the rate of formation of nuclei
of type i by neutron capture in the nuclei of type i-I; thus,

Gy,t-lcP = La) Uy,l-l(E)cP(r, E, t) dE,

where uY.I -l(E) is the microscopic radiative capture cross section for nuclei of
type i-I for neutrons of energy E.

The third term in equation (I0.46) is simply the rate of radioactive decay as a
result of which nuclides of type i are formed. The fourth term is the rate of
destruction of these nuclides by fission, so that

Gr,tcP = f ur.t(E)cP(r, E, t) dE,

where a,)£) is again a microscopic cross section. The fifth term is the rate of
loss of type-i nuclei as a result of neutron capture and is equivalent to equation
(10.49) with i replacing i - l. Finally, the last term is the radioactive decay
rate of the nuclei of type i.

In general. at each point in the reactor space mesh there will be an equation
(IOAh) for every kind of nuclide which is to be followed in a fuel burnup
calculatIOn. The resulting differential equations are all coupled together through
various formation and destruction processes. In practice, simplifications are
made in setting up the equations. as indicated earlier, i.e., by using a small
numher of fiSSIOn-product classes and restricting the heavy isotopes that are
taken IOto consideration.

10.2e Solution of the Burnup Equations

The -'"I \aluC'S of all the nuclides included in the calculations will affect the
neutron flu\. through the neutron transport problem, in a complicated manner.
Sup~. ho~e\er. that the neutron flux is computed at time t, and suppose,
furthermore. that the flu, can be assumed to remain constant for a substantial
time period. ~t. after time I. The coefficients in the differential equations for all
the nuchde concentrations could then be calculated and assumed to remain
constant from I to I + ~1. The resulting system of burnup (or depletion)
cquataon$ can be solved by standard numerical integration techniques, e.g., by
the Run~·Kutta method," and thus the values of N, at 1 + 6.1 could be found.
With the N, known for all values of i at time 1 + 6.1, the calculation could be
advanced to time I + At by recomputing the flux at this time, and so on.



Some preliminary studies have indicated that refinements of this approach are
promising methods of solving the burnup equations.·o

In some iristances, e.g., for systems having only one significant fissile (or
fissionable) nuclide, it may be fruitful to rewrite the depletion equations so that
each type of nuclide can be formed in only one way. This is always possible, for
example, by regarding nuclides of type i formed by neutron capture as com-
pletely distinct from the same nuclides resulting from beta decay. Under these "
conditions, an exact solution can be found at time I + Al in terms of the solution
at time I, although, as in the other methods, a computer must be used.u

No matter which of the foregoing procedures is employed to solve the burnup
equations, the values of Nt are advanced in a series of time intervals 6.1 during
each of which the neutron flux is assumed to remain constant. The procedure is
repeated until it has been carried far enough in time. It is reasonable to suppose
that accurate solutions can be obtained provided that the ~I are chosen to be
sufficiently small for the required purpose; the accuracy can be assessed by
noting the variations in the solutions that result from changing, e.g., doubling or
halving, the intervals j.1. In long-range burnup calculations, the intervals may
be of the order of weeks. or even months, provlded it is not desired to follow
transients Involving nuclides of short life. in particular xenon-135 and iodine-135.

For the solution of the burnup problem it is necessary. as seen above, to
. compute the flux ,p(r, £, t) for the operating (critical) reactor at various times.

In this calculation, the geometry and composition of the system. as specified by
the values of N,(r. '), are to be regarded as known. It might be thought, therefore,
that the flux could be obtained from a standard k eigenvalue calculation, i.e.,
using the adiabatic approximation (§9.2c). A difficulty arises. however, because
in the operating rea~or criticality is maintained by adjusting the control rods.
Consequently, in the flux cakulation~ criticality shouJd~ in principle, also be
achieved by varying the position or amount of control poison. U .

Another procedure for solving the bu'mup equations can be developed by
regarding Nt as the ith component of a vector N. Equation (10.46), for
i = 1, 2, ... , I, could then be written as

tIN
di = MN,

where M is a I x I square matrix with constant components over the time
interval t to t + At. Formally, the solution is

.and in order to derive N(t + At) from N(t) it is necessary to evaluate the
exponential of the matrix M !:It. One possibility is by way of a power series
expansion; thus,



Such adjustment of control poison in the calculation suffers from certain
drawbacks. In the first place, it is complicated to include control rods explicitly
in the flux calculation, and, furthermore, a small error in the prediction of
criticality can lead to a large error in the prediction of control rod position.
Consequently, the control poison is often treated quite approximately in the flux
calculations. For example, the rods may be represented by a uniform distribution
of poison in the amount required to give a critical system. As the fueolis depleted,
the quantity of control poison is reduced in such a way as to maintain criticality
until there is no (or very little) poison remaining at the end of the core life. An
alternative procedure is to limit the poison to those general regions of the core
where the control rods are located. Then, as the fuel is depleted, the volumes of
these regions are decreased, to correspond to withdrawal of the rods, so as to
maintain criticality.

In the flux calculation at any time, therefore, the amount of control poison is
adjusted jn an appropriate manner in order to keep the system in the critical
state. Since the flux is spatially dependent, the calculations should be in three-
dimensional geometry. If the core can be approximated as a finite cylinder, as
is often the case, then a two-dimensional treatment will suffice. For preliminary
or general burnup studies, one-dimensional or even point models of the reactor
core are often useful; however, for the analysis of an operating reactor a more
detailed treatment of the geometry is required.

Because of the difficulty of making such flux calculations and the necessity for
repeating them for several (or many) times, it is necessary that the neutron
transport calculations be as simple as possible. Hence, a few-group P lor diffusion
approximation is generally used for determining the gross flux and, in addition,
\Oarioussyntheses or variational methods (§6.4j) can be employed to reduce the
dimensionality of the neutron transport equation. Another simplification is to
minimize the number of mesh points in the calculation by dividing the reactor
core into a relatively small number of zones in each of which the N. values are
assumed to ha\e a uniform spatial distribution.

The burnup calculations described above have referred to the gross behavior
of the system "Ithout regard to fine structure. Frequently, however, it is required
to follow ch~nges With time of such parameters as the concentration of fissile
nuclides. hcavy·isotope production, specific power, etc., in individual fuel
ekmenti and e\Oenof their spatial variations within specific elements. If the fuel
dementi haw a simple periodic arrangement in the core then cell calculations
Ytillluffice to gJW the nu~ and hence burnup characteristics, within a given fuel
dement and cell. The nuclear constants for the gross flux calculation are adjusted
10 that the gross (or over-all) reaction rates for a homogenized system are the
same as for t~ individual cells (§3.6a). If, however, the arrangement qf the fuel
dementi is complex. then a Monte Carlo calculation must be used.

The dl'cet 0( hckrop:nc1ty on fuel burnup has been examined in some detail
ia connection with studies of the use of recycled, Le., recovered, plutonium-239



as the fissile species, together with uranium-238 as the fertile material, in water""
moderated reactors.43 It was shown, for example, by using Monte Carlo
techniques, that a higher burnup, i.e., a longer core life, can be achieved if the
fuel element consists of a thin central "tight pencil" of plutonium (as dioxide)
surrounded by the uranium-238 (as dioxide) than if the plutonium is mixed
uniformly with the uranium.

Another problem in connection with the fine structure of the neutron flux is
that in the vicinity of a control rod. The depression of the flux in such a region
reduces the local fuel burnup and the extent of the depression changes during
reactor operation as the rod insertion is adjusted. Accurate transport or Monte
Carlo calculations may be used to determine the flux (and burnup) in the vicinity
of a control rod.

10.2d Results of Burnup Calculations

The best test of burnup calculations is to compare the results for the concentra-
tions of various nuclides with those actually found in spent fuel elements. Such
comparisons have been made for the YankeeH and Shippingport4S pressurized-
water reactors, and reasonably good agreement was found between computed
and observed heavy nuclide concentration ratios. Similar comparisons have
been made for a number of other reactors.46

Some interesting data will be presented here from a simplified burnup
calculation made with the FUELCYC code 47: this is based on a modified
two-group diffusion theory and finite cylindrical (two-dimensional) geometry.
Seven mesh points were used in both axial and radial directions. No allowance
was made for the heterogeneous structure of the core, and plutonium resonances
were treated in an approx.imate manner. Although the computations were
performed for reactors of ditTerent types. the results presented here were obtained
for a pressurized-water reactor. about 2 meters in length and diameter, using
uranium fuel with an initial enrichment of 3.44 atomic percent of uranium-235
and operating ata thermal power of 480MW."

First. Fig. 10.10 sho~ the atomic J'('rcenta~es of various heavy nuclides in
the fuel as a function of exposure tune m the reactor, exprnsed as the neutron
fluence. also referred to as the integrated flux or flux-time. in neutrons/cm2•

These are the kind of data that can be most readily checked by actual analysis of
sJ'('nt (or partially spent) fuel elements. as mentioned above.

The initial spatial distribution of the poW("f density, in one quadrant of the
reactor, for a uniform fuel loadmg. is indicated in Fig. 10.11. Because or the
approximately cosine distribution of the neutron flux in both radial and axial

. directions, the maximum power density rs found at the center of the core. After
an average bumup l)f 23,000 MW-d.Y'ltonne.· ~ c:aJcu1ated spatial power
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FIG. 10.10 CHANGE IN FUEL COMPOSITION VS NEUTRON FLUENCE (AFTER M.
BENEDICT. ET Ai.. REF. 48).

density distribution is as shown in Fig. 10.12; it is seen that the power density
distribution is flatter, i.e., more uniform, than initially and that the maximum
has moved well away from the center of the core. The reason for this change is
the high burnup of the fuel at the center. This burn up also causes a depression
in the '-"Cntral flux: the power density, which depenqs on the product of the
neutron flux and the concentration of fissile species, consequently decreases both
because of the burnup itself and the flux depression.

The data in Figs. J 0.1 I and 10.I2 apply to what is called ••batch" loading;
that is to say, the core is loaded with fuel uniformly at the beginning of operation
and no deliberate changes are made during operation. In the calculations
aiticality is maintained by assuming a uniformly distributed poison which is
consumed as the reactor operates.

Another method of core loading (or fuel management) is ••out-in n fueling;
(~Iwdc'lcme:nts are introduced from the periphery of the core and are moyed
radially inward with the spent elements being discharged at the axis~ In practice,
as in the UHTREX reaetor,U the fuel elements would be moved periodicaUyi
but for purposes of calculation the motion is treated as taking place continuoUSJi
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FIG. 10.11 INITIAL CALCULATED SPATIAL POWER DENSITY DISTRIBUTION IN ONE
QUADRANT OF REACTOR FOR UNIFORM FUEL LOADING (AFTER M. BENEDICT,
£T AL., REF. 48) .
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. at such a rate that the spatial distributions of nuclide concentrations and neutron
flux, and hence of power density, remain constant in time, once a steady state
has been achieved. The computed (time independent) spatial distribution of the
power density in Fig. 10.13 is based on an average burnup of 23,000 MW-days!
tonne in the discharge fuel. The ••out-in" loading is seen to give a fairly flat
radial power distribution at all times. once the steady state has been attained.
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FIG.10.12 CALCULATED SPATIAL POWERDENSfTYOtSTl'lIunoH AmR AVERAGE
BURNUP OF 23,000 MW.DAYSfTOHH£ (AfTtR M. BENEDICT, IT At.. REF. 48).
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FIG. 10.13 CALCULATED (STEADY-STATE) SPATIAL POWER DENSITY DISTRIBU-
TION FOR "OUT-IN" FUEL LOADING (AFTER M. BENEDICT, ET AL., REF. 48).

A third fuel-loading strategy is the "biditectional-axial" methed, which is.
essentially that used in the CANDU (heavy water moderated) reactor.50 Fresh
fuel elements are inserted and spent elements are discharged" continuously" in
an axial direction, but the elements in adjacent channels move in opposite
directions. The discharge rate in any particular channel varies with its distance
from the axis in such a manner that all fuel elements have received the same
burnup upon discharge. As in the preceding case, it is assumed that the power
density distribution remains unchanged after a steady state has been attained.
In bidirectional-axial fueling, the power density distribution is symmetrical
about the (radial) midplane.

FIG. 10.14 RADIAL POWER OENSITY
DISTRI8unoN AT REACTOR MIDPLANE
FOR BATCH. 8IDIRECTIOHAl.,ANO"OUT-
••••• FUEL LOADING; AVERAGE BURNUP
23.000 MW-OA YS/TONNE IN EACH CASE
(AFTtR M. BENEDICT. ET AL•• REF. 48).
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The radial power density distributions at the midplane for the three methods
of fuel management described here are compared in Fig. 10.14 for a final
average burnup of 23,OOO-MW-days/tonne in each case. For batch loading there
are two curves, representing the beginning and end of core life, respectively;
thus, the actual power distribution changes during operation of the reactor. For
the other two fueling methods, the distribution remains constant. The radial
power density distribution for bidirectional-aXial fueling is seen to be essentially
identical with the initial distribution for batch loading, and much the same is
true for the axial distribution. An advantage of the bidirectional procedure,
however, is that it gives uniform burnup of the fuel which batch loading does
not. If the core life is limited by the maximum bumup in any fuel element, the
life of the reactor would thus be significantly shorter for batch loading. Another
advantage of bidirectional loading is that it provides better neutron economy
since, in principle, no neutrons are wasted by capture in control poisons during
steady-state operation.

One of the most important quantities to be obtained from a reactor burnup
calculation is the breeding ratio or the conversion ratio and its variation with
time. These ratios are usually defined as the number of fissile nuclides produced
in a given time, by capture of neutrons in fertile nuclei, divided by the number of
fissile nuclides destroyed in the same time. The ratio is commonly called a
conversion ratio if it is less than unity and a breeding ratio if it is greater than
unity.

Consider, for example, a fast ~reeder reactor using a mixture of enriched
uranium and recycled plutonium as fuel. In these circumstances, uranium-235,
plutonium-239. and plutonium-241 would probably be regarded as the fissile
nuclides and uranium-238 and plutonium-240 as the fertile species. The breeding
ratio (B.R.) would then be defined by

. Formation rate of ~tPu + 2U Pu
B.R. = Destruction rate of 23&U + 23tPu + 2UPU'

Nuclides present in small amounts could be included on the basis of whether
they may be regarded as being "fissile" or not. The formation and destruction
rates required for deriving the breeding ratio can be readily computed as func-
tions of time in a normal bumup calculation.

The foregoing definition of the breeding ratio (or conversion ratio) is some-
what -arbitrary and in a study of fuel cycle economics it is necessary to know the
actual expected abundances of all the fissile nuclides in the discharged fuel.
Neverthdcss, the breeding (or conversion) ratio, as defined, above, is a convenient



way of summarizing the manner in which the inventory of fissile species in a
reactor is changing.

Apart from fuel management (and mechanical) considerations, the useful life
of a reactor core is often determined by the excess (or built-in) reactivity
available at startup. This excess reactivity is then compensated by poison control .
rods which are adjusted during reactor operation as fissile material is'consumed
(and generated) and fission product poisons accumulate. The presence of excess
reactivity, however, has some drawbacks; for example, accidental loss of control
function could lead to a hazardous situation. Furthermore, the ne!1tron flux in
the vicinity of control rods is depressed, and hence the power density distribution
and fuel burnup are uneven.

The requirement for a significant amount of excess reactivity does not arise
in a large converter reactor which can be designed for efficient conversion of
fertile into fissile nuclei. Thus, the latter may be replaced ~lmost as fast as they
are consumed. In fact, the reactivity of a large natural-uranium, graphite-
moderated reactor increases for some time during the early stages of operation
(§1O.3f). For small reactors, however, the conversion is relatively small, partly
because of the loss of neutrons by leakage and partly because it is not possible
to include an adequate quantity of fertile material in the core. The drawbacks
associated with excess reactivity can then be largely avoided by the use of a
burnable poison.51

A burnable poison is a nuclide with a high (or moderately high) cross section
for neutron absorption. with the absorption product having a small neutron
cross section. It may be distributed uniformly throughout the core, or it may be
in the form of lumps. Ideally, the amount of burnable poison should be such
as to compensate for almost the whole excess reactivity at startup. Then, as the
reactor operates. the poison should be consumed at such a rate as to maintain-
exact criticality as the fissile material is depleted and fission product poisons are
generated. This ideal may possibly ~ ,approached in some cases/~ but even if
not. burnable poisons can be usedadvantageously. The situation may be
explained by means of an elementary example.

Consider a large thermal reactor in which only reactions of thermal neutrons
need be taken into account. For simplicity. the distributions of thermal neutrons
and of the various nuclides in the core are taken to be uniform. Let at be the
macroscopic fission cross section and ay the radiative capture cross section of
the fissile species; a" is the cross section of the burnable poison. and a. is the
absorption cross section of other poisons present in the core. These other
poisons are assumed to have small microscopic cross sections, so that a. remains
ClleDtially constant during reactor operation. If the poisoning effects of
producu are neglected and possible conversion of fertile into fissile material is·



ignored, the infinite medium multiplication factor for the system may be
expressed by

k
_ VO'f

IlO -
O'f + 0'., + 0'0. + O'b

VO'f.=-------,
. (1 + a)O'f + 0'0. + O'b

where ex is the conventional symbol for 0'.,/0', for the fissile nuclide and v is the
average number of neutrons produced per thermal fission.

If the uniform thermal-neutron flux at time tis 4>(t), then the rate of decrease_
of the concentration, Nf, of fissile nuclei is

d;f = _ N,(t)U,(l + a)4>(t),

N,(t) = N,(O) exp [- I~u,O + a)4>(t') dt']

= N,(O) exp [ - u,O + a)/(C )].

](t) = f~4>(t') dt'.

Since (],(t) is equal to N,(t)u,. it will have the same time dependence as Nf(t).
The variation of the concentration of the burnable poison nuclei, Nb, with

time is given by

N,,(t) - N.(O)cxp (-aJ(t)~

and (]b will exhibit the same dependena: on time. H~ equation (10.50) may
be written as

",,(0)
(1 + a)o,(O) + C1. exp [(I + a)c),I(t)) + 0.(0) exp ((-I, + (1 + cz)a,}/(I)]

(10.52)

From this equation it is seen that without • bumabIc ~ i.e., with
0,,(0) - O. the value of k .(1) will dec.ra.te lteadily with time. If. oa the other



hand, a uniform burnable poison is present with a larger microscopic absorption
cross section than that of the fuel, so that

Ub > (1 + apI'
then krD(t) can increase with time for a while. The reason is that under the
postulated conditions the burnable poison is consumed at a greater rate than is
required to compensate for fuel depletion. Eventually, krD(t) will decrease as the
poison is used up (or bums out). Even if Ub is not greater than (l + ap" the
decrease of krD(t) with time is less than in the absence of a burnable poison.

The results of some more detailed calculations of, the effective multiplication
factor in the graphite-moderated, gas-cooled Peach Bottom reactor, which is
described in §10.3a, with uniformly distributed boron-IO as burnable poison,
are indicated in Fig. 10.15.53 The thermal-neutron absorption cross section of
boron-l0 is larger than that of the fissile nuclides in this react~r; hence, the
multiplication factor increases at first and then decreases in the course of reactor
operation.

For a lifetime of 900 days, the excess reactivity required initially with no
burnable poison would be almost 0.14, whereas with the uniformly distributed
poison about 0.04 would suffice. In the latter case, however, the control rods
would require the capability of compensating for almost 0.08 of reactivity. If
the lifetime of the core is governed by the amount of reactivity available in the
control rods, then the core life would be larger in the presence of the burnable
poison. Thus, a control reactivity of about 0.08 would permit a lifetime of
900 days in the latter case but less than 500 days if a burnable poison is not used.

200 400. 600 800
TIME AT FULL POWER, DAYS

FlG. 10.15 EFFECT OF BURNABLE POISON ON THE EFFECTIVE MULTIPUCATION
FACTOR FOR A HIGH-TEMPERATURE GRAPHITE REACTOR (AFTER H. B. STEWART
AND M. H. MERRILL. REF. 63). .>
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In the situation just considered, the high absorption cross section of boron-l 0
for thermal neutrons results in an overcompensation for the normal decrease in
reactivity. This disadvantage could be overcome by using a burnable poison with
a somewhat smaller cross section. An alternative procedure is to employ the
boron in lumped form; the self-shielding of the inner layers of the lump by the
boron-lOin the outer layers results in a decreased total absorption of neutrons.
The bottom curve in Fig. 10.15 was obtained by treating the boron as lumped
with an initial self-shielding factor of 0.5, i.e., the average thermal-neutron flux
in the lump is half the average in the surrounding medium. In the early stages
of reactor operation the reactivity now decreases. But as the boron-IO burns out
and the size of the lumps decreases, the self-shielding factor increases and so
also does the neutron absorption. Hence, the reactivity begins to increase and
finally decreases as in the case of uniform distribution of the burnable poison.
The reactor will now operate for 900 days with an initial excess reactivity ofless
than 0.04 and the same amount of control capability.

, 0.2g Flux Flattening with Burnable Poisons

Burnable poisons can also be used to flatten the spatial variation of the neutron
flux and thereby to realize a more uniform burnup of the fuel. For example, by
simply decreasing the need for control rods in the core, a burnable poison can
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minimize the associated flux depressions and nonuniformities in power density.
Moreover, it is possible to distribute the poison in such a manner throughout',
the core u to obtain additional flattening of the power density. ,J .

The effect of the distribution of a burnable poison is illustrated for a particular.
c"cue in FlJ. 10.16, wtueh refm to a small water-moderated reactor using highly"
~ uranium i.s the fuel." The cylindrical core is divided into two



regions, in each of which the poison is distributed uniformly; the ratio of the
poison concentration in the outer region to that in the inner region is represented
by {J. The curves in Fig. 10.16 show the radial variations of the power density for
four values of {J; for f3 = 1, the poison distribution is uniform t~roughout the
core. It is evident that by having more of the poison in the inner region a
substantial flattening of the power density can be achieved.

The situation in Fig. 10.16 refers to radial distributions in a core at the
beginning of its life. During operation of the reactor, the power distribution will
change, largely as a result of nonuniform bumup of the fuel and to motion of the
control rods. It may then prove advantageous to use, in addition, a nonuniform
(axial) poison distribution which will compensate for absorptions in the control
rods and give both a more uniform flux and fuel burnup.

The curves in Fig. 10.1755 show how the fuel and the burnable poison are
consumed in the axial direction at various times during operation of a cylindrical
reactor of the type considered above. The fuel rods are moved as a bank from
the top of the reactor, so that they are all inserted to the same depth. The
fractional core height in the figure represents the distance from the bottom of the
core. In Case A, the burnable poison is distributed uniformly over the length of
the reactor ; it is seen that the fuel and poison are consumed more rapidly in the
lower half of the reactor where the control rods do not penetrate. In Case B, the
same amount of poison is used but it extends only three-fourths of the way up
the core. The neutron flux, and hence the burnup of the fuel, is more uniform
in the axial direction than in Case A.

10.3 CALCULATIONS ON GRAPHITE-MODERATED,
GAS-COOLED REACTORS

10.38 Introduction

In concluding this chapter, it is of interest to consider how various static
calculations described in earlier chapters may be combined to furnish the input
for dynamics calculations and to determine some of the operating characteristics
of powerreacton. Although spatial dependence is not emphasized in any detail
in what follows, the subjects considered have an important relationship to fuel
.bumup, and so this seems an appropriate place for the discussion given below.

Graphite-moderated, gas-cooled reacton provide an especially clear example
because their operating characteristics are determined largely by the behavior of
DeUtrons in the reactor. Consequently, it should be possible to predict such
properties u temperaturecocfficieots, hued on calculations of Doppler broaden-
inJ of resonances and shifts in the thermal-oeutron energy spectrum. Such

.:.QlcuJations will be considered in tome detail in this 1CCti0n.The situation is
.c:ti1I'erent in water-moderated -radOn where. for example. tbermal expansion
and possible boiling of the moderator-coolant may be the dominant factors in
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reactor dynamics. The computation of such effects would require detailed
engineering studies of heat transfer, coolant flow, etc., which are not treated in
this book.

In discussing some of the calculations made in connection with graphite-
moderated reactors, with gaseous coolants, emphasis will be placed on two
particular reactors, na~ely, the Calder Hall (type) reactor in the United King-
dom and the Peach Bottom reactor in Pennsylvania. A brief description will
first be given of these two reactors.

There are eight reactors of the Calder Hall type,56four at Calder Hall in England
and four at Chapelcross in Scotland, designed for the dual purpose of producing
both electrical power and plutonium-239. Each reactor operates a~ a thermal
power of approximately 225 MW and generates some 50 MW of electricity.
The heterogeneous core, about 9.4 meters in diameter and 6.4 meters in height,
contains 1696 vertical (finned) fuel element channels arranged in a square lattice
with a pitch of 20.3 cm (Fig. 10.18). The fuel rods are of natural uranium metal,
2.92 cm in diameter, canned in Magnox, a magnesium alloy. The coolant is
carbon dioxide gas at a pressure of about 100 psi.

Because they are intended, in part, for the production of plutonium-239, the
Calder Hall reactors have a fairly high initial conversion ratio, i.e., number of
plutonium-239 nuclei formed to number of uranium-235 nuclei consumed, of
around 0.85. The buildup ofplutonium-239 has several interesting consequences.
In the first place, the reactivity increases for a time after the reactor has been
operating. Furthermore, the temperature coefficient changes with bumup, as
will be seen in due course, so that the over-all isothermal coefficient becomes
positive.

F1G. 10.18 FUEL ELEMENTS OF CALDER HAll REACTORS (LAmCE SPACING
TO SCAl£). ' ..



When the Calder Hall reactors were designed, in the early 19505, the nuclear
data, theoretical methods, particularly computer codes for making neutron
transport calculations, and the computers themselves were such that relatively
little reliance could be placed on computed reactor parameters. Consequently,
much use was made of integral experiments 57 and of the experience gained with
the similar plutonium production reactors at Windscale. More recently, modern
computational methods have been applied to the Calder Hall reactor design
and the results of a unified treatment 58 of the Calder Hall and Peach Bottom
reactors will be referred to later.

The Peach Bottom reactor59 is a small prototype HTGR (High-Temperature
Gas-Cooled Reactor), producing 115 MW of heat and about 40 MW of elec-
trical power. The moderator is graphite. the coolant is helium, and the fuel is a
mixture of uranium carbide (UC2), highly enriched (93 atomic percent) in
uranium-235, and thorium carbide (ThC2) in a graphite matrix. The core is
some 2.8 meters in diameter and 2.3 meters high and is composed of a close-
packed triangular lattice of fuel elements, 9 cm in diameter. The schematic cross
section of a typical fuel element in Fig. 10.19 shows a graphite spine, which
provides mechanical strength and also contains a trap for fission-product gases,
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surrounded by an annular fuel region and finally by a sleeve made of impervious
graphite.

The reason f{)r using thorium-232 and highly enriched uranium-235, rather
than uranium of moderate or low enrichment, as fuel is that the uranium-233
produced from thorium-232 gives a better neutron economy (in a thermal
reactor) and a higher conversion ratio than does plutonium-239 derived from
uranium-238. For example, at a neutron energy in the vicinity of 0.1 eV, the
value of 7], the number of fission neutrons produced per neutron absorbed, is
approximately 2.30 for uranium-233 andl.80 forplutonium-239.60 In the small
Peach Bottom reactor, however, the conversion ratio is only about 0.4.61

Attention should be called to a special aspect of the Peach Bottom reactor for
which allowance must be made in computing resonance capture. Although the
fuel is lumped in small discrete particles in a graphite matrix, the fuel region
might have been treated as homogeneous were it not for the .thorium-232
capture resonances. Because the lump dimensjons are not small compared with
the mean free paths near the resonance peaks, however, the lumping must be
taken into account in computing the resonance absorption. The term" semi-
homogeneous" has been used to describe ~ system of this kind.

10.3b Outline of the Calculational Methods

In the application of multigroup methods to the reactors referred to above, the
gross migration of neutrons throughout the core can be treated adequately by a
simple approximation, such as PI or diffusion theory. This is possible because
the cores are large in comparison with neutron mean free paths (and migration
lengths). Within the individual lattice cells, however, the detailed variations of
the neutron flux with position. energy, and direction must be taken into account,
especially in the evaluation of resonance capture and the utilization of thermal
neutrons. These two effects are of decisive importance both for the criticality of
the reactor and its temperature behavior. In the following discussion emphasis
is placed upon calculations which are required to determine criticality and the
temperature coefficients of reactivity at various times in the lifetime of the
reactor core.

The first step in the calculation is to obtain microscopic cross-section and
related data for all the significant nuclides. Such data, especially for uranium-238
(and thorium-232 for the Peach Bottom reactor), must include the resonance
paramete~ i.e .• the measured parameters for the resolved resonances and the
theoretical distribution of the parameters for unresolved resonances (Chapter 8).

In principle. similar data should be available for the fissile nuclides present.
Because of the uncertainties in the resonance parameters of these nuclides (§8.2b)
and their relatively low concentration in the fuel, it is a reasonably good approxi-
mation to use cross sections averaged over many resonances for most of the
neutron energy range. The resonances at the lowest energies must, however. be
included explicitly.



Finally, a model must be specified for the scattering of thermal neutrons in
graphite (Chapter 7). For the calculations to be described here, the incoherent
approximation was employed with a phonon spectrum, as shown in Fig. 7.10.

The cross-section data in a form suitable for computer processing is used to
generate multigroup constants for cell calculations. The computer program
GAM-I62 was used, for example, in the calculations referred to below. This
program, based on the Pl or Bl approximations (§4.5c) with a guessed value of
the buckling, B, can yield group constants for up to 32 groups ·of nonthermal
neutrons; in addition, it includes a treatment of resonance absorption in
heterogeneous systems (§8.4c).

Differential cross sections for the scattering of thermal neutrons by graphite
were obtained from the SUMMIT program.63 The results were the numerical
values of the scattering cross sections for a fine mesh of initial and final neutron
energies. These were then used in the GATHER-I6. program to yield the
thermal-neutron spectrum in an infinite medium and this leads to the thermal
group cross sections. The various computations described thus provide multi-
group parameters for neutrons of all energies.

The multigroup constants were then employed in a cell calculation to deter-
mine the spatial distribution of the neutrons within a lattice cell for each energy
group. For the Peach Bottom Reactor, the situation is relatively simple since
the lattice cell is a fuel element, which can be assumed to be infinitely long,
having the geometric cross section shown in Fig. 10.19.

For the Calder Hall reactor, on the other hand, the lattice cell would include
the fuel element, its canning, and coolant passage, and also a proportionate
share of the moderator arranged as a cylinder around the fuel element (§3.6a).
The spatial distribution of the neutron flux within such a cell, which contains
thin regions and media which readily absorb thermal neutrons, cannot be com-
puted adequately by means of PI theory. A higher-order P,. approximation or
an S..•.calculation would be appropriate and an S,. program was used in some
of the calculations. If the cell geometry were very complicated, a Monte Carlo
treatment might be the best way (perhaps the only way at present) for computing
in a reliable manner the fiux within the cell.

The cell calculations would gh'e the reaclion and scattering rates for all the
materials in the cell and for aU the neutron energy groups. For use in the gross
neutron diffusion calculations, for which the cells are homogenized, effective
cross sections are defined in such a way as to preserve the reaction rates when
integrated over the whole cell. The procedure for determining these effective
cross sections is described in §3.6c.

10.3c Results of Cell Calculations

The results of the calculations e, have lhownlhat.. for the Peach Bottom reactor,
which contains fuel clements ofsman diameta' with low concentrations'offissile



material, the spatial variations of the neutron flux within a cell are relatively
slight and unimportant. In the Calder Hall reactor lattice, however, there are
substantial spatial variations in the flux that depend on the energy, particularly
for thermal neutrons. These variations were taken into account by using 26
groups of thermal neutrons. The results are conveniently summarized in Fig.
10.20 in terms of the fuel rod shielding factors for each of these groups. Since
the departure of the shielding factor from unity represents a depression of the
flux in the fuel relative to that in the moderator, it is evident that the spatial
dependence of the flux in a cell varies with the neutron energy. This variation is
due to the energy dependence of the neutron absorption cross sections in the fuel.

When the fuel has been burned to the extent of 800 MW-days/tonne (§10.2d),
a considerable amount of plutonium-239 is present in the Calder Hall reactor.
In calculating the shielding factors, this was assumed to be distributed uniformly
throughout the fuel elements. The corresponding shielding factors are indicated
by the broken lines in Fig. 10.20. A small shielding factor implies a marked
depression of the neutron flux in the fuel and hence a large absorption cross
section. Thus, the pronounced dips at 0.3 and 1.0 eV are due to resonances in
plutonium-239 and plutonium-240, respectively. The energy (or group) depend-
ence of the shielding factors is important in determining temperature coefficients,
as will be seen in §to.3f.
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The foregoing results, which are necessary for predicting reactor behavior,
provide an interesting example of the usefulness of multigroup methods and
their advantage over simpler treatments of neutron transport, especially for
thermal neutrons. It was clear to the earliest designers of heterogeneous graphite
reactors that diffusion theory was not adequate for predicting the migration of
thermal neutrons in and near fuel rods. Various ingenious methods were
devised for combining diffusion theory in the moderator with collision prob-
ability or other more accurate theories as applied to the fuel. In this manner, for
example, an accurate treatment was developed for the one-speed approximation
to thermal-neutron migration in simple geometry.66 The dependence of the
shielding factor on neutron energy within the thermal range, as indicated in
Fig. 10.20, can be obtained, however, only by the more detailed multigroup (or
equivalent Monte Carlo) calculations.

Effective reaction and scattering cross sections, defined in the manner given
earlier, can be derived from the results of the cell calculations. These are then
used in a multigroup Pi or diffusion-theory computation of gross neutron
migration. For this purpose it is not necessary to use as many groups as were
included in the cell calculation. Typically, a few fast groups together with a few
thermal groups suffice and they are obtained by combining a number of the
cell groups.

In connection with temperature coefficient calculations, discussed below;
two multigroup diffusion-theory codes were used, namely, GAZE-267 and
GAM BLE,68 which are one- and two-dimensional. respectively. Both codes,
allow for up-scattering of neutrons in the thermal-energy range. In applying the
one-dimensional code to a reactor with a more-or-Iess cylindrical core, a DB2

correction would ordinarily be made to represent leakage in the transverse
direction (§6.4j). In the two-dimensional calculation. for finite cylindrical (r, z)
geometry, no such correction is required.

Control rods or lumped poisons in the reactor would be treated in an
approximate way. A rlng of control rod~. for instance. would be represented
by a cylinder of poison of such amount as to ~i\'e the expected neutron
absorption in the rods. as computed ~paratel) b)' tran~port or Monte Carlo
methods.

The output of the diffusion-theory codes includes the reacti"it)' (or k) and the
gross spatial distribution of the neutron flu, and \arious reaction rates; from the
fission rates, the over-all (or grou) power distribution can be derived. When
these results art combined with the cxll calculatioM, .• hieh gi\e the fine structure
of the flux. the power density distribution. etc.. within the individual fuel
elements can be predicted.

The series of computer calculati •.lnl outlined above are lummarized in Table
10.1. The particular codes cited are thole applied in the General Atomic (now
Gulf General Atomic) organization which ••.• rnpoat.iblc (or the design of the
.Peach Bottom reactor. Other reactor dcsip orpniutions would usually employ



TABLE 10.1. OUTLINE OF MULTIGROUP CALCULATIONS FOR GAS-COOLED,
GRAPHITE-MODERATED REACTOR

~ross-.section data, [GAM-l]
mcludmg resonance MMIT

Geometry + parameters and thermal + SU
scattering model GATHER-l

Group constants
for cell calculation

Fluxes within cell
and group constants
for gross flux
calculations

i - - - - - - - - - - - - - --._________: Control poison :
.•. : calculations :

+ [g~~~tE]~ J

their own equivalent computer codes to carry out the same (or similar) set of
calculations. Several such code systems are described in Ref. 46.

By varying the temperatures of various regions of the system, either explicitly
or by using perturbation theory, it is possible to derive temperature coefficients
of reactivity under operating conditions. The changes in reactivity in going from
room temperature to the operating temperature can also be computed.

The codes described above can be combined with a burnup program in which
the concentrations of important nuclides are varied with time, so that changes in
reactor properties with time can be predicted (§1O.2c). The FEVER code,69 for
e\ample. has been used in connection with design studies of the Peach Bottom
reactor. This code is a one-dimensional, few-group burnup program which
generates the required fluxes during the course of the calculation. It follows only
gross depletion and not the detailed spatial variations within the lattice cells.
Because of the semihomogeneous nature of the Peach Bottom reactor core,
the gross depletion is adequate for this system. but it is not appropriate
for the Calder Hall reactor in which, as seen above, there are consider-
able spatial variations of the neutron flux, and hence in the burnup, within the
cell.

It may be mentioned that. in spite of the detaiL which can now be treated in
multigroup calculations. an actual design program for a new type of reactor
would always include integral experiments to complement and check the com-
putations.. Ne\'ertheless. considerable reliance would be placed on the calcula-
tions to predict the effects of variations in design parameters on the operating
characteristics of the reactor.



10.3d Components of the Effective Multiplication Factor

In order to gain some insight into the physical significance of the results of the
multigroup calculations to be described in the subsequent sections, it is helpful
to express them in terms of quantities which were employed in the early studies
of the theory of thermal reactors. In the simple theory of bare, thermal reactors,
for example, the effective multiplication factor, k, is expressed as the product of
the infinite medium multiplication factor, k/%), and the nonleakage probability,
PDl; thus,

k = kfDPDl•

Furthermore, kfD may be written in the familiar manner as the product of four
.factors, i.e.,

k/%) = TJfp£,
where TJ, in its most general form, is the number of fission neutrons produced
per thermal neutron absorbed in fuel, f is called the thermal utilization factor,
P is the resonance escape probability, and E" is the fast-fission factor.7o

It should be clearly understood that the four-factor formula will be used here
only as a means for expressing the results of detailed multigroup calculations, as
described in §1O.3c, and of understanding their physical significance. The
reactivity (or k), in particular, is derived entirely from multigroup calculations.

Suppose that it is desired to express the results of such a multigroup reactivity
calculation in terms of the simple formula

k = TJfPEP DJ· (10.53)

There are no unique definitions in multigroup theory for the quantities on the
right side of this expression, but a set of consistent definitions can be derived
from considerations of neutron economy. It will be recalled (see, for example,
§4.4d) that in a multigroup calculation. k will generally be found by iteration of
the fisSion neutrons; furthermore. in §I.~ k is regarded as the asymptotic ratio
of the numbers of neutrons from successive generations of fission, i.e., it is the
ratio computed with the flux eigenfunctlons corres~nding to the eigenvalue k.
On this buis. the following consistent definitions '71 could be used for the factors
in equation (10.53).

The quantity Pat is first defined as the probability that a source (fission)
neutron. with a source spatial distribution gi~n by f 4f>(r. E)va/(r. E) dE, is
absorbed in the reactor core. Thu~ PsJ is the number of neutrons absorbed in
the core divided by the number of fission source neutrons in the k calculation.

The th~al utilization, f. can be defined as the probability that a thermal
naJtron which is absorbed in the core is absorbed in fissile material. Hence, f
could be computed as the thcmW-DC'Utron absorptions in fissile nuclides
divided by the total thermal absorption in the core. The factor 1J would then be
the Dumber of neutrons prod~ from t.hennal fisUOIl divided by the number
of t.hennal neutrons absorbed in fisWe species..



Along the same lines, the resonance escape probability, p, can be defined as
the probability that a neutron which is absorbed in the reactor core is absorbed
as a thermal neutron. Finally, the fast-fission factor, £, is defined as the total
number of fission neutrons produced divided by the number of neutrons formed
as a result of thermal fissions.

In these definitions, it is assumed that all the fissile (and fissionable) material
is in the reactor core. To implement the definitions, it is necessar¥ to specify
the thermal energy range; this is commonly taken to extend up to about 1 or
2 eV. It will be evident t~at the four-factor formula for k is useful only when
most of the fissions are caused by thermal neutrons, so that p and £ are then
close to unity.

10.3e The Reactivity Temperature Coefficients

Among the most important properties in determining the operating character-
istics and safety of a nuclear reactor are its temperature coefficients of reactivity.
In graphite-moderated, gas-cooled reactors, the temperature coefficients arise
primarily from neutronic effects, since the effects of coolant density and thermal
expansion on reactivity are very slight. In a heterogeneous natural-uranium
reactor, such as the Calder Hall type, the over-all temperature coefficient is, to
a large extent, determined by two quantities, namely, the fuel and the moderator
coefficien ts.

A negative prompt coefficient associated with the fuel temperature arises
from the Doppler broadening of the resonances in uranium-238 (§8.ld); this
will always result in an increased absorption with increasing temperature and,
hence, a decrease in reactivity. The temperature coefficient associated with the
moderator is somewhat delayed (§9.4b) and is due to changes in the thermal-
neutron spectrum corresponding to changes in the moderator temperature. This
temperature coefficient can be either positive or negative, as will be seen shortly,
depending on the amount of plutonium-239 present in the fuel.

A temperature coefficient of reactivity is usually defined as

op I ok
cT = k aT'

where T is the temperature of interest, e.g., an average (or effective) moderator
or fuel temperature. From the discussion in §9.2c, it will be seen that this
definition corresponds to use of an adiabatic approximation for defining the
reactivity.· Such an approximatiori is particularly appropriate for the treatment
of $low transients. In an actual transient, some problems would arise from the

• Strictly speakin •• equation (9.17) would lcadto
ep I ok
oT- Par

but rew Ie dole 10 unity. the lemperature coefficient is essentially the same as the one Jiven
above..



distribution of temperatures within the fuel and moderator; nevertheless, the
temperature coefficients for constant (average or effective) fuel and moderator
temperatures are a useful way of summarizing reactor response. In addition to
the individual fuel and moderator coefficients, an isothermal temperature
coefficient can be defined by considering the whole reactor core to be at a uniform
temperature.

The simplest approach to the calculation of the various temperature co-
efficients referred to above is to evaluate k at two temperatures and then to
derive the coefficient from

1 ok "" 2 k(T1) - k(T2)

k aT at -t(T1 + T2) "" k(T
1
) + k(T

2
)· T

1
- T

2

Alternatively, perturbation theory could be used to obtain the change in k due
to a small change in cross sections arising from a change in temperature.
Although the latter procedure might be the more accurate, it would involve
computation of the detailed adjoint fluxes. Consequently, the first of the two
methods was used to obtain the results which are quoted below.

If k is interpreted in terms of equation (10.53), then the temperature co-
efficient may be expressed as

I 3k I cTJ I c( I cp 1 (Of: I (}Pol

k 8T = ~ cT + 1 iT + P co T + ~( T + PDl cT' ( 10.54)

Since the fuel temperature coefficient is largely due to the effect of Doppler
broadening on the resonance absorption. it may be simply taken to be equal to
the third term on the right of equatIOn (10.54); thu~.

I cp
Fuel temperature coefficient::: - -T'P(

Hence. to a fair approximation. the remainder may be regarded as the moderator
temperature coefficient. i.e., .

I ik I ip
Moderator temperature coeffiCient ~ T -r - - -:--T'

It. ( pc

It is e\ ident that the quantit) (1 '1)( l'TJ 't T) 1\ JXlrt of the moderator temperature
coefficient. The physical reason IS that TJ is determHlcd by the energy spectrum , i

of the thermal neutrons and this is dependent on the temperature of the
moderator rather than of the fuel.

For a semihomogenrous reactor, wch as one of the Peach Bottom type, the
unusual nature of the fuel introduces so~hat d.fferent detailed temperature
coefficients of reacti"ity. ThC'Tewould be a 'cry fast coefficient associated with
the temperature of the small uramum and thorium ~rbtdc particles; this would
be negative l?ecause of the Doppkr broadminJ enhancement of neutron absorp-
tion by thorium-232 with increuin, kmperaturc. In rderTlq to the fuel tem-
perature coefficient as very fast. it is uwmcd t~t the unnium.23S carbide and



thorium carbide are intimately mixed in the fuel particles. If the carbides were
separate, then the, temperature response would be delayed because of the
necessity for heat to flow from the uranium-235 to the thorium-232 before
Doppler increase of the resonance absorption could be effective.

In addition to the fuel coefficient of reactivity, there would be a fairly fast
temperature coefficient arising (rom changes in the neutron spectrum due to
temperature changes of the graphite matrix containing the fuel particles. For
most purposes, however, this contribution of the moderator could be combined
with the one arising from Doppler broadening in thorium-232 to give a prompt
temperature coefficient.

Finally, there would be a delayed coefficient, as for the Calder Hall reactor,
associated with the temperature of the unloaded graphite. Because of these
(and other) complications, only the isothermal temperature coefficient of the
Peach Bottom reactor will be considered here in any detail.

The neutronic properties of a natural-uranium reactor change appreciably
during operation as plutonium-239 is produced in the fud. At the beginning of
operation, neutrons are absorbed mainly in the uraniurn-235 and uranium-238,
approximately half in each of these two nuclides. Since the initial conversion
ratio is quite high, namely, 0.85 in the Calder Hall reactor, plutonium-239 is
generated almost at the same rate as uranium-235 is consumed. But the thermal
fission cross section of plutonium-239 is much larger than that for uranium-235;
as a consequence, after a short time of operation k increases due to the buildup
of plutonlUm-239 in the reactor.

Effective thermal cross sections, described in §1O.3b, are given in Fig. 10.217~
as a function of temperature. in the energy range up to 2.1 eV, for the Calder
Hall lattice. As mentioned previously, the plutonium-239 is assumed to be
distributed uniformly in the fuel; actually, however,it will be produced prefer-
entiall) In the outer parts of the fuel rods where there is less shielding. Hence,
the etTectl\e plutonium-239 thermal cross sections will be even larger than
indicated in the figure. In any e\ent, it is apparent that the cross sections for
plutomum-!39 are more than double tho.se for uranium-235.

Values of k and of the isothermal temperature coefficients for the Calder Hall
reactor "'CfC calculated using multigroup methods (§10.3c). The results. inter-
preted according to the four-factor formula, are recorded in Table 10.2 for the
beJinning of operation and in Table 10.3 for a composition corresponding to
an exposure of about 800 MW-days!tonne, which is about half the fuel life."
In makin, the calcu1.ltions for Table 10.3, the poisoning effect of fission products,
indudln, ~on-I3S and umarium-149. was not taken into accounL Hence,
tbe racti"ity chan,es are due to consumption of uranium-235 and buildup or
plutonium-2J9 only:



TABLE 10.2. CALCULATED PROPERTIES OF THE CALDER HALL REACTOR AT
THE BEGINNING OF OPERATION.73

Temp.
oK k 1 TJ P Pnl

323 1.0355 0.5839 2.0642 0.8193 1.0800 0.9709
530 1.0224 0.5815 2.0568 0.8158 1.0809 0.9694
700 1.0146 0.5816 2.0486 0.8135 1.0814 0.9680
900 1.0078 0.5822 2.0402 0.8112 1.0819 0.9667

Isothermal Temperature Coefficients (in 10-&rC)

Temp. !(Ok) !(01) !(OTJ) !(OP) !(~) _1 (OPnl)oK k aT 1 aT TJ aT p aT € aT Pnl aT

426 -6.136 -1.996 -1.723 -2.091 +0.413 -0.736
615 -4.511 +0.0607 - 2.355 -1.644 +0.297 -0.871
800 - 3.382 +0.563 -2.049 -1.455 +0.218 -0.657

TABLE 10.3. CALCULATED PROPERTIES OF THE CALDER HALL REACTOR AFTER
800 MW-DAYS/TONNE BURNUP. 73

Temp.
oK k f ''I P Pnl

323 1.0604 0.6052 2.0415 0.8193 1.0779 0.9717
530 1;0578 0.6144 2.0171 0.8157 1.0780 0.9707
700 1.0622 0.6271 1.9925 0.8135 1.0775 0.9698
900 1.0691 0.6415 1.9684 0.8111 1.0768 0.9692

Isothermal Temperature Coefficients (in to-lltC)

T~mp. } C';) !(if) !(~Tj) !(~p) 1 (O€) _1 (aPDI)(;K I i:T Tj c:T p c:T f aT Prd oT

426 -l.l68 + 7.226 - 5.816 -2.089 +0.0111 -0.501
615 + 2.453 + 12.07 -7.197 -1.647 -0.2602 -0.518
800 +3.219 + 11.37 -6.097 -1.454 -0.3058 -0.295

A number of features of Tables IO.2and 10.3are of interest: It will be observed,
in the first place. that k is larger for the 800 MW-days!tonne core than at the
be~inning of operation. This is seen to be due to the increase in/. caused by the
large cross section of plutonium-239. Moreover. this increase is more than
enough to compensate for the decrease in ". which is smaller for plutonium-239
than for uranium-23S. The prompt fuel temperature coefficient, expressed by
(I!p)(i'qjcT). is negative, as expected, and remains almost unchanged during



800 MW-daysJtonne of operation. Evidently, the slight depletion ofuranium-238
and the changes in fissile material have little over-all effect in this connection.

The moderator temperature coefficient, taken as the difference between the
total coefficient and the contribution from the resonance escape probability, as
indicated earlier, is seen to change from negative at the beginning (Table 10.2)
to positive after a period of operation (Table 10.3). An examination of the tables
shows that the large (positive) increase in (lJf)(8f18T) is responsible for the
change in sign. Physically, this means that in the middle-of-life core, the propor-
tion of thermal neutrons absorbed by fissile nuclei increases with temperature.
From Fig. 10.21, it is' evident that this situation arises from the increase in the
effective thermal cross section of plutonium-239 with increasing temperature.
The basic cause of the increase is the pronounced resonance at a neutron energy
of 0.3 eV. The shift in the thermal-nel,ltron spectrum in the moderator with
temperature results in more neutrons with energies in the vicinity of the
plutonium-239 resonance as the temperature increases in the range of interest.
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It follows, therefore. that the positive moderator temperature coefficient in a
Calder Hall reactor core which has operated for some time is due to the presence
of plutonium-239.

Another matter apparent from Tables 10.2 and 10.3 is that (I/TJ)(?T,/oT) has
undergone a relatively large negative increa~ as a result of reactor operation.
There are two factors responsible for this change. both being related to the
formation of plutonium-239. First. the value of '1 for plutonium-239 is smaller
than for uranium-235 and. second. Y] for plutonium-239 decreases with tem-
perature or. more specificalJy. iJTJ!cE is negative for this nuclide for neutron
energies ~ 0.3 eV.

Although several approximations have been made in computing the tempera-
tun: coefficients under consideration. notably uniform consumption of uranium-
235 and buildup of plutonium-239 and ~g.1ect of fission-product poisoning, the
results are in fairly good agreement with experimcnt.H It might appear, at first
sight.. that the positive isothermal temperature coefficient of reactivity in the
middle of the core life. at temperatura abow: about 5CXrK. would lead to a
hazardous and unstable situation. However. because of the negative prompt fuel
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coefficient. together with the large heat capacity of the moderator and the
consequent long delay in the temperature increase, there should be no difficulty
in controlling the reactor by rod motion or other means. This has been confirmed
by transient experiments on the Calder Hall reactor 75; the response is either
stable or the power may diverge so slowly that it is readily controllable.

Reference may be made to two other aspects of the calculations on the Calder
Hall reactor. First. the effect of equilibrium amounts of xenon-135 and samari-
um-149 on the temperature coefficients has been determined for the beginning
of the core life. These fission-product poisons serve primarily to depress the
thermal utiJautlon and the influence on the temperature coefficient is indicated
In FIg. 10.11.'·

Flnall~. it was mentioned earlier that the detailed multigroup treatment of the
thcr~1 neutrons in a lattice cell was an important feature of the calculations.
This point l~ Illustrated In Fig. 10.23,77 where it is seen that the temperature
cocffiaent, opccially (I !f)(i/ii'T). is substantially affected by the use of energy- .
dependent shielding fact on. as compared with a single (constant) value for
thermal neutrons.

10.3g Results for the Peach Bottom Reactor

. Stncclhe Peach Bouom reactor is a relatively small prototype HTGR. it bas
...·....mort ftuilc material per unit volume than would be necessary for a larger

.reactor 0( the same type. As a rcsult~ the conversion ratio is relatively low, i.~



initial expected value 0.4, as stated earlier. Furthermore, £ is approximately
1.25 and p about 0.62,78 both of which differ from unity by more than should
be realized in a larger core.

Some effective thermal-neutron (microscopic) cross sections in the energy
range up to 2.1 eV, as a function of temperature, are shown in Fig. 10.24; they
were computed by multigroup methods for an isothermal core of a small
HTGR at the beginning of core life.79The dashed curves ,indicate the variations
to be expected for Ifv-absorbers.

For temperatures up to about 15000K (or so) the effective absorption cross
section of uranium-233 is only slightly larger than for uranium-235. This fact,
combined with the low conversion ratio, would imply a relatively rapid decrease
in k with burnup of the uranium-235. Consequently, it would be advantageous
to use boron-IO as a lumped burnable poison (§10.2f) to reduce the reactivity
decrease during operation of the reactor. The sort of gain to be expected in the
Peach Bottom reactor was shown in Fig. 10.15, where the lumping of the boron
was such as to give an initial self-shielding factor of 0.5. In a larger HTGR,
with a high conversion ratio, approaching 0.9, the normal change in reactivity
during operation would be less than indicated; in that case there would be no
special benefit in the use of a burnable poison.

A prompt negative temperature coefficient of reactivity, caused by Doppler
broadening of the thorium-232 resonances, is to be expected in the Peach Bottom
reactor. There are, however, some positive coefficients arising from changes in
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the thermal-neutron spectrum. In this energy region, the fissik nuclides,
uranium-233 and uranium-235, are competing for neutrons with thorium-232,
which is essentially a 1lv-absorber, with fission-product poisons, and with a
burnable poison, if present. Consider, first, the comPetition of the fissile nuclides
with the IIv-absorber. The effective thermal absorption cross section of uranium-
233 is seen from Fig. 10.24 to decrease less rapidly with temperature than if it
exhibited the Ilv-dependence on energy. Hence, if sufficient uranium-233 is
present, it will lead to a positive contribution to (l/f)(ofloT) and also to the
temperature coefficient. The fission product xenon-135 has a similar effect (see
Fig. 10.27), since the effective thermal cross section decreases more rapidly with
increasing temperature than does a IIv-absorber, as shown in Fig. 10.25.79

For a lumped boron-IO burnable poison, on the other hand, the effective cross
section falls off with temperature more slowly than a l/v-absorber. Hence, it
makes a negative contribution to (llf)(ofloT). Under certain conditions, namely,
near the end of the core life of the Peach Bottom reactor, when there is a maxi-
mum of uranium-233 and a minimum of boron-IO with xenon-135 present,
calculations show that the net contribu~ion of the thermal-neutron spectrum to
the isothermal temperature coefficient is small and may be positive.80 Since the
prompt coefficients are more negative, however, the over-all (isothermal)
temperature coefficient of reactivity is still negative. Thus the situation is not
hazardous.
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Even if the over-all temperature coefficient were positive, the reactor could be
operated safely because the prompt coefficient is negative. This is the case, as
already indicated, for the Calder Hall reactor which has a positive isothermal
temperature coefficient around the middle of its core life at the normal operating
temperature of about 600oK. In order to increase the temperature stability of the
Peach Bottom reactor, rhodium-l03 is added to the fuel; the effective thermal-
neutron absorption cross section of this nuclide actually increases with tempera-
ture8l above about 15000K (Fig. 10.26). Hence, it makes a large negative
contribution to (l/J)(oJ/oT), as shown by the calculated curve in Fig. 10.27, which
corresponds to the addition of 5 kg of rhodium-103 to the almost 2000 kg of
fuel mixture.82 It should be mentioned fhat rhodium-I03 is formed as a fission
product and this also contributes to the negative temperature coefficient.

Some calculated values of the isothermal temperature coefficients, and of their
components. are given in Tables 10.4 and 10.5, for the beginning and end,
respecti,ely. of the core life.83 The multigroup methods and codes already
described were used and allowance was included for the added rhodium-I03.
The relatively minor contribution of the nonleakage probabi.lity to the tem-
peratur-ccoefficient is due to variations in the neutron flux in space and energy
as the core temperature changes.

TABLE 104 ISOTHERMAL TEMPERATURE COEFFICIENTS OF THE PEACH BOnOM
REACTOR AT THE BEGINNING OF CORE LIFE (in 10-StC).83

T~mp. !(~) !(('~)!(ff) !(~£) ~ (OP) _1 ePn1)
A" A (1 'I c'T f cT £ cT P cT Pnl aT

4~0 -7.0 - /.0 -1.2 + 1.3 -6.1 -0.0

1 . 7~ - 5.S - 1.0 -1.7 + 1.2 -3.9 -0.1
1050 -4.7 -0.6 -2.3 + 1.2 -2.8 -0.2
IHO -4 ..1 -0.1 -2.9 + 1.0 -2.1 -0.1
16~ -44 -0.1 -3.6 + 1;3 -1.8 -0.2

TABLE 105 ISOTHERMAL TEMPERATURE COEFFICIENTS OF THE PEACH BOnOM
REACTOR AT THE END OF CORE UFE (in 10-11rC).83

1",.,. !(tic) 1(i'1r) !(Cf) !(af) !(CP) _I ePa.)
'K • ('1 1f ('1 f cT f aT p aT Pal iJT

7'0 -).1 -1.0 + 1.6 +0.3 -3.8 -0.3
U~ -1..) -0.1 -0.1 +0.3 -2.1 . -0.3
1900 -1.• +0.1 -1.8 +0.6 -1.6 -0.4

...



EXERCISES

1. Consider one-speed diffusion theory in a bare slab. The flux may be expanded in
spatial modes proportional to cos (mrxla), where a is the slab thickness, and for
each mode there will be seven period eigenvalues. Characterize these eigenvalues
for the system. As a further exercise, somewhat more complicated models, such
as a two-group bare slabB4 or a reflected reactor,85 may be considered. The
more difficult problem of one-speed transport theory for a slab is treated in
Ref. 86.

2. When a system is close to (delayed) critical the spatial effects described in §10.le
in connection with the pulsed-source experiments are relatively less important.
Explain why by considering the expansion equation (6.45). It may be useful to
employ the eigenvalue spectrum found in Exercise 1.

3. Obtain the solutions to the point-reactor equations (10.20) and (10.21) for one
group of delayed-neutron precursors, e.g.. by Laplace transform methods.
Show that when A>. « 1, the solution has the properties of equations (10.22)
and (10.26).

4. In addition to the pulsed-source method. reactivity can be determined by
•. source-jerk" and" rod-drop" experiments. In the source-jerk method a sub-
critical system initially contains a s.ource which is withdrawn abruptly. Detector
readings are taken before and after withdrawal of the source. In the rod-drop
experiment, the system is at delayed critical when control rods are suddenly
inserted. The reactivity of the subcritical reactor is then determined.87

By considering the point-reactor kinetics equations" show how these experi-
ments might be interpreted to yield the reactivity in each case. Discuss the
problems which arise when spatial effects are taken into account and describe
the manner in which these effects may be calculated using time-independent
methods. Do these procedures present any advantages over the pulsed-source
method?

5. One-speed diffusion theory is to be used to analyze the following pulsed-source
problem. Consider slab geometry as in Exercise 1. with a source Q(x, t) =
Q( x) O(r). Expand the time-dependent flux 10 a complete set of spatial modes and
diSCUSShow an experiment might be \(:t up 10 order to mintmize the contribution
of the higher modes in a reactivity cktermlOation. How will the results change
"hen energy dependence is taken IOto account 7 For wmc actual experimental
details, ~ Ref. 88.

6. By using one-speed diffUSIOn thcor). anatyu the follo"\01 neutron-wave experi-
ment. Suppose there IS a source Q(x. t) lit b(x)cr""" on the midplane (x = 0) of a
very long rectangular parallelepiped ~Vtnl thlCkneu d in both the y and z
directions. Expand the flux in ~ of ,palW modes (or the y and z dependences
and find the x dependence (or each wlutton. Obu.in the complete solution and
discuss its behavior for luJC x. For companson with a realistic experiment
Ref. 89 may be consulted.

7. If the half-life of a radioactive nuchdc it lhart coouJh. the nuclide can be
neglected in a burnup aleulahon (a.tIO.h). ~Iop • criterion (or the
maximum half-life for which such ncPect mieN be permissible.

8. Consider a thermal reactor usinl uramum enriched to " atomic percent in
uranium-2JS aJ fuel. Suppose that _. 'D equauoa (IO.SO) is such that k. is
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initially 1.30, with the reactor in hot operating condition and equilibrium xenon
and samarium poisoning and all control rods out. The reactor can operate until
k a:J falls to 1.10; calculate the expected core lifetime in MW -days/tonne of
uranium, taking only thermal neutrons into consideration. Fission products,
conversion of uranium-238, and all spatial dependences are to be ignored. For
simplicity, the cross sections and related quantities may be taken to be the
values at 0.06 eV.

Suppose that boron-lO is added homogeneously to the fuel so that ka:> is
initially 1.10. By how much will this decrease the required control capability
and the core lifetime? With the same -amount of boron-l 0, suppose the uranium-
235 in the fuel is increased so that the initial ka:> is the same as in the unpoisoned
reactor (1.30); calculate the expected core lifetime.

Examine the possibility of using boron-lO as a lumped burnable poison in
sl.K:h a manner as to compensate almost exactly for the changes in reactivity
during reactor operation.90-

9. In a reactor in which thorium-232 is converted into uranium-233, the inter-
mediate protactinium-233 is present for a time long enough for it to capture an
appreciable number of neutrons. What fraction of the protactinium-233 will
decay and what fraction will capture neutrons in a thermal reactor operating
at a temperature of 500°C with an average thermal flux of 1014 neutrons cm2-sec
in the fuel? How would this affect the conversion ratio?

10. Suppose that k has been obtained by iteration of a fission source. Use the
transport equation, e.g., equation (1.49), to write out the definitions of TJ, f, P.
and f in mathematical form and show that they are self-consistent. Express the
results in the notation of multigroup diffusion theory. (Comparison may be
made with Table 3-1 of Ref. 53.)

It. By using the effective thermal cross sections in Fig. 10.21 and elementary one-
group reactor theory, estimate the reactivity required to compensate for equilib-
rium xenon-135 poisoning in the Calder Hall reactor. Assume an average
operating temperature of 6000K and either estimate the thermal-neutron flux or
obtain the value from Ref. 56 and suggest reasons for any discrepancy. Deter-
mine the contribution of the equilibrium xenon-l35 to (l/f)(of!on arid to the
over-all temperature coefficient. Compare the results with those in Fig. 10.27.

IZ. Calculate t'he shielding factor for a lump of boron-lO in the form of a sphere
with a radius of I mean free path for a neutron ofO.025-eV energy. Use collision
probability methods and assume that the sphere does not perturb the incident
flu,," from the moderator. Determine the shielding factor as a function of energy
and estimate the variation of an effective shielding factor with temperature for a
Maxwellian thermal-neutron spectrum. Comment on the results.
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APPENDIX. SOME
MATHEMATICAL
FUNCTIONS

THE DELTA FUNCTION

The Dirac delta function, S(x), may be defined by the requirements that
Sex) = 0 x :f. 0,

f f(x) cS(x) dx = f(O)

if the range of integration includes x = 0, and is zero otherwise. The second con-
dition must hold for any suitably continuous function, f(x). The delta function may
be lIven a ri,orous mathematical interpretation as the limit of a series of increasingly
peaked functions; it is in this sense a ••generalized function." 1

Upon chanae of variable it is seen that

f f(x) s(x - a) dx == f(a)

J l(x) &(~)dx = af(O),

proyided that the ranae of intqration includes x == a or x - O. respectively. More
ICQCUJly. an tntqral involvinl &[,(x». where g(xo) == 0 may be interpreted u

J /(x) 6I#(x)) dx -I~r
dx ••••

iI the ruae of intqration includes x - x •.



There are many ways to represent the delta function. One, which is used in this
book, follows from the Fourier transform formula

I flXl flXlf(x) = - e-1t<X-lI)f(y) dy d~,
21T - lXl - lXl

which suggests the representation

f~lXl e-I~x d~ = 21T Sex).

It is consistent with the properties of the delta function to set
x Sex) = 0

for all x. From this it follows2 that the equation

if the values x = 0 is to be included, but rather
A B
- = - + c S(x),
x x

where c is an undetermined constant. Extensive use is made of this observation in
developing Case's method in Chapter 2.

The gamma function, f(x), is given by

f(x) ,;, fa~ tx-1e-1 dt

so long as the real part of x is positive. It satisfies the recurrence formula

r(x + n = xr<x).

r(l) =

r(H = "r;
and for integral values of x, x = n + I,

r(n + 1) == 1·2 .. ·(n) ••••n!.

Tables of the pmma function are available.3

THE ERROR FUNCTION

The error function, err (x), is defined by the integral

erf'(x) - 2...f- ,.-.-dM.v;.



As x increases from zero to infinity, erf (x) increases monotonically from zero to one.
It may be represented by the series

, 2 ( x
3

x5 x
7

)erf (x) = - x - -- + - - - + ...vr; 3·1! 5·2! 7·3!
or, for large x, by the asymptotic expansion

e - x2 ( 1 1.3 1 .3 .5 )
erf (x) ~ 1 - xvr; 1 - 2x2 + (2X2)2 - (2X2)3 + ....

The error function is also available in tabular form.4

The exponential integral, Eix), is defined for real positive x and n a positive integer
by the integral

e-X

Eo(x) = _.
x

J<Xl e-U

E1(x) = - du = -Ei (-x)
x u

and the function - Ei ( - x) is often called the exponential integral.
The exponential integrals satisfy the recurrence relations

E"(x) = fx<Xl E"_l(X')dx'

dEn(x)

d = -En-1(x)x

1
E••(x) = -1 [t'-x - XE',.-l(X)] for n > 1.

n-

Equation (I) shows that all the exponential integrals canbc found from E1(x).
However, it is convenient to have tabulations~·e including n = ~ 3, 4, for use in
neutron transport problems.

For small x, the series expansion is sometimes useful, namely,
•,(-x>- X--1

~o m!(n - I - m) + (-I). (n _ l)!(log x-A. + ,,)
.".-1



where y is Euler's constant (= 0.577216), Al = 0, and An = 2~:11/m. This shows
that as x goes to zero, all the exponential integrals for n ~ 2 remain finite, indeed
£n(O) = l/(n - 1). However, £1(0) diverges logarithmically.

For large x, £n(x) has the asymptotic expa:lsion

£n(x) ~ e-x [1 _ ~ + n(n + 1) _ n(n + 1)(n + 2) +...J.
x X x2 x3

THE LEGENDRE POLYNOMIALS

The Legendre polynomials may be defined by the refations

Po(x) = 1
1 dn

Pn(x) = -2 '-d (x2
- 1)n forn = 1,2, ....nn. xn

They may also be defined as the unique (except for normalization) set of polynomials
orthogonal on the interval - 1 ~ x ~ 1, such that n is-the highest power of x in
Pn(x). In fact, they satisfy the orthogonality relation

fl 20mn
Pm(X)Pn(x) dx = 2 1

-1 n +
where omn, the Kronecker delta, is unity if m = n and zero otherwise. The first few
polynomials are

Po(x) = 1
Pl(X) = x
P2(x) = !(3x2

- 1)
P3(x) = ~(5X3 - 3x).

They satisfy the recurrence relations
1

xPn(x) = 2n + 1 [en + l)Pn+l(x) + nPn-1(x)]

dPn .'
(x:Z - 1) dx = n(xPn - P,,-l)'

The Legendre polynomLals fo.rm a complete set 7.8 of orthogonal functions for the
expansIon of a functIOn. [(x), defined on the Interval - I ~ x ~ I. In particular,
if ICt) 1<; real and ~quare Integrable, i.e., the Integral

f 1 1[(x)i2 dx
• - 1

eXLsts and I~ filllte, and if the expansion
N

f<x) :: ') f.P .(x)•.....
•-0

f.",,2n+
2

1 fl-1 f(x)P.(x) dx



This equation is an expression of completeness in that the mean square deviation of
the expansion from the function goes to zero as N -- 00. If the function I(x) is
piecewise continuous or of bounded variation,7 then in addition

N

lim "" InPn(x) = I(x),
N--.aJ Ln=O

if I(x) is continuous at the point x, whereas the limit approaches
t[f(x + 0) + I(x - 0)]

if I(x) is discontinuous at the point x, having the (finite) limits I(x + 0) and I(x - 0)
as x is approached from the two sides.

It is of interest to note that equation (3) may be written
(Xl

~ 2n + 1Il
,I(x) = L 2 _1 l(x')P n(x')P n(X) dx

n=O

(Xl

"" 2n + 1 ,
S(x - x') = L 2 Pn(x )Pn(x).

n=O

Thus, the delta function may also be used in this way to indicate completeness of
a set of functions.

When the neutron flux is expanded in Legendre polynomials, Pn(fL), then except
for possible delta functions arising from an anisotropic source, it would be expected
that the expansion would converge as in equation (3), with a possible discontinuity
in slab geometry at fL = 0 (§3.5a).

The associated Legendre function, Pj(x) is defined for integral values of m = 0,
I, .. ,I by the formula-

DfII(X) _ ( l)m(l _ x2)m/2 dmp,(x).r, - - ~m

From thIs It is seen that P?(x) = PI(x). If equation (2) is used for P,(x), then it
follows that

and this equation can be used to extend the definition of Pj'(x) to negative integral
values of m such that Iml < I. It can then be shown that

_ '"(1- ~!
PI "'(x) = (-I) .(I + m)! Pj'(x}.

• The chotec of phase. (-1)-. (or P;"(x) is a common one and is used in Ref. J. It is not
employed un~. hownoer. see e.I .• Ref. 9, and the reader should check the usqe 01
any partICUlar author.



The associated Legendre functions satisfy the orthogonality relation

fl ( ) d 2 (l + m)! S
_1 PFPjJ x x = 2/ + 1 (l _ m)! Il'

and the recurrence relations

1
xPr(x) = 2/ + 1 [(I - m + l)PI"+ leX) + (I + m)Pr-l(x)]

dPF(x)
(x2 - 1) dx = LXPr(x) - (l + m)PF-l(X).

The first few associated Legendre functions are
Piex) = - (l - X2)112 P~(cos 8) = - sin 8

P~(x) = - 3(1 - X2)112 X P~(cos 8) = - 3 sin 8 cos 8

P~(x) = 3( 1 - x2) P~(cos 8} = 3 sin2 8.

The normalized spherical harmonics, Y,m( 8, ct} are defined by·

)
2/ + 1 (/ - m)!

Y,m(8, q:) = 47T (I + m)! /'7"<cos 8)t'1"' ••

From equation (4) it can be seen that

Y
"

_•••( 8, q-) = (- 1)'" Y/~,( 8, If)

where Y,:. is the complex conjugate of )',•.•.
The spherical harmonics are orthonormal an that

"2" "1.10 J _ I Y, •••(8. ff) Yj~",(8, If) d c~ e dq- = Oil h",,,,-

and complete, an that if a function f( e, v) i\ c\pandcd an the scn~
L

f( e, a) = ". ". r V (., .)T J,. 'I... • l'

L I

lim ') ) I.Y.<'. Y) - f(' .• ).
L--C.""'" •••••

1-0 .·-1
• It may be noted that in some booh .. the term ."."kw/ •• ffftf1IIk 1I uted for • r.olution

of laplace'. equahon in 5PhericaJacomett). 1M UICdll'en froat thai "¥Cfl '0 equation (4)
by a POWff or,. the radial coordinate, and r••••theft c::aDcda ~ ••••••••• Aaain, the
phase con~enhon is not univenaUy u1C'd as mdtalCd .ft the p.roc;cdma rootDo4c.



APPENDIX FIG. 1 COORDINATES FOR ADDITION THEOREM OF SPHERICAL HAR-
MONICS.

This limit will be approached for any suitable function I( 8, <p), in particular, if
I( 8. Cf) is given in the region - I ~ cos 8 ~ I, 0 ~ <p ~ 2rr and is continuous and of
bounded variation.1o If I is piecewise continuous, then at a discontinuity the mean
value will be approached. Note that instead of the functions Y'm, the real functions
P;"(cos 8) cos mCf and P;"(cos 8) sin mep can equally well be used for the expansions.

The spherical harmonics satisfy the important addition theorem. Let two points,
P and r. on the unit sphere have the coordinates (8, Cf) and (8', <p') as shown in Fig.
I and let y be the angle bet"een the vectors to P and P'. Then

I
4rr ,~

p ~cos y) = 2/ + I L
III. -J

~hich. using the definition of Y'III in equation (4), may be readily reduced to the form
used in this book

I
'" (I - m)'P,(cos y) - P,(cos ')P,(cos 6') + 2 2 (/+ m); Pj'(cos 8)Pj'(cos 8') cos [m(ep - ep'»)•

• -I

Derivations of the addition theorem and the other equations involving Legendre
functions in this Appendi~ may be found. for example, in Refs. 7, 10, 11.
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variational calculation, 298-301
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difference equations, 271-72
flux. See Adjoint, function
function, 253, 255

boundary conditions, 255
and delayed neutrons, 545-46
and neutron importance, 257, 262-

64. 269
physical significance. 256
and reactor kinetics, 468-71
time-dependent. 266
trial. Su Trial functions
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ational methods
Green's function. 258, 261, 267
transport equation, 255, 291, 545

and ftux-weighted integrals, 291
integral. 261
multi group. 272, 273
one-speed. 259-61, 27G-71

transport operator. 254
spectrum. 265
and criticality. 264-66

Aae-dilfusion theory. 209-211
lDultilfOUp. 211

AJmo.t self-adjoint operator, ooe--speed,
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thermal, 327

Alpha (a) eigenfunctions, 38-41, 43-44
and delayed neutrons, 542-46

Alpha (a) eigenvalues, 39-43
and criticality, 41-43
and delayed neutrons, 542-46
perturbation, 274-77
variational methods, 295
and thermal neutrons, 367-75

Amplitude factor, reactor kinetics, 468
transfer function, 486
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in cell calculations, 166
continuous, 15
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in discrete ordinates. See Discrete or-

dinates
expansion, 168-69
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Associated Legendre function, 607
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100
reactor theory, 17••
relaxation length. 71-72, 90, 105-107
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cross sections, 321-22
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plane geometry, 136-43
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experiments, 375
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Dirac delta function, 603
Disadvantage factor, cell. 168
Discontinuity condition, 68, 74, 84
Discrete ordinates methods, 52~53, 214-

49
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and temperature. 404
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Effective multiplication factor, 44-47
components, 586
computation, 205-206
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with delayed neutrons. 542-46
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problems. 37-48
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relaxatioa length. 370-72
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types. 367-69
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Equivalence principle, 448-51
Error function, 604
Escape probability, 1J4-2.S. 444

Dancaff COITcction, 123-25
fully rational, 124



rational approximation, 120
Wigner, 118, 124

resonance. See Resonance
Euler equations, variational theory, 303-

12
Excursions, power. See Power
Experimental Boiling Water Reactor,

516-17
Experimental Breeder Reactor, 514-16
Exponential integrals, 605
Extended transport approximation, 242
Extrapolation distance, 94-95, '8-99

Fast-neutron systems, S.v calculations,
243-47

Fast reactors, accident analysis, 522-27
criticality calculations, 243-47
Doppler effect, 453-54, 457-58, 525
pulsed, 520-22
resonance in, 457-58

Feedback, 467
delayed, 492, 502-506
fuel, 491, 502-506
function, 495
moderator, 491, 502-506
point reactor, 490-509
and reactor stability. See Stability
temperature, 492
and transfer function, 491-94
xenon, 556-62

Fermi age, 210
Fermi pseudopotential, 337-38
Fid.'s law, 89, 104, 133-34

energy dependent, 179, 184
Fission calculations. 4l>-47, 190-93

channels. 414.-15
spectrum, 9, 10

Flat source (or flux) approximation,
*45, 449, 451

fluctuation~. n~utron density, 36
Flux. angular. 5. Su aLJo Angular flux

neutron. Su Neutron
K~lar.· 5
lot~t. 5
vector, 5

Flul r«o~'ery approximation. 424
Flul ,.eighledintegra1~ 291
Free-atom. scan.enng. Su Monatomic

gu
Free wrf ace. 17

boundary conditjons.. 17. 134-35, 25S
Frequency spectrum. s~~Phonon
Fucbl·Hamcn model. 517-20 •. n6
Fuel· burnup. Sn Burnup

feedback. s,~feedback
loadinJ. 569-73
~kfinl f~or. S83

temperature coefficient, 588-98
Functionals, 292-95

Gamma functions, 604
Garelis-Russell method, 550-54
Gauss elimination method, 141
Gaussian approximation, scattering, 351-

53
in water, 359

Gauss quadrature parameters, 218-19,
235-36

Gauss-Seidel method, 156
Godiva assembly, 243, 244-46, 283-85
Godiva II, pulse experiments, 520-22
Graphite, scattering, 354-58, 582
Green's function, 20-21, 26

adjoint, 258, 261, 267
in one-speed theory, 68, 76-77, 85, 94
and reciprocity relations, 111
in thermalization, 329

Group constants, 48, 49, 51-52, 182, 184
bilinear averaged, 308
for celI calculations, 582
determination, 199-200
discrete ordinates, 239-42

consistent P approximation, 241, 245
extended transport approximation,

242
resonance. 438-39, 451, 582
self -consistent, 308-10
thermal. 363. 582

Group cross sections. See Group con-
stants

Group diffusion coefficient, 185
Group flux, 183. 200-204, 248, 309

B, method. 201-203
measurement. 248

Heavy hydrogen. Su Deuterium
Heavy ••••·ater. scattering. 362
Hermitian operator. 253
Heterogeneous systems, absorption prob-

abilitv, 114. 298-301
collision probability, 115-25, 443-46,

449-51
equivalence principle, 448-50
escape probability. 115-125,_ 444-46,

449
resonance integrals. 451-53, 454-57

Hydrogen scattering. 320, 323, 346-47;
S~~ also Water

Importance. S~~ Neutron importance
lDcobtrent K.anering. 323. S('e tilio Scat-

tcrinl
approx.imat ton. 340-41

lAbour equation. 471-80



Inner interations. See Interations
Inner product, 253
Instability reactor. See Stability
Intt:gral transport equation. See Trans-

port equation
Interaction rates, 11
Interface conditions, 15-16, 136
Intermediate scattering function, 340-50

cubic crystal, 348
isotropic harmonic oscillator, 343-47
mO,natomic gas, 342

Isotropic harmonic oscillator, scattering,
343-47, 352

Iteration methods. 154-58
improved, 156-58

Iterations, fission. 46-47, 190-92. See.
also Iterations, outer

inner, 158, 204, 206
in discrete coordinates, 234

outer, 192
in eigenvalue problem, 204, 206
in multi group theory, 194-98

power, 192
source, 192

Jezebel assembly, 243. 246, 283-90
Jump condition, 68. 74, 84

Kinetics. Su Reactor kinetics
k eigenfunctions, 45-47, 187
k eigenvalues, 44-48

computation. 205-206
and delayed neutrons, 542-46
and discrete ordinates. 246-47
in fast·neutron systems. 246-47
iteration. Su Iteration, outer
in multigroup theory, 186-98

difference equations, 193-94
iteration procedures. 194-98

and perturbation theory, 277-79, 281-
83

positive dominant. 189
in thermal-neutron systems. 584-85

Legendre polynomials. 606
Lethargy. 207

and age..<fiffusion theory, 209-11
and elastic scattering. 207-208
and PI approximation, 208-209
and resonance integral, 450-5 I

Liebmann method, 156
accelerated. 157

Liquids, scattering. 350-5 I
Unc rclautioa method.. 170

Mark boundary conditions, 99, 101, 220,
235

Marshak boundary conditions, 98-99,
134-35

Maxwell distribution, 323-26, 377
deviations, 378-83

Mode (or Modal) expansion, 533-34,
588

synthesis, 534-36, 540-41
Moderator, scattering in, 354-62

temperature coefficient, 588-98
Milne problem, 93
Monatomic gas, energy transfer function.

333
scattering in, 329-37, 351-52
function (or kernel), 331-33

intermediate, 342
thermalization in, 330
velocity transfer function, 335

Monte Carlo method, 53-56
Multigroup, age-diffusion theory, 211

calcu lations, 204-206, 242-47, 584-85
constants. See Group constants
diffusion theory, 178, 185

adjoint, 273
eigenvalue problems, 186-198
perturbation methods, 281-83
source problem, 185

methods, 51-53, 173-211
discrete ordinates, 237-47

P.\, approximation, 178
equations, 181-83

PI approximation, 178
~igenvalue problem, 187-94
equations, 183-84
adjoint, 272
variational derivation, 305-308

thermal neutrons, 364-66, 582-83
Multiplication rate eigenvalue. Su Alpha

eigenvalue

Narrow resonance (NR) approxima-
tion, 423-33, 424, 426

in fast-neutron system, 457
in heterogeneous system, 446. 451

Narrow resonance infinite mass (NRIM)
approximation. 433-38. 451

Nelkin scauering model. 359
Neutron conservation, 17. 18, 26. Sa

also Conservation
current, 6

angular, 5
delayed. Su Delayed Deutrons
density, 5

angular. 4,.

:~~:~~~ ~~tl .J:o~ ~£;;Jt·
asymptotic. ~tl Asymptotic ftu1r "
flattening. 576-78



scalar, 5
total, 5
vector, 5

importance, 257. See also Adjoint
function

equation, 2624ti4
and flux mode, 269

lifetime, prompt, 472
zero, approximation, 480-82

as point particle, 2, 35
polarization, 3, 35
pulse, experiments, 367, 369, 376-77,

546-55
fast, 520-22

reduced wavelength, 2
relaxation length. See Relaxation

length
scattering. See Scattering
slowing down, 315, 383-84
strength function, 419
temperature, 380

moderator, 382-83
thermal, 324

collision probabilities, 364-66
eigt:nvalue problems, 366-78
equilibrium, 336
Maxwell distribution. See Maxwell

distribution
reciprocity relation, 327-29
transport equation, 325-27

thermalization. 315-83.. See also
Neutrons. thermal

transport equation. Su Transport
equation

wa\'e e>.periments, 368
wavelen~th, 2

Nodal anah·~is. 533
Noi ••e. reaclor. S 13

One'~p«d theory. 64-125, 129-69,216-
37

.adjoint equation. 2~9-61
operator. 261. 270-71. 293

coltl~on probabilitiC'i, 115-25
aitiulitv c:akulation\, 95-97, 101,

296-98. 311-12
ditcrete Ofdi~tC'. 216- 37
csca~ probabilities. 11S-25
perturbations in. 182
vamtional method\" 193, 295-301
P. approlimalions. 87, 129-69. Su

alw One-spced transport equa·
tiono..e04pced lI"'&mpor1 equation., 6S-66

.. ,,~ 219-61. 276-72
UitoUOpic IC&1terinlo 102-108

tcparatioa of variables, 107-108

spherical harmonics expansion, 102-
107

cell calculations, 163-68
finite medium, 91-101

Milne problem, 93-97
spherical harmonics expansion, 97-

101
infinite medium, 69-91

Case's method, 69
Fourier transform method, 79-85
separation of variables, 69-79
spherical harmonics expansion, 86-

91 .
numerical solutions, 129-58

dfference equations. See Difference
equations

in diffusion theory, 151-58
in P.'! approximation, 143
in PI approximation, 136-42

P ..; approximation, 87-88, 132, 143
boundary conditions, 97-99, 134,

145
double, 158-63

PI approximation, 88, 132-33
boundary conditions, 98-99, 134-

36. 145
difference equations, 136-42
and diffusion theory, 89-90, 104-

105
m general geometry, 146-50
in one-dimensional geometry, 150-

51
m plane geometry, 133, 136-42
in spherical geometry, 145-46

Operator. positive. 190, 197, 225
transport, 38-41, 44, 254, 259-61,

26~68
adjoint. 254-55, 259-61, 264-68

alm~t self-, 261. 293, 327
spectrum, 41
for thermal neutrons. 317-29

Optical path length, 24, 364
reciprocity theorem, 111

Outer iterations. Su Iterations

Pair..Ji\tribution function. 338-41
Peach Bonom reactor, 580-81

lemperature coefficient, 593-98
Penetration factor. resonance, 395
Period ei~envalues. Su Alpha eigen-

values
Perturbation theory, 273-90

and alpha eigenvalues. 274-77, 283-88
applications. 273-74. 283-90
and critical ,~tcms, 279-81
&Ad crOll ICC'tions. 284-288
and i eigenvalues.. 277-79. 281-84



in multigroup theory, 281
in one-speed theory, 282
and reactivity effects, 288-90

Phonon, 318
expansion, 344-45
spectrum, 355

PH approximation. See Multigroup P.
approximation; One-speed trans-
port equation

PI approximation. See Diffusion theory;
Lethargy; Multigroup PI ap-
proximation; One-speed trans-
port equation

Point and distributed sources, 78
Point Jacobi method, 156
Point reactor, 468-83

amplitude factor, 468
with feedback, 490-509
kinetics equations, 473

linearized, 482-83
model, 473
shape factor, 468, 472-76, 541-42
transfer function. See Transfer func-

tion
zero power. 476-77

Point successive overrelaxation method,
157

Porter-Thomas distribution, 234
Power coefficient. 495, 559
Power excursions. 5 I7-27

Bethe-Tait analysis. 525-27
Fuchs-Hansen model, 517-20, 526

Power oscillations. 488. 489
xenon-induced, 555-62

Practical width. resonance, 426
Prompt-jump approximation. 480-82
Prompt-neutron lifetime. 472

zero. approximation. 480-82
PuheJ·neutron experiments. Su Neutron

pulse
PuI~J-reactor experiments. fast. 520-22

Quadrature weights. 217
Gau'-S. 219

Quasistatic approximation. 474, 540

Rational approximation. 120, 446-49~
451-.52

Reactivity. 472
changes.. and perturbation theory, 277-

79, 281-8
determination. pulsed source. S46-54
eigenvalun.. S,.,. Ie eigenvalues
and reactor period. 477-80
temperature coefficients. 587. 589-91

Iluctor. aaeulatiom, 204-206, 243-47,
581-86

codes. See Codes
dynamics, 463-527. See also Reactor

. kinetics
space-dependent, 532-78

fast. See Fast reactor
graphite-moderated, gas-eooled, 578-

97
kinetics, 463-527. See also Point re-

actor
equations, 470-71

linearized, 482-83
pulsed, 548
and xenon instability, 556-62

noise, 513
oscillator, 510
period, 476

and delayed neutrons, 544
and reactivity, 477-80

power ~xcursions. See Power excur-
Sions

stability. See Stability conditions
c,~{thermal. See Thermal reactor

.. Reciprocity relations, general, 258
'r, one-speed. 108-15, 261
...........applications, 110-15, 446

")"J':.thermal neutrons, 327-29
,Reduced Planck constant, 2

wavelength, 2
R.elaxation length, 71. See also Diffusion

_~'''<;,:: length
\:\,~'asymptotic, 71-72, 90, 105-107
-,:LZthermal.368, 370-72
'J,iisonance absorption. in heterogeneous
\~~, systems, 443-56

collision probllbility method, 443-46
equivalence principle, 446:-49
NR approximation, 446, 449, 451

'NRIM approximation. 449, 451
in homogeneous systems, 420-43

intermediate approximation, 436-
37

NR approximation. 423-33, 43S.
438

'-.·NRIM approximatio~ 434-36
rption probability. 422
R approximatio~ 427-30, 43S
"RIM approximatio~ 43S
~Wigner formula. s~~Breit-Wi,.

ner formula
,Jections. 349-410. Sn also Breit-
'Wigner formula. SQUerina

function
.ectjVe, 421, 427. 431
.at-neutron systems, 4S7

overlap. «0
broadenina. SH
adening



escape probability, 422, 427-28, 586
temperature coefficient, 588, 590,

597
flux, heterogeneous systems, 444-48

homogeneous systems, 422-31, 434,
436-37

group constants, 438-39, 451, 582
integral, heterogeneous systems, 451-

452
calculated and experimental, 455
computation, 451
and temperature, 452, 456

homogeneous systems, 421, 426
computation, 451
NR approximation, 428-30
NRIM approximation, 435

intermediate approximation, 436-38
level spacing, 415-16
at low energies, 409-10
narrow (NR). approximation, 423-

433, 435-37
infinite mass (NRIM), approxima-

tion, 434-37
overlap of, 406-409, 439-43
parameters, values, 417

determination. 398-40 I
in unresolved region, 410-20

penetration factor, 395. 413
practical width. 426
quasi-. 408
region, 389
resolved. 390
scattering. 393-98. 406. 408. 419
and temperature. Su Doppler broad-

ening
unresolved. 319. 410-20, 439-43

, width. 392. 398
distribution. 411-15
practical. 426
,reduced. 395. 412. 414

Richardwn method. 156

Scaturing amplitude. 321
anisotropic. Su Scattering function

e~pansion
in berYllium. 321-22. 362
in boUnd systems. 311-20. 337-62
Bragg. 320'
coberent. 320-23. 337-43
Cf'OSS sectiom. bindin~ effects, 316-23

bound and free. 319-23
coherent and incoherent. 322-23.

331-40
elutic. 176-1 _
by byd~ <protons), J.46-47
~ 19l-98. 401

calculation, 393-96

Doppler broadening, 406
in unresolved region, 419

in cubic crystal, 347-50, 352
elastic, 8, 9, 10, 49, 51, 176, 207-208

bound and free atom, 317-23
in terms of lethargy, 207-208

function, elastic, 176
expansion in spherical harmonics (or

Legendre polynomials), 49,
102-103, 131, 175-77,220, 238

general, 337
intermediate, 340-50

Gaussian approximation, 351-53,
359

isotropic harmonic oscillator, 343-
47

monatomic gas, 331-33
in graphite, 356-58
in heavy water, 362
incoherent. 323, 337-343

approximation. 340-41
irleJastic, 8. 10, 49-51, 317, 349
isotropic harmonic oscillator, 343-47,

352
kernel. Su Scattering function
laws. 329-41

in bound systems. 337-62
experimental determination, 353
free-atom. 329-37
general. 337-40
incoherent approximation, 3.40-41
monatomic gas. 329-37, 342

in liquids, 350-51
in monatomic gas. 329-37, 342, 352
pair-distribution function, 338-41
potential. 393. 395
resonance, 393-98. 406. 408. 419
up-. 193. 198. 206. 338
in water. 358-61
in zirconium bydride.347. 362

Schwin~r functional. 294
SeU-wJOlnt operator. 2.53

atJnO\t. 261-6~. 321
Sb~lJinl factor. cell. 168. 583-&4
S1o'A'ln,-do'wn ckns.ity, "22

rt'~ion. 31.5
to therm.a1 upon. 38 J-I4

S. IMtbod. Su Daadc ordinates meth-
ods

Source. point. etntnbution. 1&-79
'pcobkm. in mutUVOUP theory. 18S
puhed_ Sn Naatroa pulse

Shape factor, "6' • .c72-7'
adiabatic approllmatioA. (1.c. 540
quthtadc apfW01imat-., 41S, 541

Spearal •••• f. '11
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Spherical harmonics, 608-609
expansion. See Angular flux, Scatter-

ing function
and Legendre polynomials, 86

Streaming term, 14, 15
in conservation form, 30-32, 58-59
in general coordinate systems, 56-59
in plane geometry, 28-29, 59
in spherical geometry, 29-30, 59

Stability conditions, reactor, 494-509
with delayed feedback, 502-506
delayed and prompt neutrons, 506-507
nonlinear analysis, 508-509
and perturbation frequency, 499-502
xenon effect. 555-62

Stabilized march method, ]93. 198
Sweeps, method of, 141

Temperature coefficient, 433, 442, 456
calculations. 583-85, 587-97

Thermalization. See Neutrons, thermal,
thermalization .

Thermal reactors. See Calder Hall, Peach
Bottom

calculations. 578-97
methods, 581-82

temperature coefficients, 583-85, 587-
97

relaxation Ien,eth. 368. 370-72. See
also Diffusion length

Topsy assembly. 243. 246
Transfer croS\ sections. 182, 241, 438,

439
Transfer function, 483-517

amplitude. 4Rtl
appli~ations. 514-17
with feedback. 491-94
mea'uremenl. ~09-14
pha\e angle. 486
and reactor noi-.e. 513
re--onance frequency. 498-99
space <.lerendence. 488-90
zero power. 48l_88

Transfer probabilit~·. 8-11
Tran\ptlrt cr<X.., \('ction. 104
Tran'p<>rt equation. I, II-59

ad,oint .. 5u AdJOint
B" appro'imation. 201-203
boundary conditions. 15-17
and c"itlcalit~,. 31-38

rirorou\ anah·~1., 42-43
and'dclned neUtrons. 464-67
ckrivafion. 11-1S
bomo~\. 19. 38. 43-44
ifthomo~neous.. 19. 38. «
intc~al form. 21-2&. 32-34

adJOint. 26 J

for thermal neutrons, 364-66
integro-differential form, 21
limitations, 35-37
linearity, 19
multigroup form. See Multigroup .
and neutron conservation, 17-18, 26,

30-32
one-speed. See One-speed
solutions, existence, 43-44

methods, 48-56. See also citations
under Discrete ordinates meth-
ods, Monte Carlo methods,
P.v approximation, P1 approxim-
ation

streaming term. See Streaming term
for thermal neutrons, 325-27, 362-66

integral form, 364-66
variables, treatment of. 174-75

Transport operator. See Operator
Trial functions, 292-95, 300, 305

adjoint, 292-95, 305
discontinuous, 30 I

Variational methods, 290-312
and alpha eigenvalues, 295
applications, 290-91, 295-98, 310-12
and critical dimensions, 296-98
and eigenvalue determination, 295
and Euler equations, 303-12
and flux-weighted integrals, 291
functionals. 292
and group constants. 308- J 0
J functional as Lagrangian, 303-305
one-speed, 293. 295-98

and absorption probability, 298-301
and critical dimensions, 296-98

and P, multi group equations, 305-308
trial functions. See Trial functions

Water. heavy. See Heavy water
scattering. 358-61

Weighting factors. Su Quadrature
weights

Wigner ratio;al approximation, 118
Wigner-Seitz approximation. 164
Within-group flux. Su Group flux

Xenon instability. 555-62
oscillations. 559-62

Yvon's method, 161-63

Zero prompt lifetime, 48()"'82 .
ZPR-1I1 48 assembly, 247, 283-85.
Zirconium hydride. scattering. 347,
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