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PREFACE

The purpose of this book is to explain the most important physical concepts and
mathematical methods commonly used 1n predicting the behavior of neutrons
'n nuclear reactors. An effort has been made to avoid mathematical complexity
hat does not lead to a significant increase In physical understanding or is not
yeed in actual reactor design studies. In a few instances. therefore, where it
appears justified. lengthy derivations have been omitted and only the conclusion
given, with references 1o the relevant literature.

The book is more or less self-contained and could serve as an introduction to
reactor theory for physicists, mathematicians, and engineers. We have assumed,
however. that the reader is familiar with such topics as the fission process,
neutron cross sections. and the moderation and diffusion of neutrons. Thus,
ane of the more elementary texts on nuclear reactor theory would provide the
necessary background. An adequate knowledge of mathematics 1s, ot course, a
requirement. Previous experience with vector analysis, partial differential
equations. eigemalue problems. and Laplace and Fourier transforms is desir-
able. although not necessary for an understanding of the basic principles. Some
of the special mathematical procedures used in the text are explained in an
Appendix and. in other cases, references are given to standard works.

\any people have helped us in one way or another in the preparation of this
book. and we take this opportunity to express our indebtedness to them. We
offer our thanks to Milton Edlund for his participation in the planning phagé
and 1o Robert Pigeon, AEC Division of Technical Information, for obtaining
reviews of the draft manuscript. In this connection, we are grateful to Noel
Corngold. Kent Hansen, William Hendry, Kaye Lathrop, Norman McCormick,
Lothar Nordheim, and Paul Zweifel for their helpful comments. John Lamarsh

v
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also assisted us by a careful reading of the draft, and we have profited greatly
from suggestions based on his extensive experience in teaching nuclear reactor

theory. Finally, we are happy to acknowledge the competence of Ruth Beaty
and Margo Lang in typing a difficult manuscript.

GEORGE 1. BELL
SAMUEL GLASSTONE

October' 1 970
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1 THE NEUTRON
TRANSPORT EQUATION

1.1 DERIVATION OF THE TRANSPORT EQUATION

1.1a Iintroduction

The behavior of a nuclear reactor is governed by the distribution 1n space,
energy. and time of the neutrons In the system, and one of the central problems
of reactor theory is to predict this distribution. In principle, this can be done by
solving the neutron transport equation, often called the Boltzmann equation
because of its similarity to the expression obtained by L. Boltzmann in con-
aection with the kinetic theory of gases. In this chapter, various versions of the
neutron transport equation are derived, and some general properties of its
solution are discussed.

"The neutron distribution problem could be solved by inserting into the
transport equation a complete set of the appropriate cross sections, which
represent the neutron interaction probabilities, together with the geometrical
arrangement of the materials in the system. Numerical solutions could then be
obtained by suitable computation procedures, €.g., by Monte Carlo methods. In
practice, however, this proves not to be possible. First, the cross sections and
their variation with neutron energy are very complicated and not completely
known, and second, the geometrical arrangement of the materials in a reactor 1s
so complex that the transport equation cannot be solved in a reasonable time
even with a computer. In any event, solution of the neutron transport equation
s so difficult that, except in the simplest cases, approximate forms of the
equation must be used. These approximations are outlined at the end of this
chapter and they are treated in detail in the book. '



2 THE NEUTRON TRANSPORT EQUATION

Before proceeding to' the derivation of the transport equation, certain
quantities required to describe the neutron transport problem will be defined,
and a consistent notation will be presented. It will be seen that this notation
differs in some respects from that employed in elementary reactor theory, but
this is often a consequence of the introduction of extra variables in neutron
transport theory. No great difficulty should be experienced, however, in
adjustment to the notation used here.

1.1b Definitions and Notation

Neutron as a Point Particle

In transport theory, a neutron is considered to be a point particle in the sense
that it can be described completely by its position and velocity. The point
description would appear to be reasonable because the reduced wavelength of a
neutron is small in comparison with macroscopic dimensions and neutron mean
free paths. '

According to the de Broglie equation, the reduced wavelength, A of a particle
1s given by

A=1,

p
where # is Planck’s constant divided by 2= and p is the momentum of the
particle. For a neutron this takes the form

- 4.55 X 10-1©
+E

where E is the neutron energy in electron volts. Even for a neutron with 0.01 eV
energy, A is 4.55 x 107® cm, which 1s almost an order of magnitude less than
the distances between atoms in a solid and several orders of magnitude less than
macroscopic dimensions and mean free paths. Thus, it is reasonable to regard
the position of a neutron as a quantity which can be specified accurately.

It is possible, in fact, to choose the position and velocity (or momentum) of
a neutron with sufficient precision and not violate the Heisenberg uncertainty
relationship Ax Ap ~ A. If an uncertainty Ax in position of 10~* cm can be
tolerated, the momentum uncertainty corresponds to a negligible uncertainty
in the energy, 1.c., -

A cm,

AE ~ 10-°V'E,

where AE and E are in electron volts.? _

For neutrons of very low energy, the wavelength becomes very large and the
neutron cannot, of course, be localized. The treatment of neutron transport
developed in this book is then not valid and a quantum-mechanical formulation
would be required.? The problem is of no practical significance in reactor physics,
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however, since a negligible number of neutrons have energies which are so low
that the conventional point-particle description is seriously in error. Further-
more, the transport equation is generally taken to hold even at arbitrarily low
peutron energies, although in these circumstances the relationship of the
solutions to physical reality becomes uncertain.

The neutron has a spin and a magnetic moment, which can lead to polarization
that has an effect on neutron transport. But, as will be seen in §1.4b, this effect
is small in most practical situations. If necessary, an approximate allowance can
be made by minor modifications of the scattering cross sections.

For the present, the neutron will consequently be regarded as a point particle,
with a position described by the vector r and a velocity by the vector v. The
velocity vector is often represented by

v = 182,

where v (= |v|) is the neutron speed, 1.e., the (scalar) magnitude of the velocity,
and  is a unit vector in the direction of motion, i.e., 1n the same direction as V.

Tt is often convenient to specify the unit vector, £, 1n a polar coordinate
system, i.e., by the polar angle 6 and the azimuthal angle ¢, as shown in Fig. 1.1.
Cartesian coordinates of £ are then

Q, =snfcose Q, =sinfsing  Q, = cos 0.

FIG. 1.1 POLAR COORDINATES.



4 THE NEUTRON TRANSPORT EQUATION

Neutron Density and Flux

To describe a population: of neutrons a quantity, called the neutron angular
density in this book, is introduced. It is represented by

Angular density = N(r, &, E, 1) (1.1)

and is defined as the probable (or expected) number of neutrons at the position
r with direction € and energy E at time 7, per unit volume per unit solid angle
per unit energy, €.g., per cm® per steradian per MeV. Consequently,

N(r, R, E, t) dV dQ dE

is the expected number of neutrons in the volume element dV about r, having
" directions within dQ about & (Fig. 1.2) and energies in dE about £ at time t.*
If Q is expressed in polar coordinates, then dQ2 = sin 6 df dp, where the
element of solid angle dQ2 is defined by the ranges 6, 6 + df and ¢, ¢ + do. In
later sections of this book, e.g., §1.3a, cos 6 is often represented by p, so that

dS2 = du dep.

In the definition of the neutron angular density given above, the expression
““probable (or expected) number of neutrons™ is meant to imply that fluctuations

A

FIG. 1.2 THE VOLUME ELEMENT oV AND THE DIRECTIONAL ELEMENT dS2.

* The volume element about r is sometimes represented by dr or by d°r, but Pi% IS more
exphcit.
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from the mean neutron population are not taken into account. If the neutron
population under consideration is large, then the actual population will be close
to the expected (or average) value and the fluctuations will be relatively small.
If, on the other hand, the neutron population is small, it is still important to be
able to describe the average behavior, even though the actual population at any
istant in time is unlikely to resemble the average value. These points are
discussed further in §1.4c. -

The integral of the neutron angular density over all directions (or all sohd
angles) 1s the energy-dependent neutron density, n(r, E, t); thus,

Neutron density = N(r, 2, E, t) dQ = n(r, E, t), (1.2)
4n
where the symbol 4= implies integration over all directions. Hence, n(r, E, t)
is the expected number of neutrons atr, with energy E at time ¢, per unit volume
per unit energy. If polar coordinates are used to specify &, then the neutron
density is defined by
n(r, E, 1) = J

1 27

- N(r, R, E, t) do du,
-1J0

where, as above, p = cos 6.

The product of v and the neutron angular density 1s called the neutron angular
current or the vector flux; that is,

Vector flux = vN(r, &, -E, t). (1.3)

It is a vector function of the four variables r, Q. E, and t with direction £2. Its
magnitude, 1.e., tN(r, Q. E, t), is sometimes called the scalar flux. In this book,
however. it is referred to as the neutron angular flux, because of the dependence
on angle; it is represented by &(r, Q. E, t), so that

Angular flux = oN(r, @, E, 1) = O, , E, 1). - (1.4)

The integral of the angular flux over all directions, which is also equal to
en(r, E, 1), 1s called thc total flux, ¢(r, E, t), L€, /
Total flux = vn(r, E, t) = O(r, R, E, t) dQ = ¢(r, E, 1). (1.5)

4n

The total flux is thus the same as the ordinary flux of neutrons of energy E at
the position r and time ¢ per unit energy. Both the angular flux and the total
Aux are sometimes referred to as the ‘“flux,” but the context, symbol, and
arguments of the function indicate which type of flux is intended.*

e Some writers employ the same symbol for the vector flux and the total flux; the distinc-
tion is then indicated by the argument (r, Q. E, t)or (r, E, 1). By using the separate symbols
® and ¢, the distinction is clear even when the argument is omitted for simplicity of repre-
sentation. The symbols N and n, for angular and (total) neutron density, respectively, are
used in this book for the same reason.
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dA.

Neutron Current

If A represents a unit vector normal to a surface, so that i dA4 1s the vector
normal to a surface element of area d4 (Fig. 1.3), then i d4-vN(r, &, E, 1) 1S
the number of neutrons crossing the surface element per unit solid angle per
unit energy in unit time. (A crossing 1s counted as negative if id4-v < 0.)
Integration over all directions gives the net number of neutrons per unit energy
and time crossing dA; thus, '

Net number of neutrons crossing d4 = i dA J vN(r, 2, E, t) dQ.
. 4N

The integral in this expression is called the neurron current and is represented
by J(r, E, 1), so that

AR

J YN(r. 2, E, 1) dQ = vJ QN(r. Q. E.1)dQ = Jr, E, ). (1.6)
4N n

4

TABLE 1.1. COMPARISON OF SYMBOLS

e — " A ——————— A — i eyl i ——

This Book W.& W.* D.* C.&Z° G.&E! L.>

Angular Density N — N b g — —
Density n n n p n n
Angular flux D S/ Y/ — F —
Total flux ¢ 40 p —_ ¢ é
Current J J } J - J J

-

! Weinberg, W., and E. P. Wigner, “ The Physical Theory of Neutron Chain Reactors,”” University
of Chicago Press, 1938. | |

3 Davison, B., ** Neutron Transport Theory,” Oxfard University Press, 1957,

3 Case, K. M., and P. F. Zweifel, ** Linear Transport Theory,” Addison-Wesley Publishing Co.,
Inc., 1967.

¢ Glasstone. S.. and M. C. Edlund, ** The Elements of Nuclear Reactor Theory, D. Van Nostrand
Co., Inc., 1952, |

s Lamarsh, J. R., *Introduction to Nuclear Reactor Theory,” Addison-Wesley Publishing Co.,
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It is the net number of neutrons of energy E at r and time ¢ crossing unit area
per unit energy and time. The current is thus a vector having as a component
in any direction the net number of neutrons crossing a unit area perpendicular
‘to that direction per unit energy and time, for given values of energy, time,
and position. |

A comparison of the symbols used in this book with those employed 1n other
familiar texts is given in Table 1.1.

Independent Sources

The independent (or extraneous) neutron sources, usually abbreviated to sources,
are neutron sources which are not dependent on the neutron density of the
system. They arise from events other than neutron collisions, i.e., not from
fission, (n, 2n), and similar neutron reactions. The sources under consideration
thus involve neutrons produced in (e, n) and spontaneous fission processes and
also by the action of cosmic-ray particles. The independent sources are repre-
sented by Q(r, &, E, t), which is the probability per unit time that a neutron of
energy E will appear at r per unit volume per unit solid angle per unit energy, 1.€.,
O dV dQ dE is the expected rate at which neutrons appear in volume dV with
direction in 482 and energy in dFE.

Cross Sections and Transfer Probabilities

Since microscopic cross sections are used only in some special cases in this text,
it is convenient to employ a lower case sigma (o) to represent macroscopic cross
sections, reserving capital sigma (Z) to indicate summation. The quantity
o(r, E) is defined as the total collision (or interaction) cross section of a neutron
at position r having energy E (in the laboratory system). It 1s the probability
of neutron interaction per unit distance of neutron travel'and has the dimensions
of a reciprocal length. The reciprocal of ¢ is, of course, the neutron mean
free path.

The cross section has been taken to be a function of r and E only, but there
are a few situations in which it may depend upon € or ¢. If there is a physically
preferred direction in a medium, which can be used to define directions, then o
may be a function of . For example, a direction of fluid flow or of crystal
orientation could determine a dependence of o on S. In most cases, this will
influence only thermal neutrons and the effects may usually be neglected. A
variation of ¢ with ¢ may arise in fuel depletion (or burnup) calculations; it is
then so slow, however, that it is easily separable from the neutron transport

problem. More general variations of cross sections with time will be treated 1n -

Chapters 9 and 10. - R
The total cross section o(r, E) is the sum of the partial cross sections for all
possible types of neutron-nucleus collisions. The partial cross sections are
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indicated, in general, by the nature of the particle emerging from a collision;
thus o,(r, E) and o,-(r, E) represent elastic and inelastic scattering cross sections,
respectively, and o,(r, E) is the cross section for radiative capture. A special
case arises in connection with the fission cross section which is indicated by
o,(r, E). _

In neutron transport theory, it is required to describe the probability that the
neutrons emerging from a collision have various directions and energies. A form
of differential cross section is defined for collisions, such as scattering, fission,
and (n, 2n) reactions, from which neutrons emerge, as the cross section for
neutrons of initial direction §’ and energy E’ emerging from a collision in the
interval d© about  and energy dE about E. This quantity may be expressed, In

general for the reaction (n, x), by
Differential cross section = o,(r, E')fi(r; &', E' — R, E),

where o, is the cross section for a reaction of type x for neutrons of energy E’
and f,(r; Q', E' — R, E) d2 dE is the probability that if a neutron of direction
Q' and energy E’ has a collision of type x, there will emerge from the collision
a neutron in the direction interval dQ about £ with energy in dE about E. For
scattering (elastic or inelastic} collisions one neutron emerges for each neutron
colliding with a nucleus; the transfer probabilities may consequently be nermal-
ized to unity. Thus, for elastic scattering, integration over all directions and

energies gives

”fn(r; Q. E — Q. E)dQdE = 1,

and a similar expression applies to inelastic scattering. For fission, however, the
normalization is different, as will be seen shortly. For (n, y), (n, «), and other
reactions from which neutrons do not emerge, f is, of course, zero.

For elastic scattering of neutrons from initially stationary nuclei, f, 1S a
function only of Q- = o, where g, 1s the cosine of the (scattering) angle (6)
between the directions of motion of the neutron before and after the collision
in the laboratory system (Fig. 1.4). For scattering nuclei of mass A4 times the
mass of a neutron. the value of u, is determined uniquely by E/E’;® thus,

w=tusnfE-u-nfE]=s

In this case, f,, may be represented by
fur; ,E'—>Q, E) = fu(r; E' > E) (o — S), (1.7)

where § is the Dirac delta function (see Appendix); that is, 8(ue — S) 1S ZEero
except when g = S an—df 8(po — S)f(po) duo = f(S) if the range of integration
includes the value po = S. '
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FIG. 1.4 DIRECTIONS OF MOTION OF NEUTRON BEFORE AND AFTER ELASTIC
SCATTERING. | |

If the elastic scattering is spherically symmetric (isotropic) in the center-of-
mass system, it is known* that

]
2m(1 — «)E°
-0 if E>E or E<coF

fix; E'—E) = if «E' <X E<E’

where
a = [(4 - DA+ 1

For more general angular distributions, however, this simple representation 1s
not possible (see Chapter 4). Consideration will be given in Chapter 7 to the
effects of nuclear motion and chemical binding.

In the foregoing, it has been assumed that the transport medium consists of a
single nuclear species. If the medium is a mixture of different nuclei, however,
the f values are obtained in a manner similar to that used in deriving the overall
macroscopic cross section from the individual microscopic cross sections.”

For fission, it is a good approximation to assume that the neutrons are
emitted isotropically in the laboratory system; hence, it is possible to write

f6: Q. E' — Q, E)dQ dE = —v(r; E' — E) d dE,
m

where v(r; E' — E) dE, referred to as the spectrum of the fission neutrons, 1s the
probability that a fission caused by a neutron at'r wihvepergy £’ will lead to a
neutron within 4E about E. Furthermore, »(r; E™>>E) is normalized so that

'?'4};.” or; E' — E) dQ dE = JV(r; E'— E)dE = #(r, E'),

where #(r, E') is the average number of neutrons produced by a fission at r
caused by a neutron of energy E’. It will be noted that the spectrum of fission

neutrons is allowed to depend on the energy (E’) and the material in the
medium, through r. ' |
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For the present, no distinction is made between prompt and delayed neutrons.
All neutrons are assumed to emerge promptly from fission, thus ignoring the
delayed neutrons; alternatively, the delayed neutrons are assumed to be included
with the prompt neutrons. In Chapter 9, however, when reactor dynamics 18
discussed, allowance is made for the delayed neutrons by introducing a time
delay between the neutron-nucleus collision and neutron emission in fission.

If o(r, E') is the total cross section for all interactions, including those from
which neutrons do not emerge, then the total probability per unit distance at r
for the transfer of a neutron from £, E’ to £2, E, as a result of all interactions
can be written as

Total probability of neutron

transfer from ', E' to &, E = o(r, E')f(r; ', E" — Q, E),

which defines the function f. This result may be expressed 1n an alternative
manner by considering the separate interactions x in which neutrons are
produced; thus, '

ofr, E')f(c; R,E' >, E) = D o, ENfilr; ', E' = 2, E),

X

where the sum over x includes elastic and inelastic scattering (with the f's
normalized to unity), fission (with f normalized to #(r, £ ")), the (n, 2n) reaction
(with f normalized to 2), and so on. Upon integration over all directions £2 and
over all ﬁgal energies E, it is found upon rearrangement that

Mr’ff) + o,(r, E')o(r, E°) + - - -
' o(r, E') -
etr, £), (1.8)

where the subscripts n, n’, f, etc., refer to elastic scattering, inelastic scattering,
fission, etc., respectively.

The right side of equation (1.8), and hence also the integral on the left, 1s
clearly the mean number of neutrons emerging per collision at r of neutrons of
energy E’. This quantity has been represented by the symbol c(r, E). For pure
capture collisions, €.g., (n, y) and (n, «), in which no neutrons are produced,
¢ = 0, for scattering collisions ¢ = 1, and for fission ¢ = 7. The quantity ¢ can
be introduced as a factor in the neutron transport equation, as will be seen in
Chapter 2.

The fission part of the total probability of neutron transfer from ', £’ to 82,
E may be separated from that due to other collisions by writing

or, E)f(r; @, E' R, E) = 7= of{r, E'Wr: E' > E)

+ D alr, EN{6 R, E' >R, E),

xe/f

f J fir: @, E'—Q, E)dQUdE =

I
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where the summation over x # f is for all nonfission interactions from which
neutrons emerge.

Interaction Rates

The macroscopic cross section, o, is the probability that a neutron will undergo
a particular reaction, indicated by x, in unit distance. If v is the speed of the
neutron, then vo, is the corresponding probability per unit time. Hence, if Nis
the angular density of neutrons under consideration, the interaction rate, in
appropriate units, is given by voN. For unit volume and energy, the interaction
rate is obtained by integrating over all neutron directions to obtain vo,n. Thus
vo(r, E)n(r, E, t) gives the number of interactions of type x made with nuclel
by neutrons of speed v, and corresponding energy £, at position r and time !
per unit volume per unit energy per unit time. The total number of interactions
(or collisions) is obtained by using o, the total macroscopic cross section, which
is the sum of all the o, values.

To determine the rate at which neutrons emerge from an interaction of type x,
the appropriate f, must be included for the interaction and the neutron param-
eters before and after interaction must be identified. The number of neutrons
per unit volume having directions within d§2" about £2" and energies within d&”
about E’is N(r, Q', E’, t)d" dE’. The rate, 1n neutrons per unit volume and
time at r and 7, at which such neutrons are transferred by interactions of type x
into final directions within dS2 about £ and final energies within dE about E'1s
then '

v'o(r, ENVfr; R, E' —Q, E)N(r, ', E', t)dQ' dE’ dQ dE.

The total rate at which neutrons are transferred is obtained by integrating over
all initial neutron directions and energies, i.e., over dS2’ and dE’, and summing
over all reactions, 1.e., summing OVer X.

The foregoing results are used in various forms in the development of the
neutron transport equation. '

1.1c Derivation of the Neutron Transport Equation

According to the definition given earlier, N(r, , E, t) dV dS2 dE1s the probable
number of neutrons at time f in a volume element d¥ having energies in dE about
F and directions within a narrow beam d2 about . Consider now what happens
to this group (or packet) of neutrons as they are followed for a time interval Ar.
[t is assumed in the following that the cross sections are continuous functions of
position in the vicinity of position r. The special case of an interface at which
cross sections change discontinuously will be considered shortly.

Those neutrons of energy £ which suffer a collision ritay be regarded as being
lost from the packet, whereas those which do not collide remain. The distance
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traveled by a neutron-in time At is v At; hence, the probability that a neutron
makes a collision in this time is o(r, E)v At to first order in At. The probability
that a neutron does not undergo a collision 1n time A7 and remains in the packet
is consequently 1 — o(r, £)v At It follows, theretore, that

Number of neutrons

remaining in packet N(r, R, E, 1)[1 — o(r, E)vAt] dV dS2 dE.

These neutrons will arrive at the position r + v Ar at time 1 + Af.
In addition to neutrons lost from the packet by collisions, some may enter 1t

as a result of collisions by neutrons outside the packet and from independent
sources. The latter two quantities are given by

Number of neutrons entering
packet as a result of collisions

N U J o(r, ENf(r; ', E' > Q EWN(r, ', E', 1) d dE'] dV dS dE At

and

Number of neutrons entering _ O(r, Q. E. 1) dV d dE At.
packet from sources -

By adding the three terms given above and eliminating dV dS2 dE, the neutron
angular density at the positionr + Qv Ar at time r + Ar1s found to be

N(r + QuAr, Q E t +At) = N(r, Q, E, 1)(1 — ovAr)

+ [” o fo'N(r, ', E', 1) dQ dE‘] At + Q At
(1.9)

where, to simplify the representation,

o = ofr, £), .

of = o(r, Ef(r: R, E' - R, E), frequently written as of (r; ', E' — K, E),
Q= QO(r, 2, E, t).

Upon dividing both sides of this expression by Ar and letting At — 0, the result,
after rearrangement, 1s

- [N(r + QuALQE T+ A1) — N, Q E 1)
hm —_—

|l

] + orN(r, Q. E, 1)

ALl -0
- f f ofu'N(r, ', E',1)d dE' + Q. (1.10)

The first term on the left of equation (1.10) is the total time derivative of the
ncutron angular density; that is to say, it is the derivative with respect to time
as it would appear to an observer moving with the packet of neutrons. It will be
denoted by dN/dr, where N represents N{r, 82, E, 1).
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' 1f the term N(r, R, E, t + At) is added and subtracted from the numerator in
the square brackets in equation (1.10), two expressions are obtained which can

be readily evaluated. Thus,

. [N(r, R, E, t + A1) — N(r, &, E, t)] _ 9N _
ET@[ At ot (L11)
and .
lim [N(r + QuAt, R, E +§:t) — N, , E t + Az)] _ LQ.VN( 9, Es/t/D
At—0 C

(1.12)

The last result can be readily derived in Cartesian coordinates 1n which r has
components X, ¥, Z, and © has components Q,, Q,, Q.. The left side of equation
(1.12) can then be written as |

[N(x + Qb y + QuAtz + QuAL..) = Nxy 2z .)]
g [P Doy + 05 ¢ Ourbt) = N

At—0

where N is written for N(x, y, z, .. ). This expression 18 v times the directional
derivative of N in the direction £; it can consequently be represented by
v2- VN, as in equation (1.12).

Upon inserting equations (1.10), (1.11), and (1.12) into equation (1.1), the
result 1s

?g + vQ-VN + ovN = ff dfU'N' dQ dE" + 0, (1.13)
where
N = N(@,E, 1)
N' = N(r, ', E', t),

and o, o’f, and Q are as defined above, in order to avoid unnecessary complexity.
Equation (1.13) is the basic form of the neutron transport equation. In spite of
certain minor limitations, which have been indicated earlier and which will be
considered more fully in §1.4, the transport equation has been found to be satis-
factory for treating most problems in reactor physics.

Before proceeding further, 1t 1s of interest to consider the physical significance
of the first two terms on the left side of equation (1.13) which together are equal
to the first term on the left of equation (1.10). The quantity oN/dt is the time
rate of change of the neutron angular density at the fixed position r; this differs
from dN/dt, the rate of change within the packet which is moving with the
neutron velocity v = v€., The difference, —vS2-VN, represents the rate of

change of the neutron angular density at the position r due to streaming of the



neutrons, i.e., motion of the neutrons in a straight line without any collisions.
The rate of change computed by an observer moving with the neutron packet is
dN/dt, with no contribution from streaming, whereas if it is determined by a

mm—— i 4 gt ety

stationary observer at r the result is dN/8r ‘which includes the change due to

i p— = ——————— gt ‘_.____..__,......-qu-.-u..,-.,,'.r

neutron streaming. The term vQ-VN is consequently sometimes referred to as

the streaming term in the neutron transport equation.

That this term does indeed represent the effect of streaming may be seen by
dertving the rate at which neutrons stream through a small volume element.
- Let_this element be bounded by planes having the coordinates x, x + Ax:
y, ¥ + Ay;and z, z + Az, so that the volume dV = Ax Ay Az (Fig. 1.5). The
number of neutrons in the volume element that are moving in the direction &
1s then N(x,y,z, 2, E, t)dV. The rate at which neutrons enter the volume
element as a result of motion across the two faces perpendicular to the x
direction, 1.e., the faces with coordinates x and x + Ax, is then

Number of neutrons entering
volume element per unit time = v N(x, y, z) Ay Az,
(across face at x)

Number of neutrons leaving
volume element per unit time
(across face at x + Ax)

v .N(x + Ax, y; 2) Ay Az,'

where v, 1s the x component of the velocity; the arguments (R, E, t) have been
omitted for simplicity. The difference between these two numbers gives the x
component of the streaming rate of the neutrons, i.e., the rate of change of the
neutron angular flux in dV due to neutrons crossing the two faces of the volume
element for which x is constant. It follows, therefore, that

Streaming rate (x coordinate) = —r, %i! dV = —(v-VN), dV,

| A S _— FIG. 1.6 CALCULATION OF STREAMING
X X+AX _TERM,

4
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and hence the net rate at which neutrons enter the small volume element due to
streaming is then —v- VN per unit volume. This quantity is equal to —pS2-VN;
consequently,

The foregoing discussion of the streaming term could be elaborated somewhat
to provide an alternative method of deriving the neutron transport equation.®
In such a derivation, attention is fixed on a small stationary volume element at
the position r. The rate of change of the neutron angular density in the volume
element then results from both collisions and streaming. The transport equation
is obtained by adding these contributions.

The neutron transport equation (1.13) may also be expressed in terms of

the angular flux @, which is equal to v/N; thus, writing

(I) = UN = (D(l', Sz, Ey t):
P’ VN’ = (D(l', Q' E, t),

the result 1s

%-?g + Q.VO + od = ” of® dQ dE' + Q. (1.14)

This is the form of the transport equation that will be used most frequently 1n
later chapters. |

1.1d Interface and Boundary Conditions

Some Interface Conditions

It was postulated in the derivation of the neutron transport equation that the
cross sections are continuous functions of position in the vicinity of r. However,
solutions to the transport equation are frequently sought in spatial regions
where there are interfaces between different materials. At such interfaces, the
cross sections are discontinuous and it is necessary to consider how the transport
equation is to be used in these eircumstances.

The important point to bear in mind is that the number of neutrons in a packet
is not changed merely by crossing a physical interface. This means that the
neutron angular density must be continuous in r as the interface is crossed or,
more formally, N(r + s, &, E, t + s/v) must be a continuous function of s,
where s is a distance along 2. Hence, the neutron transport equation 1s to be
regarded as applying on either side of the interface and the continuity condition
is to be used at the interface.”™ | h

* Although the discussion of interface and boundary conditions in this section refers in

particular to the neutron angular density, it iIs equally applicable to the angular flux. The
conclusions are used in the latter sense in several subsequent chapters.
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\_ FIG. 1.6 DERIVATION OF CONTINUITY CONDITION.
INTERFACE ' '

The continuity condition given above could also have been deduced in the
course of deriving the transport equation. It would only be necessary to consider
equation (1.10) in the situation where r and r + Qv At lie on opposite sides of an
interface at r,. Suppose

r=r,—4sQ and r + QAt=r, + 35,

where s is a distance along & between the points on either side of the interface,
as represented in Fig. 1.6. It would be found that

lim [N(r, +35Q, Q. E 1 + i) _ N(r, 159 Q. E 1 - i)] —0,
3=0 2v 2v
which is the same as the continuity condition.

Although in physical systems the neutron angular density is always continuous
in the sense described here, it is sometimes convenient to consider a neutron
source as being concentrated on a surface (§1.1f). At such a surface source, the
neutron angular density is not continuous, but the discontinuity can be deter-
mined, as will be seen in the next chapter. Similarly, it is sometimes desirable to
represent a thin strongly absorbing region as a surface of discontinuity in the
neutron angular density. The required discontinuity can then be derived in an
analogous manner,

Boundary Conditions

The neutron transport equation is usually regarded as describing the transport
of neutrons in a finite region of space, in which cross sections are known
functions of position and energy. Such an equation has an infinite number of
possible solutions within any spatial region and in order to determine which of
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these corresponds to the physical problem it is necessary to specify the appro-
priate conditions on the neutron angular density at the boundary of the region.*

In general, the region of interest is surrounded by a convex (or non-reentrant)
surface; that is to say, a straight line segment connecting any two points in the
region lies entirely within the region. A neutron leaving the surface of such a
region cannot intersect the surface again. If the physical surface is a reentrant
one, it can be assumed to be surrounded by a convex surface at which the
boundary conditions are imposed. If neutrons enter the region from external
sources, then the incoming neutron flux must be specified.

If no neutrons enter from external sources and if a neutron, once it leaves the
surface, cannot return, then the surface is called a free surface. The boundary
conditions on the neutron angular density at a free surface are as follows. Let
i be a unit vector in the direction of the outward normal at a position r on the
surface. Then any neutron at r having -2 > 0 will be crossing the surface in an
outward direction whereas a neutron for which - < 0 will be crossing in the
:award direction. Hence, the requirement that there be no incoming neutrons is
that for all positions r on the boundary surface ‘

N, R E1) =0 if A-Q <O0. (1.15)

In a practical situation it is, of course, not possible to isolate a system com-
pletely from its environment. A neutron leaving the system will have a finite
probability of returning; hence, the free-surface boundary conditions are an
‘dealization. Nevertheless, they are very useful because (a) for many systems the
probability of neutron return is negligible, and (b) it is always possible to choose
the bounding surface far enough from the volume of interest that approximate
boundary conditions suffice. For example, small deviations from free-surface
boundary conditions imposed at the outside of a reactor shield, or even of the
reflector. have a negligible effect on the criticality.

1.1e Conservation Relations

The neutron transport equation is simply a statement of neutron conservation |
as applied to an infinitesimal element of volume, direction, and energy. If it is
integrated over all directions, the result will be a statement of neutron conserva-
tion for a small element of volume and energy. Before performing the integration,
however, it should be noted that since the gradient operator involves derivatives

* In addition to conditions at the boundary of the spatial region, some conditions on the
neutron density, or alternatively on the source and cross sections, may be required at high
encrgies.® Normally, the energy variable is restricted to a finite range 0 < E < Enay;
neutrons of higher energy than En.. are not considered except insofar as they may produce
some neutrons with £ < En.. which would be included in the source, Q. Furthermore,
initial conditions on the neutron angular density are required in order to determine the
solution to the transport equation, as will be seen in §1.5a.
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with respect to position coordinates only, it follows that
Q-VN = V-QN ‘ (1.16)

and hence

| QVNAQ =0V | QNdIQ =V-],

4n 4n

in accordance with the definition of the neutron current, J, in equation (1.6).
Integration of equation (1.13) over all values of £ consequently gives

%'1—1 4+ V.J + otn = f o(r; E'— Ey'n'dE' + 0, (1.17)
where

n=n(rE t) and n" =n(r, E', 1)

are the neutron densities. In this expression. also

0=0Q@E 1) = | Or. @. E, 1) dR
and

o(r: E' — E) = f o(r. E')f(r: Q. E' — ., E) d. (1.18)

That is. the integral of ¢’/ over all final directions gives o(r: E' —- E), which is
defined to be the cross section at r for collisions which result in a neutron of
energy E' being replaced by one of energy E£.

Integration of equation (1.17) over a finite region of volume and energy now
yvields a conservation equation for the whole population of neutrons in the
region. Thus. the result of integrating equation (1.17) over a finite volume and

_o\ver energy Is

el ndV dE v -
——"—‘————————- + H V-J(H'(/E*}-J" von dV dE

o
, i 11
_ HJ o(r: £ - E)'n’ ¢/E'¢11'¢/E+HQ<”"’E- (1.19)
v Y

Each of the five terms in equation (1.19) has a clear physical significance, as will
now be shown.

The quantity H n db JdE is the total number of neutrons in the space—energy
region under consideration: hence. term 1 is the time rate of change of the total
number of neutrons in this region.

e Koo 0
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[n connection with term I1, the divergence theorem may be used to write

”v-JdVdE=UJ-ﬁdA dE,
\'4 A

where dA refers to an element of area, A, on the bounding surface of the region,
v. under consideration and i is a unit vector normal to the surface element and
directed outward from the region. By definition, J-fi is the net number of neu-
frons crossing unit area of the surface in unit time. Hence, term Il is the net
number of neutrons flowing out of the space-energy region per unit time.

Term 11 is the rate at which neutrons are entering into collisions in the given
region. i.e.. the total collision rate, and 1V is the rate at which they emerge from
these collisions. Hence, 1V — 11l is the net rate at which neutrons are generated
in collisions. Finally, term V gives the rate at which neutrons from independent
sources are introduced into the region. If equation (1.19) is rearranged in the
form

=V = 1)+ V =1,

it does indeed represent neutron conservation in the space-energy region under
consideration. for this expression states that

Rate of change _ Net rate of generation
of neutrons of neutrons in collisions

Rate of introduction Net rate of outflow
of source neutrons of neutrons.

1.1f Linearity of the Transport Equation: Green’'s Function

It may be noted that the homogeneous (source-free) neutron transport equation

LY Q.00 4 o = || o0 dQ dE’
[ ] U (’ Vo ’
s linear. where the term “linear ™ implies that if @, and &, (or N;and N, in the
corresponding expression for ¢ N ¢r) are solutions then &, + @, (or N; + Np)is
also a solution. Certain (homogeneous) boundary conditions must be satisfied.
as will be seen shortly.

For the inhomogeneous transport equation. i.e.. for a system with a source,
the lincarity has a related consequence. If a solution &, corresponds to a source
0, and a solution ¥, to a source Q,. then, subject to certain boundary conditions,
the flux &, + W, is a solution for the source Q) + Q.. In general, if a complex
source Q can be divided into a number of simpler sources, 0., so that

Q——_ZQH



then the angular flux ® corresponding to the source Q will be J
q) = Z (Di9

where each ®; is a solution of the transport equation for the source Q;, provided
the boundary conditions mentioned below are satisfied.

The result given above depends on the existence of boundary conditions for
the problem so that all solutions ®; and also their sum, ®, satisfy these condi-
tions. Such boundary conditions are often called homogeneous. For a volume
source with free-surface boundary conditions, i e., no incoming neutrons, as
defined earlier, this is certainly the case. If the boundary conditions correspond
to an incident flux, the latter can be treated as a surface source with free-surface
boundary conditions, as will be seen below.

The additivity of the individual values of @, suggests that the solution of the
transport equation for any arbitrary complex source could be obtained by the
superposition (or integral) of the solutions for simple point (or other) sources.
The solution for the simple source is known as Green's function for the problem,
and various special forms can be found for different geometries. The (one-speed)
Green’s function for plane geometry will be derived 1in Chapter 2.

As an example of the use of Green's function. consider, first, the time-
independent neutron transport equation (1.14) for the flux, i.e.. with ¢®djer = 0.
The results will be generalized later to the time-dependent situation. Let the
Green's function G(ry. £,. £, — r. . £) be the neutron angular flux atr, , E
due to a unit point source. i.e.. a source emitting | neutron/sec, located at
ro. 2o. Ey. By definition, this satisfies the transport equation (1.14); thus, for
free-surface boundary conditions,

LYY

QVG + oG = || o'fG' dQ dE" + 8(r — 1) 5L — Q) SE — Eo). (1.20)

where
G =0G(rg. Ry E,—-1. Q. F)
and
G = G(rg. Q. £g — 1. Q'L E").
The other symbols have the same significance as before.

If d(r. . E) 15 the solution of the transport equation for the arbitrary source
Q(r. Q. E). then because of the linearity of this equation

O(r. Q. E) = m O(ro. . Eo)G(ro. Ro. Eo — 1. Q. E) dV'y dQqy dE,. (1.21)

o A

As already mentioned, Q can be either a volume source with free-surface condi-
tions or a surface source chosen to reproduce the incident flux condition, or

i 1

Wl e A

s




INTEGRAL EQUATION FOR NEUTRON TRANSPORT 21
some combination of the two. The magnitude of the equivalent surface source,
represented by Q(r, Q. E), can be determined by supposing the incident flux ata
point r on the surface is ®(r, &, E) per unit direction and energy. Then the
number of neutrons crossing an element of area dA with outward normal i will
be given by

Number on neutrons crossing = — - Q. (T, Q. E)dA

per unit direction and energy. The minus sign is introduced because fi'is an out-
ward normal and £ is an inward direction, so that fi- € < 0. Hence, this incident
flux may be replaced by an equivalent surface source such that

Or, , E) = — QO (r, R, E). (1.22)

The fact that Green’s function has been written for a time-independent problem
is of no particular significance. A time-dependent function

G(ro, Q. Eq, 1o — T, 82, E, 1)

can be obtained simply by adding the time derivative on the left of equation
(1.20) and including the fagtor 8(t — 1) in the delta function representing the
point source. :

Some special forms of Green's function will be derived in later sections of
this bouk. and relationships between various Green's functions will be indicated.

1.2 INTEGRAL EQUATION FOR NEUTRON TRANSPORT

1.2a Introduction

The neutron transporl equation is an integro-differential equation for the
neutron angular density (or flux). In this section an equivalent integral equation
will be derned. This raises the question of whether there is or is not also an
cquivalent purely differential expression for the neutron transport problem.
The answer is that there s not. for the following reason. In deriving the transport
equation 1l was necessary to consider the neutron angular density in the im-
mediate (space-time) vicinity only of the point under consideration, whereas the
whole range of energies and angles had to be included in the transport equation
for the angular density at a particular energy and angle. Hence, the formulation’
is local. involving derivatives, in space and time, but it is extended, involving
integrals. in energy and angle.

The physical basis of the foregoing situation is that, in a collision, the position
and time associated with a neutron change continuously whereas the energy and
angle will change in a discontinuous manner. As a consequence, a mathematical
formulation of the neutron transport problem must contain integrals over energy
and angle. In the mulugroup treatments of the transport equation, described in
Chapters 4 and 5. these integrals are approximated by sums.



1.2b Derivation of the Integral Equation

Since the neutron transport equation is a linear first order partial differential-
integral equation, it can be converted into an integral equation by a standard
procedure known as the method of characteristics,? as will be shown below.
Two special cases of the integral equation will then be derived: one for isotropic
scattering and the other for general anisotropic scattering. The integral equation
for neutron transport can also be obtained directly from neutron conservation

considerations, as will be indicated.
For the application of the method of characteristics to the neutron transport
equation, the latter, in the form of equation (1.14), may be written as

22 a9, E 1) + V0 + 00 =g R, E, 1), (1.23)

where g(r, &, E, ) is given by
g(r, Q,E 1) = f f or, ENf(r: @', E' — &, E)O(x, &', E', 1) d dE’

+ 0(r, Q, E, 1). (1.24)

Thus, g is the total rate at which neutrons appear atr, £, E, and ras a result of
both collisions and the independent source, Q.
The first two (derivative) terms on .the left side of equation (1.23) may be
written, in a cartesian coordinate system, as

1 o 8 5 2
(5'37* Qg+ Qg + Qzéz)<b

and, in the method of characteristics, a corresponding total derivative can be
represented by

do _ovdi  20ds 20dy  00dr

ds otds  oxds oyds 0zds

Upon identifying terms in these two expressions, it is found that

d 1 ) . s
et with solutions f = {f, +5
, 3\
Z—Sf-—-ﬂx x = Xo + 5,
dy
= Q, y =Y+ 5Q, pr=r;+ s

IR B
I
o)

z =2y + 5sQ, )
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where to, Xo, Yo, and z, are arbitrary constants. Hence, the transport equation
(1.23) can be written as

%(I)(ro + s, R, E, t, + f—)) + o® =‘q(r0 + s, 2, E 15 + zs—)) (1.25)

The r(s) and #(s) curves are called the characteristic curves of the differential
equation, and for every Io and 1,, at fixed values of & and E, there is one curve
passing through that point. The derivative in equation (1.25) is a derivative
along a characteristic curve and it is evidently 1/v times the total time derivative
(dN [dt) in the original derivation of the neutron transport equation; s, as before,
is a distance along the direction £ of neutron travel. Indeed equation (1.25) is,
“except for notation, just the same as equation (1.10).

Equation (1.25) is seen to be a linear first-order ordinary differential equation
which may be integrated. This can be done by introducing an integrating factor,
so that equation (1.25) becomes

(% [(D(r0 + s, Q E 1y + ;) exp JS o(rg + s'R, E) ds’]

= exp Us olr, + 5’2, E) ds’]q(ro + s, Q E 1y, + f)- (1.26)

11
This expression is now integrated from s = —o0, and as a result the integral

terms will include earlier times, to some upper limit s.
If it is assumed that

(D(ro + s, . Q E 1t +;) -0 as s— —0,

as would be true, for example, if there were no neutrons in the system at times
long past. then the left side of equation (1.26) becomes

(D(ro + sQ . Q E, 1, + ";) >Xp Js o(r, + s'R, E)ds'.

Upon multiplying both sides of the equation by exp (—Is o ds’), the result 1s

cb(ro + s Q. E ty + f)

= J" exp Ul— a(r, + 5", E) ds”] [q(ro + s’ R, E 1, + %)] ds’.

- !'
This expression can be simplified to some extent by setting

ro+s2=r and t,+-=1

it



and changing the signs of the variables so that the integration runs from 0 to oo
and O to s’ in the two integrals, It is thus found that

’

O, R, E 1) = fw exp [—-Js o(r — s"R, E) ds"]q(r — s’ E 1 — fl—) ds’,
0 0

(1.27)

which is the required form of the integral transport equation for the neutron
angular flux.

Equation (1.27) implies that the flux at r is made up of neutrons which
appeared in the direction £ and energy E at all other possible positions r — s'S2,
with all positive values of s, multiplied by the attenuation factor

exp [— ) ofr — s"R.E) (/.s"']

JO

by which the flux is reduced in going to s = 0. The integration over s’ 10 oL can
be terminated at the boundary if there is no incoming flux. Similarly, in the
treatment above. it would not be necessary to let s — — but only to let
r + s§ proceed to the boundary. If there is incoming flux. this can be replaced
by a surface source as in §1.1f. together with free-surface boundary conditions.

Attention may be called to two points of interest. Since | o 1s equal to the
mean free path. the exponent in the attenuation factor is equal to the number
of collision mean free paths along the straight line between rand r — s'Q.1tis
frequently called the oprical path length between the two points and is denoted
by #(E:1 — s'Q ~-r1). [[ 0 1s constant. itis simply s’

Further. if the explicit form of ¢. as given by equation (1.24), 15 introduced into
equation (1.27). the result may be written as

D = Kb + Q. (1.28)
where K is the required integral operator and Q' is a known function. assuming
0O to be known. Consider the solutions of equation (1.28) obtained by iteration:
thus.

(I)o = Q'.
&b, = K,
(Dn‘l = Kq)n-

Clearly @ is the angular flux of neutrons which have made no collisions after
being introduced from the independent source: this will be called the flux of
uncollided neutrons. Similarly, ®, is the flux of first-colhision neutrons, i.e.,

¥
those which have made only one collision. and so on. If the series N @, con-

ne«0
verges. it represents a solution to equation (1.28). This approach. in which
neutrons are enumerated by collisions, is often useful and will be utilized in
subsequent chapters.

A A S 6 ot R A 1t S B R £
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1.2c lsotropic Scattering and Source

The integral transport equation (1.27) can be integrated over all directions to
yield equations that are useful in some instances. Consider, for example, the
simple case of isotropic scattering and an isotropic source, where fand Q are
not dependent on  or . It is then possible to write

oftr: @, E' =, E) = 7-o(e; E'— E),
in accordance with the definition of o(r; E' — E) in equation (1.18), and

O(r,Q E t) = 4%7 Ofr, E, 1).

Hence, from the definition in equation (1.24),

Ar @ E 1) = = [ alr: B EMb(e, E' 1) dE" + 5= Q5 E, 1),
7. ™

where the integral of the angular flux on the right side has been replaced by the
corresponding &(r. E°.1).

The expression for g obtained in this manner may be inserted into equation
(1.27) and integration carried out over all directions, &, to give the total neutron
flux. &(r. £. 7). The quantity ds’ d on the right side is just a volume element,
(1. divided by (s7)%. The integration goes over the volume of the system; hence,
replacing r - v by r and ds" dQ by V(s = dV'ilr — r'|?, itis found that

Mr. E.1) = l exp [—7(Eir —r1

4rir—r'|?

)]dl"
. [‘ a(r':E'~-E)¢(r', E.t— ]_r_'l‘__"_|> dE’

+ Q(r’, E 1t — '-'——-l—'l)] (1.29)
Equation (1.29) for isotropic scattering and an isotropic source has been
frequently used in one-speed problems where the energy variable is absent. It
should be observed that it is an expression for the total flux alone: the angular
distribution of the neutrons does not enter because both scattering and source
are assumed to be 1sotropic.
If R is written for r — r'l, then in the simple case of rotal cross section
independent of position and no dependence of ¢ on time, equation (1.29) becomes

>, ~6lE2R

47 R*

Hr. E) = dr'“ olr': E' — E)p(r'. E'YdE' + O(r', E)]. (1.30)

fn this form. it can be seen that the quantity in the square brackets in equation
(1.30). and hence also in equation (1.29). is the rate at which neutrons of energy



E appear (isotropically) at ' due both to collisions and to the independent source
at r'. The factor e~°F/4=R? is the probability that a neutron appearing at r’ will
reach r without suffering a collision. The integration over all values of r’ is
equivalent to adding neutrons from all possible sources. It is of interest to note
that e~ °F/4mwR? is Green’s function (§1.1f) for a unit isotropic source at r’ in an
absorbing medium. Similar expressions in other forms of the integral transport
equation are also Green’s functions.

The foregoing interpretation may be reversed to provide an alternative
method for obtaining the integral transport equation on the basis of neutron
conservation, analogous to that used in deriving the integro-differential form of
the equation. For simplicity, the time-independent case of isotropic scattering
and an isotropic source will be treated. Consider the neutrons which at time ?
are present in a volume element dV about r; the expected flux is then ¢(r, E) dV
per unit energy. Each of these neutrons must have either reached r directly
from the source, without intervening collisions, or it must have had a last
collision before proceeding to r. All the neutrons at r may thus be divided into
two categories, according to whether the neutrons have or have not come
directly from the source.

Consider a volume element dV' at v’ (Fig. 1.7). The expected rate at which
neutrons emerge from collisions and from the source is then

Rate at which neutrons - o , ’
emerge from dV’ = [o(r': E'— E)$(r', E') + Q(r'. E)]dV".

These neutrons emerge isotropically from ¢V’ and so if there were no attenuation
between r’ and r, they would contribute an amount

[o(r': E' - E)(r'. E') + Q(r'. E)]dV’
‘ 4=|r — r'|?

FIG. 1.7 VOLUME ELEMENTS FOR
INTEGRAL EQUATION.
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toward the flux of the neutrons at r. The attentuation by the medium, however,

reduces this flux by the factor e=°'*=*'!, The flux ¢(r, E) of neutrons of energy.
E at r may now be found by summing the contributions from all possible
volume elements dV’. The result is then equivalent to equation -(1.30). The
foregoing derivation of the integral equation has referred to an especially simple
case, but the same general procedure can be used to obtain equation (1.27).

1.2d Anisotropic Scattering

When neutron scattering is anisotropic, an integral equation for ¢ alone cannot
be obtained because the angular dependence of the neutron distribution must be
included. Nevertheless, it is possible to derive an integral equation where the
kernel is similar to that in equation (1.29). To do this, it should first be noted
again that g is the sum of source neutrons plus those that appear as the result of
collisions. Let ¥(r. ., E,, t) represent the collision source, i.e., the number of
neutrons per unit time and unit volume that, due to collisions, appear per
steradian about £, and per unit energy about E,; thus,

W(r. 0. B 1) = [[ O, R E, 0)of(r: @, E— R0, Eo) dR dE

and
gr, R, E 1) =¥(r, R E t) + Q(r, 2, E, t).

Equation (1.27) is now multiplied by of(r; , E— R, E;) and integrated
over d2 and dE; the result is found to be

W(r. Q. Eo, 1) = f dEf a9 f ® exp [— f " o(r — 5", E) ds"]
0 0

X Uf(r; Sz) E_> QO, EO)

!

x [‘i’(r _ SR Q. E ¢ — S—) + Q(r SR QEf — S—)] ds’.

v v

By writing r’ forr — s'Q, asin §1.2c, and changing to volume integration, so that

fdszf”ds'=f-—d’—/—,—,
0 r —r'|?

and nating that
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this expression takes the form
av’ ,
(e, R, o, 1) = [ dE | o oxp [ (B > )]

r—r
— Q
X of(r, |l' — r,l E — 82, Eo)

X [‘F(r', _r____r_,-, E’ t — Il;]_._l_)
v — 1| v /

+ Q(r',T;—_—:—,I,E, ' — Iir_?r_l)] (1.31)
Except for the factor of in the integrand of equation (1.31), the integral kernel
is similar to that in equation (1.29). Integral equations of the form of equation
(1.31) have been used in the study of one-speed problems and of simple forms of
anisotropy.*® |

Solutions of the energy-dependent integral transport equation have not been
widely employed in general reactor problems. Nevertheless, the integral equation
approach, in which the flux at r is represented as made up of contributions
from all r’, has been found useful for many special cases. Examples will be given
in the determination of collision probabilities in Chapters 2 and 8, and in a widely
used method of computing thermal neutron spectra in Chapter 7. In one-speed
problems, the integral method has often been utilized in the derivation of the
mathematical properties of the solutions.*!

1.3 THE TRANSPORT EQUATION FOR SPECIAL GEOMETRIES

1.3a Plane and Spherical Geometries

In solving the neutron transport equation, it is necessary to have expressions
for the quantity - VN which appears in the streaming term of the equation.
Such expressions can be derived quite simply for coordinate systems where the
position vector r is given in terms of rectangular, spherical, or cylindrical
coordinates. Two angular coordinates are required to specify the neutron
direction and these are chosen to be a polar angle and an azimuthal angle
(see §1.7a). Computation of £-VN is facilitated by noting that it is the direc-
tional derivative of N in the direction £. Some examples are given below; the
energy and time variables are suppressed to simplify the notation.

For plane geometry, in which the neutron angular density (for a specific
energy) is a function only of z and 6 (Fig. 1.8),

dN oNdz _oN oN

Q-VN=-Z;—-5;ES'——3;COSG=F-8—Z-,
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FIG. 1.8 NEUTRON MOTION IN PLANE
GEOMETRY

where u = cos 6. For this geometry, it is convenient to set N(r, ) equal to
A(z.p). and when integrating over all directions, d€2 may be replaced by
du dg in polar coordinates (§1.1b). Since the neutron distribution tn plane
geometry has azimuthal symmetry, integration over @ gives 2w, and hence for
integration over . JdQ = 2 du. Thus, for plane geometry,

. 1
N(r. ) dQ = 27 [ N(z, ) du.
. J -1

For spherical geometry. ie.. spherically symmetrical about a point, it is
comvenient to give the neutron direction Q relative to the radius vector r. If, In
particular.

-

Qi =pu,

where Fis a unit vector. then N is a function of r and u only. But as fhe neutron

FIG. 1.9 NEUTRON MOTION IN SPHERICAL GEOMETRY.
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moves with constant €, the value of u changes from cos 6 to cos 8’ (Fig. 1.9).
Hence

_dN(rp) _ ONdr | ONdp

Q-VN(, ») ds  ¢ords c¢upds
But
dr
il cos 8
and _
dp dcos 8d6 _ sin 6y 1 — p?
s~ T do ds (s‘“g)( . )‘ 7
Consequently,

¢eN 1 — p?éN
QVN(rp) =przr ¥ =7

(1.32)

More general expressions for £-VN (or Q.Vd) and for fd.Q in various
rectangular, spherical, and cylindrical geometries are given in §l.7a. It should
be noted that the expressions involving N and ¢ have exactly the same
dependence on all the vanables.

1.3b Conservation Form for Curved Geometries

It was noted earlier that the neutron transport equation is simply a statement of
neutron conservation in an infinitesimal element of direction, volume, and
energy (dQ. d1’. and dE). When integrated over all directions and over a finite
volume. the result is a relation for the conservation of neutrons in that volume.
For performing these integrations in curved geometries. it is convenient to
express Q- VA in a particular form which facilitates the integration procedure.
The term $2-VA is then said to be expressed in conservation forn.

Consider the simple case of a system with spherical symmetry. The integral
of Q-VN 1 dQ over a finite volume and all directions is obtained by writing
d=r2 Jdr for ¢} and integrating over r from ry to r, (Fig. 1.10) and replacing dS2
by 27 di and integrating over pu from —1 to . The latter substitution is permis-
sible because the neutron distribution in spherical geometry is azimuthally
symmetrical. as it is for plane geometry (§1.3a). Thus, the integral under con-
sideration can be written

-~

”sz-w AV dS = j dmr? |1 1m(R-UN) d dr (1.33)
Yl e,

-1

v v

= 4—:’] * 12V J(@) dr

)] '1

= ‘i}"_ [r2J(ry) — r?.{(rﬂ], (1.34)
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qrre

FIG. 1.10 CALCULATION OF STREAMING TERM IN CONSERVATION FORM IN
SPHERICAL GEOMETRY. ‘

recalling the definition of the neutron current in equation (1.6). This result
should. of course. be obtainable by substituting the right side of equation (1.32)
in the second integrand on the right of equation (1.33) and performing the
integration directly. The two terms obtained in this manner combine mathe-
matically to vield equation (1.34), as requnred but the individual terms have no
physical significance.
A preferable approach is to express the right side of equation (1.32) in an
alternative form, r.e.. :
(N L pReN _palrtN) el = AN

S —— + — = -
or r g r< cr r G

(1.35)

When this expression is multiplied by the volume element 4772 dr, it is seen that
the first term on the right is a function of u, namely . multiplied by a derivative
with respect to r. whereas the second term is a function of r. namely r, multiplied
by a dernative with respect to u. When the right side of equation (1.35) is
integrated over rand . as above, the first term gives the right side of equation
(1.34) directly. and the integral of the second term goes to zero. Thus,

“ry ~1 2 2 ; 2
drr? ' —;,rp. r N)clp dr = G [ Mdr
Jey Joyre cr voJr, or
47r

[ 3J(r2) — riJ(r))l,

which is the net rate at which neutrons leave the volume divided by the neutron
speed, 1.*

it

(Y 2r(l - HN
J’l 4”[""—1 . ( (#“ ] du dr —f 8n°r dr{(1 — ,u.z)N]u__l 0.

* When the angular flux, @, 15 uscd in place of the angular density, N, as in §§!.7a, 5.3b,
the integral gives the actual rate at which neutrons leave the volume.
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The two terms on the right side of equation (1.35) thus have physical significance
when integrated over a finite volume and all directions, and they express
Q.- VN for spherical geometry in conservation form.

In general, when Q- VN is written in conservation form, the coefficient of each
derivative term multiplied by the volume element does not involve the variable
of differentiation. When integrated over all directions and a volume bounded
by surfaces along which one space variable is constant, the terms can be readily
interpreted as currents across such surfaces (see last paragraph in §1.7a). This
property of the conservation forms makes them useful in deriving difference
approximations to the transport equation (see Chapter 5) or in considering
boundary conditions. Expressions for £-V®, which also apply to -VN, in
conservation form for spherical and cylindrical geometries are included in the

appendix to this chapter (§1.7a).

1.3c Special Forms of the Integral Equation

It was seen in §1.2c that when the source and scattering are isotropic and the
cross sections are independent of position within the region being considered,
the integral equation takes the particularly simple form of equation (1.30); the
latter, in which ¢ is independent of time, may be written as

—0(E)R

b ) = [ S at E) Y (1.36)

where :
R=|r-r]
and

g E) = | o(E'— E(’. EVdE + QU E).

Furthermore. when the geometrical region is simple. the spatial integral may be
simplified.
In plane geometry, with g a function of x and £ only, Fig. 1.11 shows that the

volume element
CdV = 2ar dxdr.
Moreover,
R* = |x — X'|2 + (r')%
so that, if x — X' is constant,
RdR =r'dr'.

Equation (1.36) then takes the form
- a(EWR

b (e ,
é(x, E) = .SJ dx Ju_x'lq(.\‘,E)e — dR

-

= %fq(.\". E)E\[o(E)|x — xX'|] dX’ .(1.37.)

o
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FIG 1.11 CALCULATION OF INTEGRAL TRANSPORT EQUATION IN PLANE GEOM-
ETRY
where the ssmbol £, stands for the first order exponential integral function (see
: Appendivg. For aninfinite slab of thickness 2a. this becomes
. l u ’ ! ! ’
dMx. ) =3 [_ g(x'. EYE\[o(E)|x — x'[]dx. (1.38)
Simulariv. tor spherical geometry. with g a function of » and £ only, then from
Fig. 112
dV’' = 2=(r'y? dr’ d(cos 8)
and

R* =r%+ (r')* = 2rr' cos 0.

o that for tined rand 7.

. —d(cos 8) = Rd,R-
Hence. equation (1.36) can be written as
4 f. I o o , , ~r+r’ e—U(E)R d
Mr. E) = 3.'0 tr'Yg(r', E)dr ) TR R
and
. | P . ,
rétr. £y = 3 ’ rar’, ENERE)r = r'|] — EJJo(E)or + r)lbdr'. (1.39)
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FIG. 1.12 CALCULATION OF INTEGRAL
TRANSPORT EQUATION IN SPHERICAL
GEOMETRY.

For a homogeneous sphere of radius a, equation (1.39) becomes
l a ! ’ ’ ! 7
rg(r, E) = 5| r'q(r’, EXE\[o(E)|r — r'|] — E\[o(EX(r + r')}dr’.  (1.40)

If g(—r, E) is taken to be equal to g(r, E), then the second term in the integral
can be written as

o]
5[ rae EERENr - e
and then equation (1.40) reduces to
l a ’ ’ ’
ré(r, E) = if- r'q(r', E)E\[o(E)|r — r’|] dr'. (1.41)

This equation may be considered to apply for —a < r < a, with ¢(—r, E) =
é(r, E).

Comparison of equation (1.41) with equation (1.38) shows that for a homo-
geneous sphere of radius a the quantities r¢(r, E) and rq(r, E) are related to the
planar quantities ¢(x, £) and g(x, E), respectively, for an infinite slab of thickness
2a. By using this fact, it is sometimes possible to relate solutions of the transport
cquation for slabs to those of spheres (§2.5f). It should be noted that since, by
definition, ¢(r, E) = ¢(—r, E) and q(r, E) = g(—r, E), the functions ré(r, E)
and rq(r, E) of r must be odd, i.e., ré(r, E) = —[—ré(—r, E)} and rg(r, E) =
—[—=rg(—r, E)). For the symmetric slab, however, the corresponding functions
of x are even, since #(x, E) = ¢(—x, E) and g(x, £) = g(~x, E).

-
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1.4 LIMITATIONS OF THE NEUTRON TRANSPORT EQUATION

1.4a Introduction

In deriving the neutron transport equation, some assumptions were made
which may not always be justified in practice. In order of their appearance in the
preceding text, the most important are: (1) that the neutron is a point particle
characterized completely by its position and velocity; (2) that the medium
contains a large enough number of neutrons so that deviations from the expected
(or probable) number can be ignored but not so large that they change the
medium in times of interest; and (3) the neglect of delayed neutrons. These
assumptions will be discussed in turn.

1.4b Neutron as a Point Particle

In considering the neutron as a point particle, i.e., a particle which can be
described completely by its position and velocity, the effect of polarization,
which could influence neutron transport, has been neglected. Polarization effects
can arise because the neutron has a spin and a magnetic moment. In particular,
when a beam of neutrons with energy large enough for / > 0 interactions to be
significant, in practice when E 2 100 keV (cf. §1.6c¢), is scattered by an un-
polarized target, the neutrons become polarized due to neutron-nucleus (spin— -
orbit) interaction. This polarization affects the subsequent scattering of the
neutron, and a transport theory with appropriate allowance for polarization
has been developed.'? Although in principle there are situations where the effects
on neutron transport could be large, e.g., fast neutrons diffusing in helium, it
does not appear that this is so in practical situations. In any event, allowance
for polarization can be made in the P, approximation to the transport equation
(see §1.6d) by a suitable small modification of the cross sections.

Neutron polarization can also arise from the scattering of neutrons by nuclei
with oriented spins. e.g., oriented protons, from scattering by magnetic materials,
due to the interaction between the magnetic moment of the neutron and the
atomic magnetic field, and from smatl-angle scattering arising from the interac-
tion of the magnetic moment of the neutron (for / > 0) with the electric field of
the nucleus. None of these effects, however, is important for neutron transport
in a reactor.

At very low neutron energies, the neutron wavelength becomes comparable
with the internuclear spacing. Interference effects could then arise between the
neutron waves scattered from various nuclei. These coherent scattering effects
will depend on both the scattering nuclei and their positions in space, i.e., in the
crystal structure. The scattering is then affected by the orientation of the crystal
axes relative to the direction of the neutrons. The phenomenon is important in
the physics of low-energy neutrons, but it is usually not significant for reactor
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theory. Further reference to the subject will be made in Chapter 7 on neutron
thermalization.

1.4c The Expected (or Probable) Value

In deriving the transport equation for the expected (or probable) value of the
neutron density, fluctuations from the mean were not taken into account. As a
general rule, in a power reactor the fluctuations are small in comparison with the
average neutron density and then the transport equation can be used to express
the “expected” behavior. In addition, fluctuations have no effect on the average
neutron density and hence the transport equation is valid for the average neutron
angular density no matter how large the fluctuations may be.

There are some practical situations, however. tn which the departure from the

~ average behavior is relatively large and cannot be overlooked. In particular,

deviations from the mean commonly occur in the startup of a reactor in which
the system is brought up to (or through) critical with a weak source. There is
then, for example, a certain probability that the reactor may go beyond prompt
critical before any neutron signal is detected. For dealing with such behavior,
stochastic theories of neutron transport and multiplication have been developed
in which the probabilities of various exceptional events are considered along
with more normal situations.'® The procedures will not be discussed in detail in
this book. but it is of interest to note that in one approach an equation is derived
for a probability function which is closely related to the Boltzmann equation,
it includes nonlinear fission terms where the probability of two neutrons from
fission leads to a square term. and so on.? '

Fluctuations during startup are important in reactors which depend on such
weak sources as spontaneous fission. («, n) and (y. #) reactions, and cosmic-ray
neutrons. In pulsed reactors, it is desirable to use a strong source for startup, so
that departure from the average behavior is small, or a very weak source; there
is then a high probability that assembly to the desired state of supercriticality
will be attained before the first persistent (divergent) fission chain is initiated.

Even when a reactor is operating in the steady state. there are minor fluctua-
tions in the neutron flux. usually referred to as reactor noise. This noise 1s a
direct consequence of the fission process itself. 1t will be shown in Chapter 9
that information about the lifetimes of delayed neutrons and other matters of
interest can be obtained from a study of reactor noise. The fluctuations in the
steady state do not, however. represent large deviations from the neutron
angular density (or flux) predicted by the transport equation. _

The limitation was indicated earlier that the neutron density must not be so
large that the medium changes appreciably in times of importance for neutron
transport. Clearly, in a reactor operating at high power. the composition and
temperature, and hence the macroscopic cross sections, will change gradually
‘with time. The time scale for these changes, however, is very long compared with
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neutron transport times. The problem is therefore treated by a series of static
calculations in which compositions, etc., are changed from one calculation to the
next. The same procedure is generally used for shutdown and startup problems
where the changes are so relatively slow that a series of static calculations 1S
usually adequate; this question will be examined further in Chapter 9, where 1t
will be seen that in treating rapid transients, e.g., in power excursions, the
changes of cross section are taken into account in various ways.

The neglect of neutron-neutron collisions in the transport theory can be
readily justified. Even in a thermal reactor operating at the high (thermal)
neutron flux of 10'® neutrons per cm? per sec, the neutron density is less than
10'! neutrons per cm?. This is small compared to nuclear densities which are of
the order of 1022 nuclei per cm3 in solids. Hence, neutron-neutron collisions will
be very much less frequent than neutron-nuclei collisions. As a result of the
'\ neglect of neutron-neutron scattering, the neutron transport equation is linear.
_’ In the kinetic theory of gases, where collisions among the particles are important,
| the transport (Boltzmann) equation includes nonlinear collision terms.

e s

1.4d Delayed Neutrons

When necessary, there is no difficulty in allowing for delayed neutrons, provided
that the precursors decay where they are formed, i.e., there is no transport of the
precursors. This is done by introducing into the scattering kernel the possibility
of a time delay between neutron absorption and emission. The subject will be
treated in Chapter 9, but in the meantime it may be regarded as only a formal
complication. It is necessary, however, to keep in mind the distinction between
prompt critical, i.e., criticality without delayed neutrons, and delayed critical,
in which the delayed neutrons are included. In the former case, of course, the
delayed neutrons can be neglected completely.

If the delayed neutron precursors can move appreciably while they are ,./—/-
decaying. the motion must be analyzed and taken into account in both static
and dynamic reactor problems. Transport of delayed neutron precursors occurs
in reactors with circulating fuels and in systems with unclad fuel elements when
the precursors can diffuse into the coolant.

’ 1.5 GENERAL PROPERTIES OF SOLUTIONS OF THE
- TIME-DEPENDENT TRANSPORT EQUATION

1.5a The Criticality Condition: General Considerations

From physical considerations, it is to be expected that systems containing
fissile nuclides can be regarded as being either subcritical, critical, or super-
critical, based on the behavior of the neutron population as a function of time.
Thus, the following intuitive definitions may be adopted to describe the physical

I | -
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-

concept of criticality. A system is said to be subcritical if, for any nonzerq
initial neutron population; the expected population at late times: i.e., as
t — oo, will die out unless it is sustained by a neutron source; internal or
external. Similarly, a system is described as supercritical when the expected
neutron population diverges at late times, starting from any nonzero population
or with a source. Finally, a critical system is defined as one in which a steady,
time-independent expected neutron population can be maintained in the absénce
of a source.

The foregoing definitions can be related closely to the properties of the
asymptotic (as ¢ — o) solutions of the neutron transport equation. However, a
formal mathematical analysis of the asymptotic solutions covering all situations
of physical interest has not yet been made. In this section, therefore, a heuristic
approach to the problem will be presented and it will be followed by a brief
review of some results obtained by a formal analysis in certain special cases.

The neutron transport equation with boundary conditions defines an initial
value problem. Thus, if the neutron angular density at 1 = 0, i.e., N(r, , E, 0),
is given, the expected density at any later time can be found, in principle, by
solving the transport equation. It has been shown that such a solution exists and
is unique, provided certain mathematical conditions are satisfied by cross
sections and sources.'s In practice, these conditions are satisfied for actual
physical situations. The criticality of a system will now be discussed by con-
sidering the asymptotic (as t — o0) behavior of the solution to the initial value
problem.

The homogeneous (source-free) neutron transport equation. i.e.. equation
(1.13) without Q, may be written in the form

eN T

= —tQUN —arN + || ofe'N A dE" = LN,
where L is an operator. together with the boundary condition of' no incoming
neutrons. Some important features of the criticality problem can be appreciated
by considering solutions to the equation

N
i LN (1.42)
of the form
N = N, &, E)e,
from which

aN(r, Q, E) = LN(r, R, E).

There may exist many values (eigenvalues) of «, represented by «,, with
corresponding solutions (eigenfunctions) N, -i.e.,

: a,N, = LN,
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Suppose that it is possible to expand the solution in the eigenfunctions N;. If
ao is the value of «; having the largest real part,:then at late times, when ¢ is
large, it is expected that the solution to the initial value problem would be pro-
portional to Ny(r, 2, E)e®’. The distinction between subcritical and super-
critical systems could then be based on the sign of the eigenvalue . Physically,
the expectation is that e, would be real, i.e., no oscillations in the neutron density’
since they would lead to negative or imaginary density values; furthermore, N,
would be everywhere nonnegative, i.e., no negative values of the neutron density
are allowed. Then, for a subcritical system «, < 0, for a critical system « = 0,
and for a supercritical system o, > 0. Thus, the criticality problem becomes that
of determining the sign of «,.

It will be seen in later chapters that the eigenvalues «;, and especially «, are of
basic importance in reactor theory. They will be referred to, according to circum-
stances, by such names as ‘‘« eigenvalues,” “multiplication rate eigenvalues,”
“ decayeigenvalues,” and,in dynamics problems(§10.1d). as ** period eigenvalues,”
because they are inversely related to the reactor periods.

1.5b Spectrunt of the Transport Operator and Criticality

The foregoing considerations can be expressed somewhat more precisely,
although still far from rigorously, by taking the Laplace transform of equation
(1.42) with respect to time. Let

N, = f e UN(r, Q, E, t)dt
0
and

F(r, 2, E) = N(r, Q, E, 0).

where F represents the initial condition on N. The quantity N, is a function of
the complex variable « and exists if the real part of «. i.e.. Re « is sufficiently
large.'® Hence. for Re « large enough,
cx aA/
—e¢ dr = —F + aN,.
Jo o <t

Since the operator L is independent of 7, the Laplace transformation of equation
(1.42) yields the result

(¢« — LYN, = F. (1.43)

If « — L were merely a complex valued function, it would be possible to solve
equation (1.43) for

1

Ne = —71

F

and then attempt to invert the Laplace transform. Since « — L is an operator,
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however, it is necessary to consider the inverse operator (¢ — L)%, known as
the resolvent operator, and write

N, = (« — L)"*F. (1.44)

Many of the difficulties in the mathematical analysis arise in identifying the
properties of this resolvent operator.}” Nevertheless, by formal application of
the inverse Laplace transform*® to equation (1.43), the result is

b+iw
N(r, @, E, 1) = -57; " (@ = L)~ 1Fe® da, (1.45)

b—iw

where b is any real constant lying in the complex « plane to the right of all
singularities in the integrand; in other words, b is greater than the real part of «
at any singularity in the integrand. |

In attempting to invert the transform in equation (1.45),the singularities of the
integrand, or of the resolvent operator, are very important. Suppose that the
integrand has only a series of poles, indicated by crosses in Fig. 1.13, for
« = a;, wherej =0,1,2,.... Then the contour could be closed by the ex_tended
path, shown by the dashed lines in the figure, picking up a residue contribution
proportional to e%* from each of the poles. In this event,

b+io
[ [ lda = [ [ ]da = 2w x sum of residues at poles,

Jb-ix J

where C represents the extended path; the assumption is made that the
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contribution to the integral of the dashed part of the path is zero. A solution
to equation (1.45) of the form

N@, @, E 1) = Z ety (r, R, E) (1.46)
i=0
is then to be expected,'® so that at late times the solution will be dominated by

the term which has «; with the largest real part; this particular eigenvalue «; may
be called «,, assuming that the values of «; have been ordered such that
Re a; = Req;., ;.

Consequently, in order to study the asymptotic behavior with time of the
time-dependent neutron transport equation, it is necessary to examine the
singularities of the operator (« — L)-!. Such singularities will be values of «;
for which

(e — L)N,, =0
Hence, K
LN, = Ny, (1.47)

so that o is the eigenvalue corresponding to the eigenfunction N,,. The particular
eigenfunction N, corresponding to the eigenvalue «, would be expected to
determine the solution at late times; thus,

N(r, R, E, t) = Ae*' N, (r, &, E) as t— o0, (1.48)

where A is a constant determined by the initial conditions F(r, &, E). The
distinction between subcritical and supercritical systems could then be based
on the sign of «,. assuming «, to be real. In this event. the criticality problem is
that of finding the conditions, i.e.. radius. composition, etc., for which «; = 0.

The foregoing expectations have been largely confirmed by rigorous mathe-
matical analysis.2® But apart from the mathematical difficulties, there are a
number of circumstances which may prove to be troublesome. These arise in
considering the possible eigenvalues «; in equation (1.47), called the spectrum of
the transport operator L. The following situations may arise: (a) there exist no
discrete cigenvalues «, and hence there is no value of «,: or (h) the number of
discrete eigemvalues may be infinite so that there are questions concerning the
comvergence of the series in equation (1.46): or (¢) there may be a continuous
range of «. 1n the left half-plane in Fig. 1.13 where Re « < 0, called the con-
tinuous spectrum of L. for which equation (1.47) can be satisfied in a limiting
sense.

Actually a value of « in the continuous spectrum is not a proper eigenvalue of
equation (1.47). Rather itis associated with a highly singular eigenfunction which
is defined as the limit of a series of nonsingular functions that are not quite
cigenfunctions. It is not possible. however, to extend the integration path in
Fig. 1.13 into the region of the continuous spectrum (see Exercise 16).

In case (c). therefore, the contour of integration does not extend indefinitely
to the left, but is stopped when the continuous spectrum is reached. The solution
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]
to equation (1.45) will then be the series in equation (1.46) plus an additional
term from the left-hand contour representing the contribution of the continuous
spectrum. The three possibilities described above have all been encountered in
investigations of special cases of the neutron transport equation.

1.5¢ Results of Rigorous Analysis of the Criticality Condition

In the first rigorous examination of the transport operator, the case considered
was the one-speed problem with isotropic scattering for a bare homogeneous
infinite slab, i.e., of infinite extent in two dimensions.2! Previously, it had been
assumed, by analogy with other problems in mathematical physics, that there
would be an infinite number of discrete eigenvalues for equation (1.47) and that
the corresponding eigenfunctions would form a complete set. The rigorous
solution to equation (1.45), however, gave a finite (nonzero) set of real eigen-
values for which «; > —ovr, and in addition a continuous spectrum for all
«; < —ar, as in case (c) of the preceding section. The contribution from the
continuous spectrum, however, decays at least as rapidly as e~ 7%, Since there
are always one or more discrete eigenvalues, the asymptotic solution at late
times will be dominated by the discrete terms and criticality can still be rigorously
determined by «, = 0. Similar conclusions have been obtained in a multigroup
(see §1.6d) study of a slab.??

A possible physical explanation for the continuous spectrum of the transport
operator in a slab is the following.?® Neutrons traveling parallel to the slab faces
can proceed indefinitely without ever either colliding with nuclei or leaving the
slab. Hence, even at very late times there will remain a contribution which
precisely reflects the original conditions in directions nearly parallel to the slab
surfaces. The neutrons traveling exactly parallel will decay as e~°*, i.e., just
like the contribution from the continuous spectrum. Support for this interpre-
tation is found in the result that for the one-speed problem in a bare sphere,
there is no continuous spectrum but only an infinite number of real discrete
eigenvalues.?!

An analysis has also been made of the energy-dependent transport equation
for finite (bounded) geometry.?> By assuming neutron speeds to be bounded
away from zero and the scattering kernel to be integrable and bounded, it was

found that at late times the solution of the transport equation is dominated by
the contribution from a discrete eigenvalue. Asymptotically, the solution to the
transport equation varies as e%'. and so, for this quite general case, a critical -
system can be defined as one for which «q = 0. For certain conditions on the .

scattering kernel, which are satisfied in practice for all systems containing fissile

nuclei, there will always be at least one discrete eigenvalue and hence an a.

Although this result has not been proved in general, it seems reasonable to
suppose that there will always be a real «; and that N, will be nonnegative.

In the foregoing, it was assumed that the neutron speeds are bounded away
from zero. If zero speed is allowed then, for some simplified energy-dependent
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versions of the scattering kernel that arise in neutron thermalization theory, it
has been found that there is only a finite number of discrete real eigenvalues plus
a continuous spectrum for all « with sufficiently negative real parts.?® In addi-
tion, for sufficiently small systems, there are no discrete eigenvalues.?” But
these conclusions regarding the case for neutrons of zero speed do not appear to
have any great relevance for the criticality problem. As noted in §1.1b, the
transport equation is not meaningful for neutrons of arbitrarily small velocity
(and long A). Furthermore, a system that is so small as to have no discrete
eigenvalue is clearly subcritical; for larger systems, however, an «g will still
exist.

Another assumption made above is that the scattering kernel is bounded. It
was seen earlier, in equation (1.7), however, that for elastic scattering the kernel
is usually written containing a Dirac delta function and is consequently un-
bounded. If the thermal motion of the scattering nuclel 1s taken into account
(Chapter 7). then this unbounded kernel is not strictly correct. When the nuclei
are in a gas or liquid, they will have a continuous range of possible velocities and
the scattering kernel will not have any singularities. For scattering from nuclei
in crystals, on the other hand, there will be complicated singularities. Hence,
scattering kernels are sometimes bounded and sometimes not. Although details
of the eigenvalue spectrum are affected by a singular kernel,*® it nevertheless
appears that the concept of criticality based on the sign of «, may be accepted
as having general applicability.

The spectrum of the transport operator and the criticality condition have been
discussed in some detail because the neutron transport equation is the basis of
the analvsis of neutron behavior in a reactor and criticality is. of course,
essential in determining the size of a reactor. For the solution of practical
problems some approximation to the transport equation must be used, and then
the eigenvalue of the approximate equation can be considered. In some cases.
particularly for multugroup diffusion theory, much more can be said regarding
the eigemvalues and eigenfunctions. This subject will be discussed in Chapter 4.

As a consequence of the linearity of the homogeneous (source-free) neutron
transport equation (§1.11). it appears that if there are many solutions of the «
eigenvalue problem. then an arbitrary solution of the equation might be
expanded in terms of the eigenfunctions N, (or &) corresponding to the eigen-
value «,. Although no such generality. i.e.. completeness of eigenfunctions. has
been demonstrated. the expansions are used in some approximations to the
neutron transport equation, e.g.. in one-speed theory in Chapter 2 and in
multigroup theory, as will be seen in Chapter 4.

1.5d Existence of Time-independent Solutions

It s of interest to consider the circumstances under which a time-independent
(steady-state) solution of the transport equation may be expected to exist and,
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if it does, whether or not it is uniqde. The homogeneous (source-free) transport
equation (1.42) will have a time-independent solution, given by equation (1.47),

when
LNy, =0

with «, = O for a critical system. If, as will be assumed, the persisting distribu-
tion or the critical eigenfunction, N, is unique, except for a multiplicative

constant, then the time-independent solution is unique.

More generally, consider the inhomogeneous transport equation with a
source, namely,

oN
S =N+ 0

It is desired to determine the circumstances under which solutions will exist for

%=0 and LN + Q0 =0,

and if these solutions will be approached from some initial conditions on N.

- The stipulation is made that L and Q are time-independent; that is, the cross
tipuiation

sections and source are taken to be independent of time.

For a supercritical system. there can be no physical solutions for which
¢Njct = 0; any population which is established will. in due time, be increasing
as e%! with «g > 0. For a subcritical system. the population at late times will be
independent of the initial conditions. since the effect of these conditions will
ultimately decay as e“o' with «g < 0. It is to be expected that, for any given
source. Q. a time-independent solution will be obtained at late times. Although
this expectation is reasonable. it seems to have been proved rigorously for a few
special cases only?® and for a medium which is nonmultiplying. Nevertheless,
it will be assumed in this book. partly on physical grounds. that unique time-
independent solutions to the transport equation exist for a critical system
without a source or for a subcritical system with a steady source. regardless of
whether the latter system is a multiplying one or not.

15e¢ The Effective Multiplication Factor (or k) Eigenvalue

The criticality problem can often be best approached by introducing auxiliary
cigenmvalues. In particularsv(ri £ — E) may be replaced by w(r: E; — E) k., and K
can then be varied to obtain the criticality condition ¢ = 0. with & = K. the
effective multiplication factor. This amounts to varying the number of neutrons
emitted per fission by the factor | Ay In the following. the subscript will be
dropped from k. for brevity and hence A will denote the eigenvalue.

From a physical understanding of criticality (§1.5a). it appears that any system
containing fissile material could be made critical by arbitrarily varying the
number of neutrons emitted in fission. It will be assumed. therefore, that, for
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any such system, there will always exist a unique positive eigenvalue, k > 0. By
definition, k is an eigenvalue of the equation

UQ'VN},: + OUNk = [f $‘ O;.fo,N;; dg’ dE’

T xS
+ l”LV(r; E'— E)ojw'N, d dE',  (1.49)
k)] &

where, as in §1.1b, the summation over x # f refers to collisions other than
fission in which neutrons are produced, and N,, N, are the eigenfunctions

Nk = Nk(r’ 9’ E)o
N. = N, Q' E),

which, it is explicitly noted, are not functions of time.

The existence of the eigenvalue & was assumed above on physical grounds and
the existence of an associated nonnegative eigenfunction was also assumed.
For various simple problems. the k eigenvalue spectrum has been investigated
in detail. For example. in one-speed theory (see Chapter 2) with isotropic scatter-
ing, for a slab or a sphere. it has been proved3® that there exists an infinite
number of discrete real k eigenvalues and that, in particular, there will be a
smallest one which is of physical interest as the effective multiplication factor.
For multigroup theory there is also considerable information on the k eigenvalues
and eigenfunctions as will be seen in Chapter 4.

It should be noted that the & eigenfunctions are not a complete set of functions
for expansion of solutions of the transport equation.®! In some cases of one-
speed problems, however, it has been found3? that when the & eigenfunctions
are integrated over Q. they do form a complete set for expanding functions of
r only.

In elementary reactor theory, & is thought of as the ratio between the numbers
of neutrons in successive generations, with the fission process being regarded as
the birth event which separates generations of neutrons. To see what can be
derived from transport theory, suppose that a pulsed source of neutrons,
O.(r. . E. 1), is introduced into the system starting at 1 = 0. This is regarded
as the source of first-generation neutrons, and these neutrons are lost by
absorption. including fission, and by leakage (streaming). Those neutrons which
are born in fission induced by the first-generation neutrons form the source for
second-generation neutrons, and so on. Hence, the angular density of first-
generation neutrons, Ny, is to be computed by solving the transport equation
with source Q, and fission treated as an absorption; it is, therefore, a solution
of the transport equation

éN,
Y

Ii

e

+ Q- UN, + ouN, = ”Z o'f'N; d dE’ + Q\(r, . E. 1), (1.50)
. xS .
where the subscript x on ¢’ and fis understood.
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Upon integration Over time (0 < 1 < ), the first term on the left side of
equation (1.50) gives .

J“’ QI_\Q(_T%:_E_Q Ut = Nu(x, @, E, ) — Ni(r, 2, E,0) = 0.
0

The first term on the right of this expression is zero because the system with
fission regarded as absorption must be subcritical, and since the (pulsed) source
is of finite duration, the neutron density must ultimately decline to z€ro. The
second term on the right side is zero by the postulate that the source produces
the first generation of neutrons. If the quantities Ny, &, E) and 0,(r, R, E)

are defined by
'[m Nl(ra Q’ E9 I) dt = Nl(rs gs E)
0

j " 0,6, @, E 1) di = 0:(r, 2, E).
[4]

then the integration of equation (1.50) gives

Q.UN, + oty = “ S ofe i dS dE" + O,r, @, E). (151

x#/
Thus. O, serves as the source for N,. and since equation (1.51) refers to a sub-
critical system, 1.e.. no neutrons produced 1n fission. it follows from the results

of the preceding section that the solution N, exists and is unique.®® -
From the angular density. N,. of first-generation neutrons, the source, Oa,
of second-generation neutrons can be found by computing the fission neutrons

produced by N,: thus,

Second generation source

- ] ' -
_ Ourn Q. E) = || gorm BT B, 'y F; d dE’. (1.52)

This source may now be used to determine the angular density, N, of second-
generation neutrons and the source of third-generation neutrons, as in equations

(1.51) and (1.52). .
In this manner, a general iterative procedure may be defined for finding the

neutron angular density in one generation after another by the recursion
relation )

. UN, + oM, = ” S of B dS dE' + J' j 1 o N, d@ dE',
xef 4m
(1.53)

where it is important to note that N,., appears in the fission term and N,
clsewhere in this equation. '
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SOLUTIONS OF THE TIME-DEPENDENT TRANSPORT EQUATION a7

% As the foregoing procedure is iterated, it is to be expected that the angular
| density of neutrons in successive generations will increase for a supercriti.cal
system. decrease for a subcritical system, and become constant for a critical
; system. In any event, it is to be expected that the ratio of the densities in succes-

sive generations will approach a constant, independent of r, €2, and E. If this is
b so. then a comparison of equations (1.49) and (1.53) shows that the constant
4 will be equal to k: thus,

E A,

i lim —— = constant = k. (1.54)
i = Ni_q.

This behavior has been confirmed rigorously for certain approximations to
the transport equation,® and it is probably true in general. In fact, some"
approximation to the iterative procedure given in equation (1.53) is used in most
numerical calculations of criticality. and the k is computed from equation (1.54).
The procedure will be examined in detail in Chapter 4 for the multigroup
3 diffusion approximation to transport theory. ‘
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3 1.56f Comparison of & and « Eigenvalues

For a critical system, i.e., when «, = 0, and k = 1, the corresponding eigen-
functions satisfy the same equation: for any other system. however. the two
eigenfunctions are different. This may be seen by writing the homogeneous
eigenvalue equation (1.47) as (cf. §1.5a)

S i AN B ek - SRR, LA

iy

RN, + (o + ‘%‘)mao = [[ oponi, ds dE” (1.55)

In the critical condition. with «, = 0. this becomes identical in form with equa-
o tion (1.49) with k = 1. For other conditions, the two equations are clearly not
1 equivalent.
It will be seen that in equation (1.55) the term ao/v appears as an additional
absorption cross section. and so it is sometimes referred to as *“ time absorption.”
In particular. it should be noted that for a subcritical system o/t < 0; hence the
term ¢ + «, r may be zero or negative. Such behavior may be difficult to handle
in numerical computations. For this and other reasons, it is usually easier to
treat criticality be evaluating k rather than eo,. S ‘
Another advantage of using k arises in calculating the neutron spectrum in a
system which is actually critical, but as computed departs somewhat from
criticality. In a k eigenvalue calculation, the number of neutrons per fission is
varied (by 1/k) to achieve criticality. This procedure has little effect on the
neutron spectrum, and the resulting spectrum would be useful-for determining
power distributions, breeding ratios, etc., at least if ||l — k| « 1, i.e., if the
computed system is not far from critical. ‘
¥ The calculation of a,, on the other hand, is equivalent to varying the con-
3 centration of a 1/r-absorber so as to achieve criticality, and this must affect the
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- 1mmense amount of detail

neutron spectrum. For
hardened, whereas for
from an ¢, calculation g
except when actually ¢
such modes will be des

higher energies are favored, 1.e., the spectrum 1S
the spectrum is softened. Thus, the spectrum
fhot be used in computations of neutron economy,

‘Chapter 10 on reactor dynamics.

1.6 INTRODUN TO METHODS OF SOLVING THE
NEUT.T N TRANSPORT EQUATION

1.6a Need for Approx

btammg exact solutions to the energy-dependent
r general reactor problems. A consideration of the
n the dependence of cross sections on neutron
energy for the fissile, e.g.; uranium-235 and plutonium-239, and fertile, e.g..
thorium-232 and uranium 238 nuclei shows immediately that such solutions
are impossible. It Is necessary, therefore, to adopt approximate methods for
solving the transport equatxon

The most important ‘of ‘these are the multigroup methods in which the
neutron energy interval of interest, usually from roughly 0.01 eV to 10 MeV, is
divided into a finite number of intervals (or groups). It is then assumed that the
cross section in each group is constant, e.g., an average over energy, independent
of energy. although arbltranly dependent on position (or composition). The
other generally useful tCChmq;ue is the Monte Carlo method. For some problems,
the multlgroup and Monte; Carlo procedures are combined.

Methods for solving the ncutmn transport problem have also been based on
solution of theintegral equatlon using either numerical or approximate kernels ;®
one of these will be descnbed in Chapter 7. Some other formulations of the
transport problem have alsq been proposed. e.g., the method of invariant
imbedding.’® but they have had little application in the study of nuclear reactors.

The two main techmques l’eferred to above for solving the neutron transport
equation are outlined in §1. 6d, 1.6e. Certain properties of nuclear cross sections
that influence the mode of SO'Uthn will, however, be considered first.

There is no possibility o
neutron transport equat

1.6b Variations of Cl’Oés‘Sections with Energy

Many cross sections vary S?_fapidly and widely with energy that it is hopeless
to try to represent the energy dependence with a reasonable number, e.g., about
20, of neutron groups. This SItuatlon is most pronounced for heavy nuclei of
interest in the so-called resonance energy region, lying roughly between 10° eV
a_nd | eV (see Fig. 8.1). The fertile nuclei, for example. have resonance peaks
“spaced some 20 eV apart, and the cross sections in the resonance region vary
by several orders of magnitudc. The fissile nuclei have similar resonance peaks

‘the persisting time-dependent modes. The use of -
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with a spacing of about 2 ¢V. In order to obtain useful group cross sections in the
energy regions where the cross section versus energy curves have much fine
structure, it is necessary to perform a careful analysis of the neutron energy.
spectrum through these regions. Such an analytical procedure is described in
Chapter 8. _

In addition to the resonances exhibited by heavy elements, some light elements
show much detail in their cross sections at higher neutron energies that cannot
be explicitly included in the group cross sections. Examples are provided by
oxygen for neutron energies above 300 keV and by iron at energies in excess of
about 10 keV. Here again detailed calculations of neutron spectra may be
required before reasonably good group cross sections can be defined. It is now
becoming the common practice to store much of the cross section fine structure
data on magnetic tapes for processing by digital computers in order to generate
approximate neutron spectra and group cross sections.®*

In the thermal-neutron energy region. below approximately | eV. neutron
cross sections may become complicated because they reflect the dynamics of
energy transfer between the neutrons and nuclei which are bound in molecules
or crystals. This problem will be taken up in Chapter 7. Frequently. detailed
calculations must be made before adequate neutron energy spectra and group
cross sections are obtained. It is, of course. not necessary to represent all thermal
neutrons in one energy group, but the number of groups which include these
neutrons is usually kept small, e.g.. generally less than about 20 or so.

As will be seen in later chapters. the basic requirement for obtaining satis-
Factory group cross sections is a knowledge (or good estimate) of the neutron
energy spectrum within each group. Hf there is much detail in the cross sections,
lengthy calculations may be needed to obtain these spectra.

1.6c Anisotropy of Neutron Emission

Some comments may be made on the degree of anisotropy of neutron emission
especially in elastic scattering. When a beam of monoenergetic neutrons IS
scattered clastically. the angular distribution of the scattered neutrons may be
cxpanded in the form

5.
-

o(po) = : o1 Pi(po)-
=0

where i, 1s the cosine of the scattering angle in the ¢enter-of-mass system and
the Ps are the Legendre polynomials (see Appendix). For / = 0. i.e.. s-wave
scattering. Pu(p) 1s unity. and the scattering is isotropic in the center-of-mass
system., but for / = | (p-wave) or more. the scattering is anisotropic. It can be
shown by the use of quantum mechanics that for [ > 0, the value of o, is small-
for neutrons of low energy: hence. for such neutrons the elastic scattering is
essentially isotropic in the center-of-mass system. A simple classical argument,
given below, leads to results of the correct order of magnitude.-
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Suppose a neutron with velocity v approaches a nucleus with the impact
parameter b (Fig. 1.14). Then unless b is approximately equal to or less than the
sum of the nuclear radius and the range of nuclear forces, i.e.,

b < (1.24*® + 1.0) x 103 cm,

where A is the mass number of the nucleus, there will be no appreciable elastic

scattering. If M is the mass of the nucleus and m is the mass of the neutron, the
angular momentum is given by

Angular momentum = _Mm_ vb =~ mvb,
M+ m

if M is large compared to m. Upon equating the angular momentum to A/, it

follows that the quantum number / is given by meb/fi. Hence, o, will be appreci-

able only for

(1.24Y% + 1.0 -13 : E
P +;, 9 x 1077 _ (0.264 + 0.22) x 10-*VE,

where E is the neutron energy in eV.

For uranium-238, for example, 41/ is 6.2, and the condition for o, to be not
negligible is that / < 1.8 x 1073v/E. This would imply that / = 1 will begin to
make a significant (anisotropic) contribution to the angular distribution in elastic
scattering when E exceeds about 300 keV. For lighter nuclei, the / = 1 contri-
bution will commence at higher energies. These conclusions are in qualitative
agreement with experiment. Roughly speaking, the angular distribution of
elastically scattered neutrons is isotropic in the center-of-mass system for
neutron energies below about 100 keV; at energies above 1 MeV, the scattering
is markedly anisotropic.

It should be noted. however, that scattering which is isotropic in the center-
of-mass system will become anisotropic in the laboratory system; in particular,
it will be peaked in the forward direction. The effect is not significant for heavy
nuclei. but for light nuclei it is very important. It may be concluded, therefore,
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FIG. 1.14 IMPACT PARAMETER OF NEUTRON-NUCLEUS SYSTEM.
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that in the laboratory system, anisotropy will be most pronounced in the scatter-

ing of fast neutrons from nuclei of all mass numbers and of neutrons of all
energies from light nuclei. Thus, anisotropic elastic scattering is important in
fast reactors and in thermal water-moderated systems.

When thermal neutrons are scattered from nuclei bound in crystals, there may
be pronounced anisotropic scattering. An extreme example is provided by
coherent scattering at sharply defined Bragg angles. Some discussion of this
matter is given in Chapter 7.

Neutrons emitted in fission are usually assumed, to a good approximation, to
be isotropic in the laboratory system. In inelastic scattering and (n, 2n) reactions,
the neutrons are often fairly isotropic, but angular distributions are becoming
available from laboratory studies for use in calculations.

1.6d Multigroup Methods

[t might appear. at first thought. that a systematic multigroup solution to the
neutron transport equation could be obtained by integrating this equation over a
finite energy range, say £, < £ < E,_,. in each group. But this leads to an
immediate complication. Suppose that for a steady-state problem, 1.e., c®jcr = O,
the neutron angular flux in the group ¢ may be defined by

~

Eg-1
®,(r. Q) = J O(r, R, E) dE.

Eg
Then the o® term on the left side of the transport equation (1.14) becomes
o (r. )dy(r. ). where

| o, E)O(r, R, E) dE
Dy(r, Q) '

The group cross section, oy(r. ) has thus acquired a dependence on L. In
general. this is a substantial complication but it can be avoided by first assuming
a form for the angular dependence of the neutron flux and then integrating over
energy.

The usual first step in a multigroup approximation. therefore, is to represent
the angular dependence of the neutron flux by an expansion, most commonly in
spherical harmonics. (This expansion is similar to that used in §1.6¢c to express
the angular distribution of scattered neutrons.) If there is an axis of symmetry
for the angular distribution of the flux, as may occur in plane or spherical
geomelry, the expansion reduces to a sum of Legendre polynomials, P,(u),
where y is the direction cosine. Since the spherical harmonics (or Legendre
polynomials) form a complete set (see Appendix), the expansion involves no
approximation. In practice, however, to make calculations possible, it is neces-
sary to terminate the series after a finite number of terms. It is in this manner
that an approximation is introduced. In general, if the series is truncated after
N + 1 terms, the result is referred to as a Py approximation,

o (r. ) =




The next step in the solution of the neutron transport equation is to integrate
over a finite energy range, i.e., an energy group, thereby defining the group
cross sections and arriving at the multigroup Py equations. When the angular
distribution of the neutron flux is represented adequately by the first two
Legendre polynomials, Po(x) and Py(u), the multigroup P, equations are obtained.
It will be seen in Chapter 4 that when certain assumptions are made about the
energy dependence of the neutron flux, these are equivalent to multigroup
diffusion theory or to multigroup age-diffusion theory. An alternative (varia-
tional) method for deriving multigroup P, equations will be discussed in
Chapter 6.

The multigroup P, equations and the related diffusion equations are the most
widely used in reactor problems. In some cases, P, approximations and those of
higher order have proved valuable. The Py approximations with N even have
usually been thought to be less accurate than those with N odd and so they have
been seldom employed (see, however, Ref. 38). Other angular expansions are
preferable in certain instances; for plane geometry, in particular, separate
Legendre expansions for 0 < u < 1 and —1 < p < 0 are superior to a single
expansion. These matters are treated in Chapters 3 and 5.

In another class of multigroup methods, known as the discrete ordinates or
discrete Sy (or simply Sy) methods, the neutron transport equation is solved in a
discrete set of directions only. Angular integrals are then approximated by sums
over discrete directions and angular derivatives by differences. These methods are
described in detail in Chapter 5 where it will be seen that for plane geometry
some of the Sy approximations are equivalent to Py methods. The virtue of the
S, method is that accuracy can be increased simply by increasing 1g the number of
Jirections without otherwise changing the method of solution. If has been
frequently used for problems where the P, approximation is not adequate.

The multigroup equations. both P and Sy, are differential equations and they
are converted into a system of algebraic equations for machine computation by
introducing a discrete space mesh, approximating derivatives by differences, and
so on. In this form the multigroup methods are the most useful for determining
overall neutron transport. e.g.. criticality, power distribution, reaction rate, etc.,
for energy-dependent problems in fairly simple geometry. Both in principle and
in practice, with fast digital computers, the multigroup equations are capable of
vielding results of a higher degree of precision than is really justified by the
uncertainties in the cross sections. The accuracy is improved by normalizing the
calculations so as to obtain agreement with accurate critical experiments in
simple geometries (see Chapter 3).

For simple geometries the main uncertainties are concerned with the values of
the group constants (group cross sections) and with the degree of detail (or
accuracy) required in the neutron angular expansion, in the energy spacing, i.e.,
number of groups, and in the space mesh. The group constants are weighted
averages of the energy-dependent cross sections which appear in the complete
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form of the neutron transport equation. The choice of appropriate weighting
functions is a central problem. The important energy region where resonances
are most pronounced is treated in Chapter 8, and the problem of determining
the spectra of neutrons as they are coming into thermal equilibrium with the
moderator is discussed in Chapter 7.

When the geometry of the system is more complicated, as a result of (a) fine
structure as in a heterogeneous lattice, or (b) gross departure from a geometry
which can be given in terms of one or two coordinates, the general multigroup
equations cannot be used directly.

In treating fine structure, the customary procedure is first to make a calcula-
tion on a heterogeneous cell, i.e., a fundamental repeating unit of the lattice.
The results are then used to homogenize the cell, so as to give the same neutron
economy as in the heterogeneous system, for use in calculating the over-all
neutron transport and economy by a multigroup (P, or other) method.

For the cell calculation, the neutron transport equation in a Py or Sy
approximation, with appropriate boundziry conditions, may be used. Alter-
natively, because of the small sizes of most cells, in terms of the neutron mean
free path, together with strong absorption in them, collision probabilities are
frequently used in cell calculations. These probabilities are considered in
Chapters 2 and 8. Integral experiments, especially on lattice multiplication are,
of course. useful for normalizing and guiding calculations.

For the over-all reactor, machine calculations are now easily made for one-
dimensional geometries, such as the sphere, infinite (in two dimensions) slab,
and infinite cvlinder. For two space dimensions, multigroup P, or low-order
S, calculations are performed as a matter of routine. The available space and
angle mesh may. however. not be fine enough to give an adequate description
of the situation. Consequently, for complicated two-dimensional or three-
dimensional systems. other treatments must be used. The variational method
provides one way of approaching the problem in which an attempt may be made
to synthesize a two-dimensional flux, for example, by a product of two one-
dimensional fluxes (see Chapter 6). If all other methods fail, a Monte Carlo
calculation mayv be attempted.

1.6e The Monte Carlo Method

The Monte Carlo method, which has proved to be useful in some areas of
reactor physics. is a numerical procedure based on statistical (or probability)
theory. In neutron transport calculations, the applicability of the Monte Carlo
techniques arises from the fact that, as seen earlier, the (macroscopic) cross
section may be interpreted as a probability of interaction per unit distance
traveled by a neutron. Thus, in the Monte Carlo method, a set of neutron
histories is generated by following individual neutrons through successive
collisions. The locations of actual collisions and the results of such collisions,
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\ .
e.g., direction and energy of the emerging neutron (or neutrons), are determined
from the range of possibilities by sets of random numbers. The Monte Carlo
technique has proved useful in special cases, such as complex geometries where
other methods encounter difficulties and in some cell calculations. Moreover,
when there is considerable detail in the variation of the neutron cross section
W1th energy, the Monte Carlo method eliminates the necessity for making
uu subsidiary calculations, e.g., of resonance flux. In fact, the method is useful for
determining the group constants needed in the multigroup approximations.
The random numbers required for a Monte Carlo calculation are usually
generated by the computer. Thus, the computer selects numbers £, &, &, -

at random for the interval 0 < § < 1. This means that the probability

p(€) d€; for £ to lie between & and & + d&is d§;if 0 < & < 1,1, p(§) = 1.
To see how the random numbers are employed to develop neutron histortes, a
simple example will be considered in WhICh neutrons are started from a
monoenergetic, isotropic, point source.

The first step is to select a neutron direction and for this the first two random
numbers, £, and &,, are used. An azimuthal angle may be chosen as ¢, = 27§,
and the cosine of a polar angle as p = 2¢, — 1;the reason is that the source is
isotropic and all initial values of ¢ and p are equally probable in the intervals
0 <9< 2mand —1 < p < |, respectively.

With the neutron direction chosen, the next step is to find where the first
collision occurs. Let the cross section in this direction and at a distance s from
the source be denoted by o(s). Then the probability p(s) ds that a neutron w1ll
undergo a collision between s and s + ds is

p(s)ds = o(s)exp [—j:'a(s’) ds'] ds

If a third random variable, £,, is now taken, s can be determined by setting

In & = -fo ofs") ds'.
From this relation it follows that
d, = —o(s)ds exp [-L o(s") ds']: | (1.56)
and since —
p(s) ds = p(£s) dfs = ds,

the quantity s is thereby selected from the correct distribution p(s). The minus
sign in equation (1.56) is required because s decreases as £, increases and it
does not affect the probability of s lying in any particular range.

Once the location of the first collision has been determined, further random
numbers are used to find the outcome of the first collision, location of the second
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collision, and so on. The procedure is continued until the neutron history is
terminated, for example, by leakage from the system or by absorption.

In solving the neutron transport equation by Monte Carlo methods, there are
uncertainties which are not due to explicit approximations to the flux, such as
arise in multigroup methods, but to the limitation in the (finite) number of
neutrons examined. Such errors are more or less random and procedures have
been developed for reducing the uncertainty associated with a given amount of
numerical work. These are variance reducing techniques; they modify the random
walk problem so as to leave the desired expectation value unchanged but reduce
the variance.

Some of the techniques are indicated by common sense whereas others require
further mathematical analysis. Two examples in the former category will be
indicated. First, it may happen by chance that, in following a certain neutron
history during moderation, the neutron is absorbed in its first collision. Instead
of terminating the history, it is usually fruitful to continue but to give the neutron
less weight, proportional to the probability of scattering (and no absorption)
at the collision point. As a result, the history of the neutron is not terminated
at the first collision, but the generation of information can be continued until
the neutron history is terminated, usually when the weighting becomes negligible
or the neutron escapes from the system.

Another example based on common sense is that arising in connection with
two similar but not identical problems. Since the errors in Monte Carlo tech-
niques are random in character, the solutions to these problems may be quite
different. In comparing such solutions, the difference between them may be
made more accurate by using the same neutron histories in the two problems;
the random errors are then approximately the same in both cases.

Suppose, for example, it is required to compute the resonance escape prob-
ability of neutrons moderated in a lattice in order to find the variation with
temperature arising from Doppler broadening. If two independent Monte Carlo
calculations were made at two temperatures, the random errors might be so
large as to mask any real difference in the solutions. If, however, the same
neutron histories are used in both calculations, the difference might have
significance.

More refined techniques for variance reduction could be used in a situation
such as the following. Suppose it is desired to determine the contribution of
source neutrons to a detector reading. It is apparent that some of these neutrons,
e.g., those emitted in directions toward the detector and those of high energy,
would be more likely than others to actuate the detector. If so, it would seem to
be most efficient in the Monte Carlo calculation to concentrate the computation
on these important neutrons. In Chapter 6, this “importance’’ is given a mathe-
matical significance in terms of the solution to an adjoint transport problem.In
the technique of importance sampling, neutron histories are started from the
source distribution in proportion to their importance. Furthermore, at each
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collision the most important neutrons can be followed preferentially with due
precautions being taken not to bias the results.

Most of what can be said about Monte Carlo methods is concerned with a
detailed discussion of techniques that lies outside the scope of this book. A
number of references on the subject are available to the interested reader.®®
There is no doubt that Monte Carlo methods are capable of solving a variety of
problems for which multigroup methods are inaccurate, and some of the results
obtained will be mentioned in due course. Nevertheless, the Monte Carlo
technique has not been widely used for the solution of general criticality
problems because the multigroup methods are simpler to apply and are sufficiently
accurate except in the special situations referred to earlier. Monte Carlo methods
have been utilized extensively in reactor shielding calculations, however, to
determine the leakage of neutrons (and photons) through a shield.

1.7 APPENDIX TO CHAPTER 1

1.7a General Coordinate Systems

General coordinate systems and the corresponding expressions for Q-VO
(or -VN) and for f dQ) are given here.

FIG. 1.15 RECTANGULAR COORDINATE SYSTEM.
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Rectangular Coordinates
Position vector r: X, ¥, Z,
Neutron direction £2: pu, x,
where u = §-% and y is the angle between the planes formed by the & and 2

vectors and by the 2 and % vectors; Z and X are unit vectors in the z and x
directions, respectively (Fig. 1.15).

Cylindrical Coordinates

Position vector r: r, e, zZ,
Neutron direction : pu, x,

where @ is the polar angle; p = Q-% and y is the angle between the planes
formed by the Q and Z vectors and by the Z and F vectors (Fig. 1.16).

Spherical Coordinates

Position vector r: r, 8, o,
Neutron direction £: p, w,

where 8 is the polar angle and  the azimuthal angle: p = Q-f and w s the angle

between the planes formed by the € and # vectors and by the f and Z vectors
(Fig. 1.17).
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FIG. 1.16 CYLINDRICAL COORDINATE SYSTEM.
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FIG. 1.17 SPHERICAL COORDINATE SYSTEM.

The values of -V® and ofJ. dS2 for various geometries are collected in Table
1.2. As mentioned in §1.3a, expressions for -VN can be obtained simply by
replacing ® by N.

Other representations are sometimes used for the direction coordinates and
care must be taken to identify each author’s particular choice: see. for example,
Ref. 40 for an alternative choice of directions in cylindrical coordinates.

The following expressions give Q-V& in conservation form for general
cylindrical and spherical coordinates:

Cvlindrical coordinates

VI — p?cos x ¢ (rd) N VI = pisinyed 1 E(OVI — pPsiny) N c¢d
r cr r op T cx oz

Spherical coordinates

u (r2d®) !_Vl—l"zsinwé?. V1 — u? cos w &(® sin 6)

r2 or rsin 0 Co rsin 8 co
+ el - p)®]  cot 6PV — p? sin w)
r cpu r ow
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TABLE 1.2. TERMS IN THE TRANSPORT EQUATION FOR SPECIAL GEOMETRIES

Q-VD dS2

Plane: ®(x; w)
c® ¥
o= 2 d
kex T{J s

Rectangular: @(x, ¥, z; 1, x)

—_— 'f(D_l_ ) 'C(D)+ ¢® ‘-1 p -2ud
VI (eosx o ¥ sinx ) e U
Spherical (spherical symmetry): D(r; p)
¢ P 1 — u?2cd )
1) -(—— -+ ——TIi‘ C—— 2m ‘ du
73 . Joa
Spherical (general): O(r, 6, ¢ p, w)
c® \l—ﬂzsin(utd)+\l—#2 < o)
P'__ r sin 8 ¢y r COS @7y
1 — 2 e VT — a2 c® ! C 2
- _ sin w cot § — | de| dw
r (473 r Cw Jo- Jo
Cylindrical (infinite cylinder. axial symmetry): DU i, x)
o) v — ot A 1 - 2a
V- ot Losxf—————————smx(—,_— ' du o
cr r cx J-1 T Joe
Cylindrical (general): diro g, i pu, x)
v S S i LS t-CD)+ c® ’-1 duld
HOCOS X T r Sn X('(q: cx s J 1 'uJo X

The advantage of the conservation form can be seen by considering the
e\pre»mn for -V in spherical coordinates. Integration over all directions
Q. ie., 1_ du |' dw, removes the last two terms, whereas the first three terms
represent thc componcnts of V-J. If these three terms are now integrated over
volume (V= r?sin 8 d8 dg). bounded by surfaces of constant r, ¢, and 6, the
first term is seen to be the outward current across the two surfaces of constant r.
Similarly. the second and third terms are the currents across surfaces of constant
@ and 6, respectively.

EXERCISES

1. Consider a collimated beam of neutrons of intensity 1 neutron/cm?2-sec in the
: direction; suppose a sphere of | cm radius is placed in this neutron beam.
Dectermine the radial and other components of the incident current, as functions
of position on the spherical surface, in a polar coordinate system with its origin
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at the center of the sphere. What is the angular distribution of the incident
neutrons, averaged over the surface of the sphere?
A very thin plane source (thickness Ax) of monoenergetic neutrons emits
1/Ax neutrons/cm2-sec isotropically per unit volume. What is the angular
distribution of the current (and flux) at the surface ? Absorption in the source may
be ignored.
A purely absorbing half-plane medium in which o = 1, contains a source
emitting | neutron/cm?®-sec. Determine the intensity and angular distribution of
the flux and the current at the surface.
Consider a combination of two point sources present either (a) in a vacuum,
or (b) in a purely absorbing medium. Compute the magnitude of the current
and flux throughout space and sketch the contours of equal flux and equal
current.
Make a detailed derivation of the transport equation by considering the rate of
change of the neutron population in a volume element fixed in space, i.e.,
along the lines indicated on page 15.
Consider a bare slab of thickness « and apply one-speed diffusion theory to find
« and k eigenvalues as given by this model of neutron transport. Use the
diffusion equation in the form

| e aS

v oot
and boundary conditions of zero ﬁm on the slab surfaces. (Hint: each mode
cos n=x/d corresponds to one eigenvalue of each kind.) Draw a sketch showing
how the eigenvalues are related to each other. For comparison of the results
with those of transport theory, sce Ref. 41.
It is required to describe the transport of neutrons in a reactor in one region of
which coolant is moving with high velocity, v, 1in the = direction. How will the
transport equation be changed in this region? If_in the region under considera-
tion. the cross sections for collisions with nucler at rest are independent of the
neutron energy, what would be the angular dependence of ¢ in the transport
equation for the moving nuclei? (1t may be found helpful in this connection 10
read §7.3¢.) Consider qualitatively how the angular distribution of the scattered
neutrons would be affected if the scattering from nucler at rest is isotropic in the
laboratory system. (After reviewing this problem, the interested reader may wish
to consult Ref. 42)
Derive the integral equation (1.37) for plane geometry and isotropic scattering
by starting from the transport equation in plane geometry with free-surface
boundary conditions. (Hint: start by muluplying the transport equation by
e* * and then integrate from a boundary to x.) Show also how an incident flux on
one surface can be handled tn this derivation.
Consider a surface source at r, of intensity Qur.. 8, £.r). By regarding this
source as the limit of a thin volume source and using equation (1.22), derive the
discontinuity in the neutron angular density. All cross sections are 1o be regarded
as finite. Give an alternative derivation by considering neutron conservation in
a small pillbox. centered at r, and having faces parallel to the surface.
Suppose there is a purely absorbing region of finite thickness. It is desired to
represent this region as an absorbing surface across which the ncutron angular

[(" - ey — Uu]d’
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density is discontinuous. Derive the discontinuity which is required in the
angular density.

Start -with the transport equation for spherical geometry not in conservation
form, i.e., with - VN as in equation (1.32), and verify equation (1.34). Then find
the particular form of the conservation relation, equation (1.19), for that
geometry.

Derive the integral equation (1.27) using neutron conservation arguments along
the lines suggested on page 26.

Derive the form of £-VN in cylindrical geometry as it appears in Table 1.2,
assuming that N is independent of ¢.

An instantaneous point source in an infinite medium of density po gives a known
neutron angular flux, @or, u, E, 1). Show how the angular flux from the same
source in a medium of different density p could be found by scaling ®,. (This
problem arises in considering the explosion of nuclear weapons at various
altitudes in the atmosphere.) Indicate some circumstances in which the scaling
might be invalidated for this application. ‘

For students having a knowledge of computer programming: Write a Monte
Carlo program to compute the escape probability for neutrons born uniformly
and isotropically in a medium with simple geometry, e.g., a slab or a sphere.
The cross section may be taken to be independent of energy and the scattering
to be isotropic. (Some results are given in Table 2.8.)

Consider the space-independent neutron transport equation in a source-free,
infinite medium, 1.e.,

%’%’ + orN = U o f'N* dY dE,

and eigenvalues « for dN/dr = oN are sought. It is to be shown that all real
negative values of « with magnitude greater than the smallest value of ov belong
to the continuous spectrum. Consider a value of « for which —|a| + (o0)g-¢, =
0. Construct a strongly peaked function, N,, of width A in energy about £, and
in angle, 4, such that the integral on the right side of the eigenvalue equation is
proportional to A but H N2 dQ dE is independent of A. By taking the limit as
A — 0 it is seen that N, plays the role of a highly singular eigenfunction and
hence the corresponding value of « belongs to the continuous spectrum. For
further examples and discussion of such functions, see Ref. 43.
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2. ONE-SPEED
TRANSPORT THEORY

2.1 THE ONE-SPEED TRANSPORT EQUATION

2.1a Introduction

Although the primary concern in this book is with the energy-dependent neutron
transport equation, there are several different situations in which solutions of the
simpler one-speed problems are very useful. Consider, first, the energy-dependent
transport equation (1.14) for some particular neutron energy, E. If the integral
on the right side is regarded merely as a known source of neutrons, as was done
in connection with the development of the integral equation in §1.2b, then the
transport problem for neutrons of energy £ is simply a one-speed problem in a
purely absorbing medium  this is so because in every collision neutrons of energy
E are removed. From this point of view, therefore, it is useful to have accurate
solutions of the transport equation in purely absorbing media, and some are
developed at the end of this chapter (§2.8).

Of greater importance is the fact that in this text emphasis 1s placed on the
solution of the energy-dependent transport equation by multigroup methods. It
will be seen in Chapters 4 and 5 that in these methods the energy-dependent
equation is replaced by a set of coupled one-speed equations which are then
solved by approximate methods. In assessing the accuracy of these approximate
techniques it is desirable to have available for comparison accurate solutions of
the one-speed transport problem. Moreover, from a knowledge of the general
features of such solutions, it is possible to develop insight and intuition con-
cerning the solutions of energy-dependent equations.

Finally, there are situations in which the energy-dependent cross sections may
be treated as being approximately independent of energy; this is often possible,

64
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for example, with thermal neutrons. In these circumstances, an equivalent one-
speed problem may be defined by integrating over neutron energies; the solution
may then give information about a problem of physical interest. It is this
approach which will be taken in deriving a one-speed transport equation from
the energy-dependent equation. It will be shown in the succeeding chapters,
however, that the resulting equation is identical with those arising in multigroup
theory.

Even in one-speed theory, only a few simple problems have been solved in
closed form. The simplest situation which reveals the essential features of the
general solutions is that of isotropic scattering in a uniform infinite medium
containing a plane neutron source. Three methods of solving the corresponding
one-speed transport equation are described in this chapter. The changes resulting
from the presence of plane boundaries and from anisotropic scattering will then
be examined. Finally, some reciprocity relations and collision probabilities which
are useful in various reactor problems are developed.

It should be noted that the time-independent (steady-state) form of the
neutron transport equation is emphasized here and in the next few chapters.
Time-dependent problems are taken up in Chapters 9 and 10.

2.1b Derivation of the One-Speed Transport Equation

The general neutron transport equation for the neutron angular flux in the
time-independent case, i.e., when ¢®/or is zero, is given by equation (1.14) as

Q-VO(r, 2, E) + ofr, E)D(r, , E)

~

= [ ot V5 2 E' > @, YOG, @, £ dR dE” + 0 R, E). (21)

It is now postulated that all neutron cross sections are independent of energy. As
. will be seen shortly, this leads to a form of the transport equation in which
neutron energies do not appear, and the postulate is in a sense equivalent to
saying that the neutrons all have the same energies (or speeds). The term one-
speed theory is thus commonly employed, although it is also referred to as the
constant cross-section approximatioa.?!

If o is taken to be a function of r only and not of £, it follows that

a(r, E£) = o(r, E’) = ofr).

Furthermore, the angular distribution of neutrons emerging from a collision,
1.c.,

ff(r; Q' E' > 9, E) dE,
must be independent of energy, E’; hence, this quantity may be written as

- Jree o0, E dE = e -9
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where the function f(r; ' — ) is normalized to unity, ie.,

[rae 2> =1, (2.2)
and then c(r) is the mean number of neutrons emerging from a collision at r,
as given by equation (1.8). '

If the foregoing expressions, based on the constant cross-section postulate, are
inserted into equation (2.1), it is found upon integration over energy that

Q.VO(r, Q) + o(r)d(r, R) = o(r)e(r) f f(r; @ — Q)0r, R) dQ’ + O, ),

(2.3)
where the quantities ®(r, ), ¥(r, Q'), and Q(r, ) are defined by

J o(r, 2, E) dE = O, @),

f o, @, E') dE' = O(r, Q),

and

i

[ ot @ ByaE = 00, 2).

Equation (2.3).in which neutron energy and velocity do not appear, is the general
form of the one-speed, time-independent transport equation. It will be seen in
subsequent chapters that multigroup theory involves essentially a coupled set of
such equations.

It should be noted that equivalence between the one-speed transport equation
and the constant cross-section formulation, integrated over energy, does not
hold for general time-dependent problems. The reason is that the neutron
speed appears in the term (1/v) c®fct in equation (1.14), the time-dependent
transport equation for the angular flux.

2.1c iInfinite Plane Geometry

" Ininfinite plane geometry. the quantities ®. 0. f,and Q depend on one coordinate

only. For this geometry, it was shown in §1.3a that

Q.UN = p{?l\-, or Q.VO = ,f%’,

Furthermore, x and u’ may be expressed by

p=R2% and p' = Q'3
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where Z is a unit vector in the z direction. Hence, equation (2.3) may be written as

a® z’ ’ ! ’
p ——(d;ﬂ + o(2)B(z, 1) = ol2)c f S — )0z, 1) dR + O(z, 1), (2.9)
where ¢ and fhave been taken to be independent of position.

It will be seen in the course of this chapter that some important properties of
a system are functions only of the neutron mean free path; hence, it is con-
venient to express distances in terms of the collision mean free path, i.e., let

x = fz o(z') dz’ ?,
0
and then ‘
Y, 0
a—z == O'(Z) Ex:-

Furthermore, suppose that neutrons emerging from collisions have an isotropic
distribution; then, in view of the normalization condition in equation (2.2), it
follows that

fR Q) = 7

Hence, if dQ" is replaced by 2= du’ (§1.3a) and equation (2.4) is divided through
by o(z). the result may be written as

DB o = 5[ 0w de + 0w, 23)
where
O(x, 1) = Of=(x), ]
and
1
0. 4) = = Q[:(). .

This is a common form of the time-independent one-speed neutron transport
equation in planar geometry.

For an anisotropic unit plane source located at x = x, emitting one neutron
per second per unit area in a cone having g = p,, the source term in equation
(2.5) may be represented, using Dirac delta functions (see Appendix), by

O(x, p) = 8(x — Xo;j(# - #o)_ (2.6)

For an isotropic unit plane source at x,,

Q(x, ) = X%, @)
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Solutions will be sought for equation (2.5) first in an infinite medium subject
to the condition that the neutron flux vanish as x — +o00 and —co. This problem
has physical significance only if ¢ < 1, i.e., in a medium in which less than one
neutron emerges, on the average, in each collision. If ¢ > 1, the source neutrons
would multiply without limit and no real and positive (physical) solutions of
equation (2.5) can exist. For a finite medium, real solutions are possible for ¢ > 1,
although they are difficult to obtain. Nevertheless, it will be seen that solutions
of the transport equation in an infinite medium can be used to derive conditions

for criticality in a finite medium, when ¢ > 1.

21d Use of Green's Function

In the present context, Green’s function (§1.1f) is a solution of equation (2.5)
with a simple, i.e., plane, source. For the one-speed problem, it may be repre-
sented by G(xo, o — X, ) and it is the neutron angular flux at x, p arising from
a unit source at x, emitting one neutron per second (per unit area for a plane
source) in the direction w,. For an infinite medium, the Green’s function so
defined, abbreviated to G, is a solution of the equation

1 S — P —
W8 G = L[ Gl o x, ) + (x = xo)8k = #o) (5 8)
cxX 2 -1 277

Thus, except when x = X, and g = po, the function G is a solution of the
homogeneous equation

- 1
iy ; f Glxo o — X, ') dit, (2.9)
X -1

with the condition |
G—>0 as x— too.

At x = X, and g = po. wWhich corresponds to the source, a discontinuity (or
jump) condition on G may be derived by integrating equation (2.8) over a small
interval 2¢ in x about x,. namely, xg — € £ X € Xy + €. The result, for an
anisotropic planar source. represented by equation (2.6), is

G(xo. po — Yo + € p) — G(Xo. po = Xo — €, p) = §—(}—L-2-———-&) (2.10)

T

There is thus a discontinuity (or jump) in G as a function of x at x = x, when
p = po. By combining this discontinuity condition with solutions of the homo-
geneous equation (2.9). it is possible to evaluate the infinite medium- Green’s
function for the planar source, as will be shown later. Once this Green's function
is known then, in accordance with equation (1.21), the solution to any infinite
medium problem with a general source of the form Q(x, p)/2m can be expressed
as

0(x, ) = [ [ 0o, 1o)Glxor o = x, ) dxa dho @.11)
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Furthermore, the infinite medium Green’s function can be used to describe
solutions to problems involving slabs of finite thickness, i.c., where boundary
conditions are imposed at finite values of x. The reason, as will be seen in
§2.5a, is that the solution to the transport equation within any finite homogeneous
region is the same as it would be if this region were extended to infinity and a
suitable source (or sources) were placed at the boundary of the finite region.

22 SOLUTION OF THE ONE-SPEED TRANSPORT EQUATION
BY THE SEPARATION OF VARIABLES

2.2a Introduction

The method of solution to be described in this section, although recognized
by others,? was developed most fully by K. M. Case;? it is consequently fre-
quently known as Case’s method. It is analogous in some respects to the
method of the separation of variables commonly used for the solution of partial
differential equations. In both instances a complete set of elementary solutions
is sought, and then a suitable combination of solutions is found that will satisfy
the boundary conditions or the conditions at the source. The only difference 1s
that most of the elementary solutions of the transport equation are singular.
Nevertheless. they have meaning when they appear in integrals.

The approach to be used here is to find elementary solutions of the one-speed
transport equation in a source-free infinite medium. An attempt will then be
made to find a combination of elementary solutions that satisfies the source
(or jump) condition for the plane Green’s function. It will prove relatively
straightforward to obtain such a combination of solutions for the infinite
medium. but for more complicated problems, involving bounded regions, the
task is too lengthy for inclusion in this book.*

2 2b Source-Free Infinite Medium: Asymptotic Solutions

For a source-free infinite medium with isotropic scattering, equation (2.5)
becomes

o0
p BB oy =5 [ 0, ) di 2.12)
. -1

in plane geometry. Since the medium contains no source, there is a possibility
that ¢ > I. and this will be allowed for the present. To solve equation (2.12) by
the method of separation*of variables, solutions are sought of the form

O(x, p) = x(xXW(p), (2.13)

where x(x) is a function of x oniy and () is a function of p only. If equation
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(2.12) is divided through by p®(x, x) and equation (2.13) is substituted for
®(x, n) and P(x, p'), it is found upon rearrangement that

-dX(x) 1 . c 1 , '_.l,
T T | O (.14

The left side of equation (2.14) is a function of x only, whereas the right side is a
function of  only; hence, both sides are equal to a constant. If this constant 1S
represented by — I/v, then

dyx) 1 1

— —_—

“dx x(x) v

so that
x(x) = constant x e~*".

Thus solutions to equation (2.12) are to be sought of the form
O,(x, 1) = > (1), (2.15)

where the v is an eigenvalue corresponding to the eigenfunction #,(u). Special
care will now be taken to examine the acceptable values of v and the functions

().
If equation (2.15) is substituted into (2.12), the result is

(1= 5w = 5 by de, (216)
It is convenient io normalize ¢, so that
f i1¢, du' = 1 @17
and then, upon multiplication by v, equation (2.16) becomes (for v # 0)
(= ) = S | (2.18)

If. for the moment, it is assumed that v # u for all values of u between —1 and
1, i.e., vis not both real and in the interval -1 < v < |, then

W) = 3 77— (2.19)
v—p

This may be substituted into the normalization equation (2.17) to obtain the
conditions on v, namely v = * v,, where # v, are the roots of

| = cvptanh—' & = Zopp et 1 (2.20)

v“ 2 Vo“—l

When ¢ < 1, the roots of equation (2.20) are real, but when ¢ > | they are
imaginary. These roots have also been obtained in another manner.® -
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It is seen, therefore, that there are two discrete eigenvalues +v, and —v, which
satisfy equation (2.16) when v # p. The associated eigenfunctions are given by
equation (2.19) as

b (n) = ng = (2.21)

and the two solutions of equation (2.12) are then

- . o FXIvg,]E _ ,Fx|v Vo .
Dg(x, p) = e**ohg(p) = e 0 T 1)
It will be seen later that, in general, there are other solutions to equation (2.12),
but those in equation (2.22) dominate far from sources and boundaries; they
are called the asymprotic solutions and @, is the asymptotic flux. Before returning
to equation (2.16). some consideration will be given to the asymptotic (discrete)
eigenvalue v. E
Upon expansion of the tanh~' term, equation (2.20) becomes

(2.22)

o1
L=cn|=+35+5s5+ |

Vo IV Vo

which may be rearranged to give

As a first approximation, 1/v3 = 3(1 — ¢)/c, and this may be substituted in the
second term on the right to yield

1_3(1—c)[1 91 — ¢ ]

5= - _ZlZc _ ...
By writing | — (1 — ¢) for ¢ in the denominator of the factor on the right and
replacing ¢ by unity in the denominator in the second term in the brackets, then
inverting and taking the square root, the result, when ¢ is near unity, is

1
T V3l - o
It is evident, as stated above, that v, is real only when ¢ < 1.
Since v, determines the rate of decrease of the asymptotic flux with distance,
as is apparent from equation (2.22), it is here called the asymptotic relaxation

length.* 1t is related to the diffusion length, L, of simple diffusion theory; the
latter 1s given by

1 +31 - +-] (2.23)

L= 1 ’

300,

;

* The quantity », is often referred to as the asymptotic diffusion length, but in this book
}he term *diffusion length™ is reserved for diffusion theory. In general, a relaxation length
is the distance in which the flux decreases by the factor e.
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where o is the total (macroscopic) cross section and o, is the absorption cross
section. In the present notation, o5 = o(l — c); hence, with the collision mean
free path as the unit of distance,

1
=00

It is seen, therefore, that the asymptotic relaxation length of transport theory
approaches the value for simple diffusion theory only when ¢ is very close to
unity (or [I — ¢| « 1), i.e., in a weakly absorbing medium.

A comparison of the exact asymptotic relaxation length from transport
theory, as obtained from equation (2.20), the value from equation (2.23), and
the ordinary diffusion length. from equation (2.24), is given in Table 2.1.%5 For
media with ¢ < 1. the data are for |v,|, whereas for media in which ¢ > 1, the
values are those of |ivo|. Although the simple diffusion length, L, is a good
approximation to transport theory only when |1 — ¢| < 0.01, the one additional
term in the expansion in equation (2.23) gives results that agree with the exact
solutions of equation (2.20) up to about |l — ¢|] = 0.2 (or more).

It is important to note that for 0 < ¢ < I. the values of lvo| are >1, whereas
for ¢ > 1. vy is purely imaginary. Therefore, in neither case does v, lie in the real
interval —1 < v, < 1. It is consequently permissible to divide equation (2.18)
by vo — u in order to obtain the solution for ¢.,(p) given by equation (2.19).

(2.24)

TABLE2.1. COMPAR|SONOFRELAXATIONLENGTHSFORISOTROPICSCATTERING6
(IN MEAN FREE PATHS)

l"o|

Exact Second Approx. Diffusion Theory
c [Eq. (2.20)) [Eq. (2.23)} [Eq. (2.24)]

c <1

0.99 5.797 5.791 5.774

0.98 4.116 4115 4.083

0.95 2.635 2.633 2.582

0.90 1.903 1.899 1.826

0.80 1.408 1.394 1.291

0.50 1.044 0979 . 0.816

0 1.000 0.808 0.577
c>1

. “"o‘

1.01 5.750 5.751 5.774

1.02 4.050 4.052 4.083

1.05 2.532 2.531 2.582

1.10 1.757 1.756 1.826

1.20 1.198 1.195 1.291

1.50 0.689 0.680 | 0.816
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2.2c Infinite Medium Continuum (Singular) Solutions

Two elementary (asymptotic) solutions, namely, ®g(x, n) and @5 (v, p), have
been found to equation (2.12) for the case in which v # p. Additional solutions
will now be developed for the situation in which v = u and both of these
quantities lie within the range —1 to 1. It was seen above that equation (2.19)
is a solution of equatxon (2.18) for all u in the interval —1 < p < | with v not
in the interval —1 < v < 1. Equation (2.19) is also an acceptable solution of
equation (2.18) when v is real and lies in the interval —1 < v < 1 provided
v # . But when v = p the solution is divergent (singular) and this feature
requires further examination. Moreover, it would appear that such a solution
cannot satisfy the normalization condition of equation (2.17), since that condi-
tion was used previously to derive acceptable values of v, namely +v,. which
have been found not to lie in the interval —1 < v < L.

In order to determine the normalization integral for the singular (v = p)
solution. however, it is necessary to specify how the integral of such a divergent
function is to be evaluated. Moreover, as long as a solution is being considered
that is divergent at v = un, greater generality may be allowed by trying the
solution

) = 5 7+ A — v (2.25)

where A(+) is an arbitrary function. This will still be a solution of equation (2.18)
for all v # x and it can also be interpreted as a solution for v = pu since 1t is
possible to define the Dirac deita function such that

X o(x) =

With this more general solution, the function A(v) may be chosen so as to
satisfy the normalization condition of equation (2.17). In performing the
integration over u’, however, it is necessary to specify how the singular first
term in equation (2.25) should be integrated. The various nossible choices
differ only in delta functions, and the Cauchy principal value prescription” is
chosen 1n evaluating the integral; thus

¥ v , ) v-b ) 1 " ,
PJ ,dp.=l|m“ — du +J ,dy],
N 60 lJ-1 v —p visV — M

where the symbol P implies the principal value. In order to bear in mind that
this requirement must be met whenever ¢,(u) is integrated, the symbol P is
attached to the singular term; equation (2.25) is then written as

#l) = 5 P o+ A — ). (2.28)
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The arbitrary function A(v) can now be chosen so that the normalization condi-
tion is satisfied ; in particular, upon evaluating the principal value integral,

Apy) =1 — cvtanh 1. (2.27)

It is seen that, in addition to the two discrete eigenvalues which satisfy
equation (2.20), there is a continuum of eigenvalues (and eigenfunctions)
corresponding to all v between —1 and 1. The solution to equation (2.12) for
—1 < v < 1, may then be represented by

0,03, 1) = e[S B2t 263 - )] (2.28)
where A(v) is given by equation (2.27). Such a solution, which contains a delta
function, 8(x — v), and the singular term 1/(v — p), is not defined at v = p. It
can, nevertheless, be used in integrals because the manner of integrating the
singular terms has been specified. Moreover, the solution may be interpreted as a
“generalized function” in a formal mathematical sense® and constitutes an
acceptable solution to equation (2.12).

It should be noted that since —1 < » < 1, the continuous solutions vary
faster with x than do the asymptotic solutions. As will be seen in §2.2e, this
implies that at a large distance from the source the asymptotic solutions will
dominate. Near the source, however, the continuous solutions are also important
and, in particular, they are necessary for fitting the jump conditions at the
source position.

2.2d Completeness and Orthogonality of the Elementary Solutions

The usefulness of the functions ®,(x, u) lies in the fact that they, together with
®%(x, p), are complete and that they satisfy an orthogonality relation. The
completeness means that a general solution of equation (2.12) can be written
as®

-~

O(x, p) = a, b5 (x, p) + a_ g (x, p) + J 1 AWMD(x, u) dv,  (2.29)

where the first two terms on the right are the asymptotic solutions and the third
represents the continuous solutions; the expansion coefficients a, and a_ are
constants and A(x) is a function of v. Equation (2.29) may also be written in the
form '

O(x, ) = a.P3(le™" + a_gg ()= + f L AGM e dv. (2:30)

The orthogonality condition is used for determining the expansion coefficients

~ in particular problems and it can be derived by considering equation (2.16) for

s T P .‘
H . P oh - [
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;/;v(;;) and multiplying by ¢,.(1), to obtain
(1= () = § ) [ o) i
Similarly, equation (2.16) for i,.(x) is multiplied by ¢,(u), i.e.,
(1= £)tmbet) = 56 [ bt d

Upon subtracting these two equations and integrating over u, it is evident
that

(5 = 3) |, o) de = 0. (231)

Consequently, if v" # v, the required orthogonality relation

[ mhln ) ds = 0 (2.32)

is obtained. The values of v, v" may be chosen from + v, or from the continuum.

In order to evaluate the expansion coefficients a_, a_, and A(v) in equation
(2.29), it is first necessary to determine the normalization integrals. For the
asymptotic terms these are represented by Ny and Ny ; they are obtained by
setting v = v’ (= v,) In the integral in equation (2.31), 1.e.,

Ne = [ e a0 )

By using the values of ¢ (1) given in equation (2.21), it can be shown '° that

Ng = ifug[ ¢ 12.] (2.33)

V%"‘l Vo

The normalization integral N, for the continuum is more difficult to determine,
but it 1s found '° that

| s ) dhs = N300 = ),

where

N, = v[/\z(v) + ”102 vz]. (2.34)

These orthogonality conditions will be used in the next section to derive the
plane Green's function.

2.2e Infinite Medium with Plane Source

In the foregoing, the homogeneous equation (2.12), which is analogous to (2.9),
has been solved and the solutions for an infinite medium were found to be
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represented by equation (2.29). It is now possible to add the discontinuity (or
jump) condition for a planar source at Xo, and by including the provision that
the solution of the inhomogeneous equation must vanish as |x| — oo, the Green’s
function for the problem can be evaluated.

For x # 0, the Green’s function G(xo, pro = X, 1), 1.€., the angular flux at x, p
due to a unit source at Xo, po, €an be derived from equation (2.29) as having the

form

1
G = a i (e + L AG)e-=-=o () dv for x > Xo (2.35)

and

(o] Rt
= g i (e — L AG)e- R ) dv for x < xo,  (2.36) |

where, in each half-space, only those exponentials have been retained which :
approach zero as |x| — 0. The expansion coefficients a,, a_, and A(v) for a ;

planar source can now be determined by introducing the discontinuity condition ‘
of equation (2.10). Upon substituting the appropriate values of G from equations .
(2.35) and (2.36), respectively, into equation (2.10), with x = Xo + € for the first { )
term and ¥ = x, — ¢ for the second term, and letting e = 0, the result 1s g
1 S — ‘ K
a3 )+ adg o) + | ACHG b = M —ro. @) -

The next stage in the procedure is to use the erthogonality conditions to de- ho
termine the expansion coefficients; equation (2.37) is multiplied by u,-(¢) and A
integrated over . Then, by using the normalization and orthogonality conditions, iy
it is found that .

1 "‘ ppE()d(e —po) _ 1 s '
a, = Not -1 ZTT]J. - ZTTNOi ¢'0 (I‘LO) » :
and
] l
AV) = 3N, $(1o)s
where N¢ and N, are the same as before. The values of ¢¢ (o) and (o) are 4 ‘
given by equations (2.21) and (2.26). respectively, with g = po. ”
{

By substituting these expressions into equations (2.35) and (2.36), the Green's I A
function for the infinite medium with an anisotropic planar source can be i)
obtained. Since G represents the angular flux at x, p, the result can then be , o
written as 4 b

. + + '—Ix-xol,ro ~1 _‘X—Xoli\' i i ;_, :
O, o) = _z_l; [i_'l‘o (Rokbd ([}VL:: + Jo Kb*v(ﬂo)ﬂl'fv)g/}i)? dv]- i

T
i et

(2.38)
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~‘where the plus signs apply to x > x, and the minus signs to x < x,. The func-
tions ¥, (uo) and ¢, () are as defined by equation (2.26), for +v or —v. It may
be noted that equation (2.38) contains the products of singular functions and
some care must be exercised in interpreting them properly.!!

For a unit planar isotropic source at x,, the angular flux is obtained by averag-
ing ®(x, p) mth respect to mo, 1.€., by integrating equation (2.38) over g, and
evaluating 4 I } duo. Then by using the normalizing condition

| mo) o = 1,

the result for x > x, 1s found to be

~(x—-Xx )/x (X —Xx,)V
O(x. p) = 2= [% (u )"’N+ i "" (")" ° dv] (2.39)
0 . .

and for x < x,. the condition
Dl(x — xoh p] = O[—(x — Xo), —p]

is used. The total flux ¢(x) for an isotropic unit plane source is obtained by
integrating equation (2.39) over all directions. i.e.. by multiplying by 2= and
integrating over y: thus,

b(x) = [‘—__' N 1—————"_'*‘”"'”‘/] (2.40)
X) =3 No 1, N v .

This 1s the form of the Green’s function for the total flux from an isotropic plane
source in an infinite medium.

Provided ¢ < 1. v, is real and greater than unity (see Table 2.1). It is then
found that as x — x, increases the integral term in equation (2.40) decreases
more rapidly than does the first (asymptotic) term. An exception arises when

= 0. 1.e.. for a purely absorbing medium with no scattering: in this case the
asymptote solutions vanmish since Ng — oc as ¢ — 0. Consequently, provided
c = 0.when x — xqi s large, that is, at points far from the source, the asymp-
totic solution to the neutron transport equation is dominant. As noted in §2.2b,
when ¢ — | <« 1. simple diffusion theory provides a good approximation to
the asymptotic solution.

For certain problems the orthogonality condition of equation (2.32) does not
suffice to determine the expansion coefficients. This occurs when the boundary
condition is applicable only over half of the u range. It is then required to have
orthogonality conditions over half the range, i.e., J;[ ]dun or j ] du.
These can be found but they involve the theory of singular equations. "

The method of separation of variables has also been applied to time-dependent
problems, in particular to the « eigenvalue problem of §1.5.*2
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2.2f Point and Distributed Sources

The flux from an isotropic point source in an infinite medium can be readily
obtained from that for an isotropic plane source, since the latter may be regarded
as a superposition of point sources. Thus, if a unit plane source is treated as if
made up of point sources of unit intensity per unit area, the flux $n(x) at a
distance x from the unit infinite plane source (at x = 0) is related to the flux

$.(r) at a distance r from a unit point source (Fig. 2.1) by

b3 = 27 [ )y dy = 20 [ ol

where, in obtaining the final form, the relation r2 = y? + x? has been used.
Upon differentiation with respect to x, the result is

l dqul(x)

Polr) = =3 Tax

x=T

By considering the plane source solution in an infinite medium in equation
(2.40), it is seen that the flux from an isotropic point source is given by

l e—r)'vo '»1 e-—r/v
b(r) = yy [——_"ONJ + "IN, dv]‘

-

so that it too contains an asymptotic part. decaying as ¢ ™" ‘o/r. and a transient
part decaying at least as rapidly as e ~'jr. Thus, for an isotropic point source the

I
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FIG. 2.1 RELATION OF POINT AND PLANE SOURCES.
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asymptotic solution dominates at a distance from the source; the same conclu-
sion holds, as will be shown later, for an anisotropic source.

Since any distributed (surface or volume) source can be treated as a super-
position of point sources. it can be concluded that both asymptotic and transient
terms will contribute to the flux. At points far from the source in an infinite
medium, the asymptotic solution may be expected to dominate in all cases.

2.3 SOLUTION OF THE ONE-SPEED TRANSPORT EQUATION
BY THE FOURIER TRANSFORM METHOD

2.3a Introduction

The second method for deriving the infinite medium Green's function is by
means of Fourier transform techniques. The method of separation of variables
was actually developed later than the Fourier transform method, but it was
treated first because it exhibits more clearly the general nature of the solutions.
Nevertheless. the solution of the one-speed neutron transport equation by using
the Fourier transform is of interest not only because it is another approach, but
also because 1t has applications in certain multigroup problems. In the discus-
ston presented here. the case of a unit isotropic plane source is first considered,
and the Green’s function solution will then be used for an anisotropic source.
For simplicity of representation, the source will be located at x = 0, instead of
al X = xp ds in the preceding treatment.

2.3b infinite Medium Isotropic Source

For a unit isotropic plane source at x = 0, in an infinite medium, the source
term Q(x. p)1s given by equation (2.7) as &(x)/4=; upon insertion into equation
(2.5). the one-speed neutron transport equation becomes

cPlx, )

po—
«X

+ P, n) =

. (<
|,1 O(x, 1) du’ + —4(—7‘;)- (2.41)

o

tol~

The bFourier transtorm F(A, jo) of ®(x, i) 1s defined '* by

Fik.w) = | T et Q(x, u) dx. (2.42)

Equation (2.41) 1> muluplied by e ~'*~ and integrated, making use of the fact that

e ®
p B o gy = pO(x, ple™™ )+ ikp Flk, p)

Jo. X -
and the requirement that

O(x,u) =0 at x = +oo.
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The result is
(1 + ikp)F(k, 1) = cF(k) + Zl;‘ (2.43)
where

F(k) = % f il Fik. 1) du. | (2.44)

By assuming that | + ikp # 0, equation (2.43) can be solved to give

cF(k) + 1/4m
I + ikp

Flk,p) = (2.45)

This can be integrated over p and solved for F(k): the result can then be substi-

tuted into equation (2.45) to obtain F(k, u). Since

lfl du __l_lnl+ik
2) 11 + ikp 2k 1 — ik

is a real quantity, it is found in this way that

c 1 +ik]-1

1 .
F(k,p) = 3;(.] + lky)_l[l - Z_—,:_ln - (2.46)

The angular flux may now be derived from equation (2.46) by Fourier
inversion; thus,

O(x. p) = gl_f (1 + I'/\‘pl)'l[l S ""]" d. (2.47)

2 2ik 1 — ik

The total flux at x is obtained by integrating over all directions. i.e.. by multi-
plying by 27 and integrating over p from — 1 to 1. Itis then found that

o= [e** 1+ ik c 1+ ik,
¢(")"47J_x[fk lnl;ik][l—ﬁln'_ik] dk.  (2.48)

2.3c Asymptotic and Transient Solutions

The solution for ¢(x) given by equation (2.48) can be put in a form similar to that
in equation (2.40), as the sum of an asymptotic and a transient solution, by use
of contour integration. The original integration path in the complex plane is
deformed. as indicated in Fig. 2.2. The integrand in equation (2.48) has a branch
point at k = i, and so the complex plane is cut along the imaginary axis from
i to icc. Moreover, the integrand has a simple pole where the denominator
vanishes, when

1 + ik
In .

| = —
2ik 1 - ik

SRS S
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.‘#‘c ;

=N * Upon comparison with equation (2.20), it is seen that the simple pole occurs
afy -
i where

The integral along the original path is equal to that along the deformed path
in Fig. 2.2 plus 2 times the residue at k,. The asymptotic part of the solution -
to equation (2.48) arises from this residue, whereas the transient part comes

from integration along the cut made by the imaginary axis. The contribution of
the residue to the total flux is given by

bu(x) = 4i lim (k - —) F(k, x).

k—ilvy Vo

where F(k. x) is the integrand in equation (2.48). It is then found that

..j ;'| l (l . _]_) —lxi/\r'o
A v
5-‘ Qsas(x) = 1 2 :
cl= — (1 —¢
| [v% ( )]
By recalling the value of g given in equation (2.33), it is readily seen that this
quantity is identical with the asymptotic contribution to the total flux from an
; isotropic plane source. located at x, = 0. as expressed by equation (2 40)
3 The contour shown in Fig. 2.2 is applicable only for x > 0. But for x < 0, a
B similar contour may be taken in the lower half-plane. the choice being made to
ensure that e’ = 0 far from the real axis. The contribution from the residue is
found to be expressed by equation (2.49) regardless of the sign of x.

The transient part of the solution to equation (2.48) is equal to the sum of the

(2.49)

Im &
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contributions from each side of the cut made by the imaginary axi$. Thus, the
integral on the left side, represented by I, is

boptofe*t. 1+ ik c 1+ k-1
11‘__'47:m[iklnl—ik][l—fifcml—ik] dk

and on the right side it is I, where

P i [e** 1 + ik ¢ 1 + k11
I, = 4Tx£ [ik Iny— ik][l R MT= ik] dk.
The 1ogarithmic terms In (1 + ik)/(1 — ik) on the two sides of the cut will
differ by 2, and if the quantity Z is defined by

—-Z =1+ ik,
it follows that
I + ik .
lnl_ik—-—nr-}-ln2 > in I,
and
1+ ik Z )
Inl_ik—1n+ln2+z in I,.

The integrals I, and /; may now be combined to yield

e AZ+ Dexp[=(Z + Dix]]
b = | BZ T D) e+ U2)F + @) dZ.  (2.50)

By converting this to the variable v = 1/(1 + Z), the result is the same as that
given by the integral term in equation (2.40). The results of the Fourier trans-
form method are thus identical with those obtained by the separation of
variables.

Some properties of the transient solution can be derived from equation (2.50).
When x is small. i.e.. near the source, the main contribution to the integral comes
from large values of Z; then

® —(Z + 1)
b0y [ 2R Z LM g7 —gege. @D

x-0

where E, is the exponential integral function (see Appendix). It will now be
shown that equation (2.51) represents the uncollided flux from the neutron
source.

The integral form of the transport equation (1.37) for an isotropic plane
source in an infinitt medium may be written, for constant energy and with
distance expressed in terms of the mean free path (§2.1c), as

400 =3 [_awIEx - X dx.
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| If #(x) is to represent the uncollided flux, the source term, g(x’), will not include
neutrons emerging from collisions; then, :

g(x’) = 8(x)
and so

$(x) = FEi(|x]).

This result, which is identical with equation (2.51), is the (uncollided) flux pro-
duced directly at x by a source at x = 0. Since E; diverges for x = 0, it is
evident that the uncollided flux present in the transient part of equation (2.48) is
dominant near the source. It may be noted, too, that for ¢ = 0, equation (2.50)

gives

‘ﬁtraus(x) = %El (X)

for all x. Since the asymptotic flux is zero in this case (§2.2¢), the ﬂux 1s made up
solely of uncollided neutrons, as is to be expected.

When x is large, the main contribution to equation (2.50) is from small values
of Z. and the transient part of the total flux decreases as ¢~ '*! as x — c0. This
part therefore decreases more rapidly than does the asymptotic part at large
distances from the source; the latter is then dominant. This is the same conclu-
sion as was reached in §2.2e.

The results obtained above suggest a physical interpretation of the asymptotic
[ and transient parts of the solution of equation (2.48). The asymptotic flux is a
distribution of neutrons governed by the collisions taking place in the medium;
its dependence on space and angle is determined by the properties of the
medium, i.e., by ¢. and is independent, except for normalization, of the source.
Thus, the asymptotic solution represents a situation in which collisional
equilibrium exists.

[ The transient part. on the other hand, gives the departure of the flux from the
state of collisional equilibrium caused by the neutron source. Hence, both the
source and the properties of the medium affect the transient flux. Thus, for

; TABLE 2.2. VALUES OF 4,,/¢ FOR AN ISOTROPIC PLANE SOURCE.!®
~ (DISTANCES IN MEAN FREE PATHS)

: C
] \ 0 0.2 0.4 0.6 0.8 1.0

0 0 0 0 1.0

0.0t1 0.309 0.667 0.879 1.000
0.016 0.403 0.780 0.944 1.000
0.028 0.563 0.908 0.990 1.000
0.044 0.698 0.968 0.999 1.000
0.068 0.825 0.994 1.000 1.000
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f ¢ = 0, i.e., in a purely absorbing medium, the source determines the neutron
| flux at all distances: there is never collisional equilibrium and there is no
asymptotic part to the solution of equation (2.48). 1
~ For small values of ¢, the transient flux is larger than the asymptotic flux, 1.e., |

“$as/d < 1, even at many mean free paths from the source, as may be seen from
the data in Table 2.2 for an isotropic plane source.’® On the other hand, for ¢
near unity, collisional equilibrium can be established near the source; in fact as
¢ — |, the transient part becomes negligible, i.e., b/ — 1.

2.3d Infinite Medium Anisotropic Plane Source

With an anisotropic plane source, as in equation (2.6), but with the source at
x = 0, the procedure described above may be followed: instead of equation -
| (2.48), the expression now obtained for the total flux is
1‘: |
11‘

-—_l_rc ikx - o L +ik S | + k]t
‘IS(X) B 27—« |:£’ (l + ’k#o) 'Izln | — ll\][l ﬂ In .l_—_l—/:] dk

+ L ' . e (1 + ikpo) P dk. (2.52)

2m

.

As before, the contour in the first integral may be deformed: again, it has a pole
at k = ijvo and a branch point at & = i. There is, however. an additional pole at
k = iiug. In the second integral in equation (2.52), assuming x > 0 and po > 0,
this pole gives a contribution to ¢(x) which is equal to

|

| —_— ¢~ ¥,

i Ho

This is the flux due to uncollided neutrons. as may be seen in the following
manner.

i The uncollided angular flux ®y(x. x) from a plane source should satisfy
i1 . . . . .

~ equation (2.5) with the scattering term. i.e.. the integral. set equal to zero. and
il . -
It the source term (for a source at x = 0) represented by d(v) d(u — po) 2w thus,
‘ v

‘l (¢ (1)0(.\'. }1) ‘

8(v) 8lpu — po)
By

2n

+ By(x.p) =

(2.53)

For the case in which x > 0and p > 0. the nght side of this expression is zero. ‘
and hence the solution is J} .

Golv. w) = dolue™* . i

At x = 0 and u = p,. it must satisfy the disconunuity condition, namely

! Mu — uo)
i Oy(+e,p) — Qo —e, p) = —'—‘;—Eﬂ .
2rp
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VHence the solution to equation (2.53), for x > O and gy > O, is

1
Qo(x, p) = E e ™Mo d(p — po).

Upon integration over all angles, the total flux is then found to be
1 1
Bol) = 2 [ Oo(x, ) ds = L e,
-1 Ho

which is identical with the expression given above for the contribution to the
flux made by the pole at k = i/u,.

By separating the uncollided flux, the solution ®(x, x) to equation (2.5) is
divided into two parts, 1.e.,

O(x, p) = Op(x, u) + Oy(x, p) " (2.54)

where ©o(x, p) satisfies equation (2.53). By substituting this form into equation
(2.5) and subtracting equation (2.53) it is found that the angular flux ®,, due to
collided neutrons, must satisfy the equation

1

+ (1)1 =

o
i WV +5 [ Dol d (259)

Y

[E1 R

ltis seen. therefore, that the collided angular flux @, satisfies the inhomogeneous
transport equation with an isotropic distributed source equal to the second
integral in equation (2.55). This source is the distribution of neutrons emerging
from their first colhision and 1s given by

t1

Do(x, 1) dp” = 7
J-a T

e—x;uo’

[ S XY

since ¢ 1s the average number of neutrons emerging from a collision. The corre-
sponding total flux of colhded neutrons may therefore be represented by

--\"/uo

$ (V) = ¢ | G(x — x) dx’, (2.56)

4mu,
where G(x" -~ x) 1s Green's function as given by equation (2.40) with |[x — x'|
replacing {x — xoj. When the first integral in equation (2.52) is now evaluated it
1s found to be equivalent to equation (2.56) and is consequently equal to ¢,(x),
the total flux of collided neutrons.

Thus 1t 1s seen that the solution to a problem with an anisotropic source in a
medium with 1sotropic scattering can be obtained from the solution for an
isotropic source. The general technique of treating the uncollided neutrons and
the collided ones separately has been found to be useful in solving many neutron
transport problems.
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2.4 SOLUTION OF THE ONE-SPEED TRANSPORT EQUATION
BY THE SPHERICAL HARMONICS METHOD '

2.4a Introduction

In this section, the problem of a plane isotropic source in an infinite medium will
be formulated using the spherical harmonics method. The general principle of
this method for solving the one-speed transport equation is that the angular (or
directional) dependence of the flux is expanded in a complete set of elementary
functions, such as a series of polynomials. In general geometry, spherical har-
monics are a logical choice, but for plane or sp'herical geometry these reduce to
the Legendre polynomials.

For plane geometry, in which ® is a function of x and p only, the angular
dependence of ® may be expanded in a series of Legendre polynomials with
coefficients that are functions of x; thus

= 2m + 1
Ox, ) = > T $n(x)Pali), 2.57)
m=§
where the P, (u) are the Legendre polynomials (see Appendix) and the ¢,,(x) are
the expansion coefficients. Because of their orthogonality, the latter are given by

8u) = [ O wIPA0) AR = 2n [ O w)Pali) . (258)

One advantage of the Legendre expansion for the angular flux is that the first
two terms, at least, have a simple physical meaning. For m = 0, for example, the
value of P,(u), i.e., Po(r) is 1; hence, it follows from equation (2.58) that ¢o(x)
is simply the total flux at x. Furthermore, for m = 1, P (u) is p; hence, equation
(2.58) gives

1

$i(x) = 2vf 1#‘1’(-\‘, p) du,

which is the current J(x) at x in the x direction. Although most other orthogonal
polynomial expansions do not have such an obvious physical significance as do
the Legendre set, they have advantages in some circumstances, particularly in
fitting boundary conditions, as will be seen in Chapter 3.

2.4b Infinite Medium Plane Isotropic Source

The expansion in equation (2.57) is now substituted into the one-speed transport
equation (2.41) for a plane isotropic source at x = 0; upon multiplication by
47, the result is

2> em+ 22 p ) £ @m 4+ 1a0)Pal) = halx) + 500

me ms0
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The recurrence relation (see Appendix)

(2m + DuPn(p) = (m + DPr(p) + mPp_ (1)

is then used in the first term on the left, and the resulting expression is multiplied

by $(2n + 1)P,(p) and integrated over u from —1 to 1. Upon using the orthogo-
nality of the Legendre polynomials, it is found that

dcﬁn + l(x) +n dqbn - 1'(X)

(n+ D SR an 4 D = € 80)ba(x) = Bon 8(0)

n=20,1,2,... (2.59)
where ¢ _,(x) = 0 and 3,, is the Kronecker delta, 1.e.,

S =1 if n=0 and 8, =0 if n#0..

Equation (2.59) represents an infinite set of equations for the unknown func-
tions é.(x). For practical purposes, this set of equations is truncated in the
following manner (see, however, Ref. 16). Consider the first N + 1 equations of
the set. i.e., those for which n = 0, 1, ..., N; these involve N + 2 unknowns,
i.e., ¢, forn =20,1,..., N + I. The number of unknowns may be made equal
to the number of equations by assuming

dpy . 1(x) -

dx 0,

thereby obtaining the so called Py approximation. Since

1
by i(x) = 27 [ O )Py () d

and P..,(un) oscillates rapidly for large N, changing sign N + 1 times in the
interval — 1 < p < 1. it s reasonable to suppose that ¢, ,, will be very small
for large N: hence. the P, approximation is expected to be quite accurate if N is
large.

Some indication of the error involved in the P, approximation may be
obtained by noting that the P, equations would be exact for a problem in which
the source 1n equation (2.41) 1s modified by addition of the term

N + 1 ddy,(x)
4z dx

Pu(p)-

For n = N. this would just cancel the first term on the left of equation (2.59),
which is set equal to zero in the P, approximation. The error in the scalar flux,
$o. for example, could thus be estimated as arising from a source of the form
given above.'” In practice, however, it is preferable to determine the accuracy
of the P, solutions by comparison with exact results, such as those obtained by
the methods described earlier in this chapter or by accurate numerical proce-
dures discussed in later chapters. In addition, by examining the dependence of
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the results on N, it is possible to obtain an estimate of the accuracy of a par-
ticular P, approximation. The data in Tables 2.6 and 2.7 will serve to illustrate
this point.
- The Py equations could be obtained in an alternative manner, namely, by
truncating the angular flux expansion of equation (2.57) after N + 1 terms, i.e.,
by setting ¢y = O for n > N. The Py approximation is often simply defined in
this manner, but the method used here provides a better insight concerning what
is involved in the approximation.

When x s 0, a set of homogeneous first-order differential equations with
constant coefficients is obtained from the equations (2.59), and the general
solution is a sum of exponentials, 1.e.,

Bo(x) = O Agalrde™ ™,

where the values of v, are given by the vanishing of the determinant of the co-
efficients in equation (2.59).*® These coefficients of the exponentials may be
found by integrating equations (2.59) over a small region including x = 0, as in
the derivation of equation (2.37).
An alternative method is to take the Fourier transform of equations (2.59), by
first defining
e **g.(x) dx. (2.60)

@

R = |

The equations (2.59) are then multiplied by e~'** and integrated over x between
— oo and oo the result is

(n + D)ikFn. (k) + nikF,_y(k) + (2n + 1)1 — ¢ 85,)Fa(k) = Son
n=01,...,N (2.61)
FN+1 = 0.
This set of N + | algebraic equations can be solved for F,(k), where n =
0,1,....N.

In the P, approximation, for example, only Fy(k) and F,(k) are nonzero, and
the applicable forms of equation (2.61) are for n = 0,1, 1e.,

ikFy(k) + (1 = )Fo(k) = 1

~and

ik Fo(k) + 3Fy(k) = 0.
From these algebraic equations it is seen that

1
(1 —c) + 3&?

Fo(k) =
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and, hence, by Fourier inversion

tkx

1 (= e
b = 40 = o= | g (2.62)

The integral may be evaluated by contour integration or by elementary methods

to give
¢(r) — 12 /_I__g_ze—Js(l—c)lx|. (2.63)

This result, in the P, approximation, is a good approximation to the asymptotic
solution for 1 — ¢ « 1 obtained by the methods given earlier in this chapter. It
takes no account, however, of the contribution of the transients which are
important near the source.

2.4c Diffusion Theory and Diffusion Length

It will now be shown that the P, approximation in the present case, for a plane
isotropic source in an infinite medium, is identical with diffusion theory. The
two forms of equation (2.59) which are applicable are, for n = 0and n =1,
respectively : that 1S,

de,(x)

o + (1 — 0)do(x) = 3(x) (2.64)

and
dbolx |
4’;_‘3) + 3,(x) = O. | (2.65)

Since #,(x) is the current J(x) in the X direction and ¢, is the total flux, ¢, equa-
tion (2.65) 1s simply a form of Fick's law, 1.e.,

8 = J() = - D2, (2.66)

and the diffusion coefficient D = }, with lengths expressed in terms of the mean
free path. Upon inserting this value of ¢,(x) into equation (2.64), the result is -

d dd(:
-4 [D fjf:’] + (1 = Op(x) = 8(x).

Since | — ¢ is the equivalent of the macroscopic absorption cross section
(§2.2b). this equation may be expressed in the general form

DV — o + Q = O,

where V2 is the Laplacian operator. Itis then recognized as the familiar equation
of diffusion theory.*®



90 ONE-SPEED TRANSPORT THEORY

Furthermore 1//3(1 — ¢) in equation (2.63) may be identified with the dif-
fusion length, L, as in §2.2b, and, as just seen, the diffusion coefficient is equal

to 4. Hence, equation (2.63) may be written as

Le—lxlll.
$(x) = —-27)—"

which is identical with the expression derived from diffusion theory for the flux
from an isotropic plane source in an infinite medium. It will be shown in
§2.6b that the equivalence of the P, approximation to diffusion theory also
extends to the case of anisotropic scattering. For energy-dependent problems,
diffusion theory and the P, approximation are generally nonequivalent and the
differences will be examined in Chapter 4.

In the odd approximations of higher order, e.g., P3, Ps, etc., more terms appear
in the solution of the transport equation. For example, in the Py approximation,
the denominator in the integrand of equation (2.62) includes a fourth-order
polynomial in k. The solution for ¢,(x) then contains two exponentials, if the
solution is written in terms of |x| as in equation (2.63), or four exponentials if
separate solutions are written for x > 0 and x < 0. In general for a Pyy-1
approximation, the solution contains N exponentials. As N is increased, one of
these becomes a better and better approximation to the asymptotic solution
whereas the others approximate transient solutions.2° It may be mentioned that
an even-order (Pgy) approximation has only N roots, i.e., the same number as
the next lower odd-order (Pax-1) approximation. For this and other reasons,?
the even-order approximations are not commonly used. There are, however,
some cases in which even-order approximations have been employed.?> The
relaxation lengths (1/vo) corresponding to the asymptotic solutions of the one-
speed neutron transport equation for several approximations are given in
Table 2.3.2° The exact values are those derived from equation (2.20), as in
Table 2.1. It will be recalled that the values for the P, approximation are
‘dentical with those obtained for diffusion theory.

Some values of the transient exponents, v, for several Py approximations are
recorded in Table 2.4.2% It is seen that, as expected for transients, the values lie

TABLE 2.3. ASYMPTOTIC RELAXATION LENGTHS FOR Py APPROXIMATIONS.2® (IN
MEAN FREE PATHS)

c P| P; P. P" Exact
0.9 1.826 1.903 1.903 1.903 1.903
0.8 1.291 1.405 1.408 1.408 1.408
0.5 0.816 1.011 1.037 1.042 1.044
0 0.577 0.861 0.932 0.960 1.000

i e £, B ot b .

P
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'TABLE 2.4. VALUES OF EXPONENTS (») IN THE TRANSIENT TERMS FOR Py
APPROXIMATIONS?3

P, Ps Py
c Py Vi Vi Va Vi V2 V3
0.9 None 0.487 0.806 - 0.303 0.902 0.619 0.220
0.8 None 0.466 0.793 0.295 0.895 0.609 - 0.215
0.5 None 0.409 0.740 0.271 0.861 0.575 0.202
0 None 0.340 0.661 0.239 0.797 0.526 0.183

in the interval O < v; < 1; furthermore, they are more-or-less uniformly
spaced in this interval.

25 THE ONE-SPEED TRANSPORT EQUATION IN A
FINITE MEDIUM

2.5a Introduction

The treatment in the preceding sections of this chapter has been concerned with
an infinite medium. Suppose, now, that the medium does not fill all of space but
has one or two plane boundaries, i.e., the medium is a half-space or an infinitely
long slab of finite thickness. Exact solutions, in closed form, may still be ob-
tained to the transport equation either by the separation of variables or by the
Fourier transform method. Because the solution must be determined to match
the boundary conditions over half the angular range, namely, ®(x, p) = 0 for
either p > O or u < 0, whichever range represents incoming neutron directions,
the mathematical problems are more difficult than for an infinite medium. The
required mathematics, such as singular integral equations for the separation of
variables?* and the Wiener-Hopf method for the Fourier transform,?® will not
be given here.* Nevertheless, the general nature of the solutions can be under-
stood by reference to the infinite-medium Green's function.

It might be thought that the results derived earlier for neutron transport in an
infinite medium are of very limited applicability. This, however, is not the case,
at least insofar as the general features of the solution of the neutron transport
equation, such as the division of the solution into asymptotic and transient
parts, are concerned. The reason is that the solution to any transport problem in
a uniform finite medium bounded by a convex surface is equivalent to the
solution for an infinite medium in which a suitable distribution of neutron

* These methods are not described because they are not used for the solution of practical
reactor problems and because their development would be lengthy and require considerable
knowledge of complex-variable theory. Moreover, the interested rezder will find adequate
treatments in the references given.
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sources is located at the position of the boundary of the finite medium. This can
be seen in the following manner.
. Consider a finite uniform medium bounded by the convex surface S. A solu-
tion is being sought for the flux, within S, for some distribution of sources, also
" within S, subject to free-surface boundary conditions (§1.1d) on S. The solution
@, to this Problem 1 is, within S, equivalent to the solution @, of Problem 2 for
an infinite medium with an additional (negative) source (Fig. 2.3) as described
below. Suppose the medium within S is extended to infinity while retaining the
sources in this region; in addition, however, a negative surface source, directed
outward, is imposed on S. The intensity, —f-Q®,, of this source is of such
magnitude as to cancel exactly the outward angular neutron current in Problem
1. The asymptotic solution to Problem 2 must be chosen to vanish outside S.
Although a more formal proof of this theorem has been given,?® a simple
treatment is adequate. In Problem 1, the outward angular neutron current

through any surface element d4 is
Outward angular current = i-Q0,(r, Q) dA for 0-2 > 0.

"This is the number of neutrons crossing dA per unit time and unit direction
about ©. Now suppose an outward surface source is imposed on S so that the
outward angular current is exactly cancelled. Since it is an outward source, it
cannot affect the angular flux ®, within S. The intensity of this imposed source
must then be —a-Q&,(r, Q); it is a negative source, i.e., it represents a negative
number of neutrons, in an outward direction. In this new situation, therefore,
there are no neutrons at all leaving S. Hence, the medium may be extended out-
side S, to make it an infinite medium, without affecting the solution inside S.
Thus, the solution ®, to Problem 2 is seen to be equivalent, within S, to the

required solution @, to Problem 1.
.

Y
NEGATIVE -
OUTWARD//
SOURCE
PROBLEM 1
(FINITE MEDIUM) PROBLEM 2

{INFINITE MEDIUM)

FIG. 2.3 FINITE AND INFINITE MEDIUM PROBLEMS.

B A
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For a bounded medium in infinite plane geometry, the information relating to
the infinite mé¥ium plane Green’s function can be used to examine the effects of
the boundary, as will be shown in §2.5b. Since the boundary acts as a source in
an infinite medium, it is to be expected that it will contribute both asymptotic
and transient parts to the solution for the finite medium. Moreover, this will be
so in any geometry, not just in infinite plane geometry. It was seen earlier that
for any point or distributed source, isotropic or anisotropic, the solution con-
sists of asymptotic and transient parts, and the former dominates at points
distant from the source. The general conclusion to be drawn from the foregoing
arguments is that for a finite medium with a free-surface boundary regardless
of its geometry, the-asymptotic solutions will dominate at a distance from the
boundary as well as from the source.

Some of the results derived above will now be applied to problems involving
finite media in infinite plane geometry. '

»

2.5b The Milne Problem

The Milne problem .is a classical problem in astrophysics concerned with the
diffusion of radiation through a stellar atmosphere.2” The general principles are,
however, also applicable to the distribution of neutrons in a (right) half-space
(x > 0) through which they are diffusing from a source at x = +o0. Forx <0
(left half-space) there is a vacuum (Fig. 2.4) and a vacuum (or free-surface)
boundary condition, ®(0, u) = 0 for x > 0, is imposed. The objective of the
problem is to determine the angular dependence of the emergent neutrons at the
boundary, i.e.. ®(0, u) for p < 0.

In accordance with the general procedure explained above, the vacuum in the
left half-space may -be replaced by the material medium, i.e., the medium is
extended to x = —, and a negative source is imposed at x = 0 directed toward
negative x. If ®(0, x), which is nonzero only for u < 0, represents the angular
flux in the Miine problem. then the required negative source at x = 0isu®(0, u);
it 1s negative because it i1s appled for ¢ < 0 only.

The Milne problem, i.e.. the problem of a half-space with a source at infinity,
is thus, for x > 0, equivalent to af infinite medium with a source at x = co and

MATERIAL SOURCE AT
70//INFINITY/ —

FIG. 24 SOURCE AT INFINITY IN A MEDIUM WITH VACUUM BOUNDARY.
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a negative source at x = 0. Although this does not actually solve the problem,
since ®(0, p) for x < 0 is not yet known, it does show the character of the
solution. - .

At some distance away, the sotrce at infinity contrlbutes only an asymptotic

" term, which may be normalized, so that

Contribution from source at infinity = e*Vogbg ().

The contribution of the source at the surface, i.e., at x = 0, can be written in
terms of the infinite medium Green’s function as expressed by equation (2.38).
The net angular flux is then given'by

. .
O(x, p) = oy (k) + f—1 G(0. po — x. P-)Po(b_(os to) dpso.

~—

By mtroducmg the explicit value for the Green's functlon it is seen that the
surface source contributes an asymptotic term containing e~ %o plus transients
which decay more rapidly than e~ with increasing distdace from the surface.
As far as the asymptotic solution is concerned. it IS necessary only to determine
the normalization of the surface term.

Analysis 28 shows that the two asymptotic exponential 1erms from the source
at infinity and the surface source, lead to the expression ~

+ Xg

¢asym(x) A= /(( L’o) sinh X

,.

, (2.67)

)

where f(c. vo) is a function of ¢ and w,. It follows from thns result that the ex-
trapolated asymptotlc flux. i.e.. the flux extended by its natural curvature with

TABLE 25. EXTRAPOLATION DISTANCES AT A PLANE
SURFACE FROM MILNE. PROBLEM.?® (IN MEAN FREE PATHS)

c . | £ cXo Xo

-
RIS ¥

0.5 3 07207 1.441:
s ' 0.6 = 0.7155 1.193
0.7 ©0.7127 1.018"
0.8 07113 0.8891

0.9 T 0.7106 0.7896

- 1.0 0.7104 0.7104

= i1 0.7106 0.6460
- 1.2 ©0.7109 0.5924
- 1.3 0.7113 0.5472

1.4 < 0.7118 0.5084

1.5 A onn 0.4748

e
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distance, will vanish when x = —X,; the distance X, is called the extrapolation
distance. For |c — 1| « 1, it is found that

cxo = 0.71044[1 + 0.0199(1 — ¢)? + O(1 — ¢)*},

where O(1 — ¢)? implies a quantity of the order of (1 — ¢)® which is small when
lc — 1| « 1. Some exact values for ¢x, as a function of ¢ are quoted in Table
2529 the first two terms of the expression given above are a good approxima-
tion for |c — 1] « 1.

It should be pointed out that the extrapolation distances given here hold only
at a plane surface. Different values are applicable to the asymptotic flux near a
curved surface.3°

2.5¢c The Critical Slab Problem

For a slab of finite thickness, having ¢ < | and containing a neutron source, the
foregoing considerations may be readily generalized to indicate the asymptotic
and transient parts of the solution. Moreover, in this geometry it is possible to
obtain physically significant solutions for ¢ > 1, and these will now be con-
sidered.

It will be recalled (§1.5d) that meaningful solutions of the time-independent
transport equation are to be expected only for a subcritical system with a source
or for a critical system. An infinite medium with ¢ > 1 is evidently supercritical
and the asymptotic solutions found in §2.2b had v, imaginary: they were thus
complex or oscillatory and had no physical meaning. A slab of finite thickness
with ¢ > 1. however, may be subcritical or critical, in which case there will be
physical solutions to the time-independent transport equation. In this section the
critical slab will be examined and it will be seen that a good estimate of the
critical thickness is obtained by requiring that the asymptotic flux go to zero at
the extrapolated boundary.

Consider a slab extending from 0 < x < a in thickness. Outside the slab
there is a vacuum and so the boundary conditions imposed at O and a are

OO, p) = Dla, —p) =0  p > 0. (2.68)

Just as in the Milne problem, an equivalent problem may be obtained by
extending the medium to infinity and adding negative outgoing sources at
x = 0 and x = a. Again the solution will have an asymptotic part plus tran-
sients near x = 0 and x = a. If the critical slab is fairly thick, i.e., a » 1, which
implies ¢ — 1 « 1, then near each boundary the solution will resemble that of
the Milne problem. The asymptotic flux is in general (cf. §2.2b) given by

do(x) = A sin 2 + B cos =
. ' [vol vl
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If the flux is to be symmetric about x = a/2, then the asymptotic solution will be

bao(x) € cos X2, (2.69)
[vol
In order for the bare slab to be critical, the asymiptotic flux should go to zero at
the two extrapolated surfaces at x = —x, and x = a + X, (Fig. 2.5). From the
boundary condition ¢,,(—x,) = 0 and equation (2.69), it is seen that
—xo —(a2) =

vl 2’
from which it follows that, for criticality,

‘-2’ = Z o)l = xo. (2.70)
The argument (¢) is introduced here to emphasize, as seen earlier, that [vo| 1s @
function of c. ‘

Equation (2.70) gives an estimate of the critical half-thickness of a slab as a
function of ¢. Since this estimate is based on setting the asymptotic flux equal to
zero at the extrapolated boundaries (or end points), the procedure is often
referred to as the end-point method (or end-point theory),®! although it has also
been called diffusion theory.3? In this book, however, the term diffusion theory
is. applied to the theory based on Fick's law with the diffusion coefficient
represented by a simple expression (see, e.g., §2.4¢).

It transpires that equation (2.70) is remarkably accurate, even when ¢ — 1is
fairly large: this may be seen from the comparison in Table 2.6.%° (The critical

¢
- — — O - ——
|
|
/ ! \
/ i \
/ | \
/ ! \
1 1 \ p
"’o 0 a/z a df'o

FIG. 25 CRITICAL SLAB PROBLEM.
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TABLE 2.6. CRITICAL HALF-THICKNESSES OF AN INFINITE SLAB.>* (IN MEAN
FREE PATHS)

End-point

¢ Method Exact P, P; Ps

K 1.02 5.665 5.6655 5.839 5.663 5.672

1 1.05 3.300 3.3002 3.488 3.319 3.307

1.10 2.113 2.1134 2.309 2.135 2.121

| 1.20 1.290 1.2893 1.485 1.318 1.298

. 1.40 0.738 0.7366 0.919 0.779 0.750

1.60 0.515 0.5120 0.680 0.559 0.530

: half-thickness for various Py approximations, to which reference will be made
later, are also included in the table.) The “exact” values were obtained by
complete solution of the transport equation by numerical methods and varia-

iy

tional theory (§6.4d). The error|in the end-point results is only 0.25 percent for
¢ = 1.4. Accurate results may also be obtained by the method of separation of
variables.?*

3

2.5d Spherical Harmonics Method with Boundary Conditions

The critical slab problem provides an interesting test of the accuracy of approxi-
mate solutions of the one-speed| transport theory; it will consequently be utilized
in connection with the spherical harmonics method as applied to a finite medium.
The P, equations for a finite medium in plane geometry, such as the critical
slab. are the same as in equation (2.59) except that the right-hand side 1s zero.
The only new feature is that the boundary conditions must be imposed.®*

It is not possible to satisfy the exact boundary conditions, i.e., equation
(2.68).in a P, approximation having finite N. The difficulty is, once again, that
the boundary conditions are imposed over half the angular range whereas the
expansion coefficients apply over the whole range of u,i.e.. —1 < p < 1. There
is consequently no unique way| of choosing boundary conditions to represent a
free surface in a P, approximation. In the following treatment, consideration
will be given to two reasonable choices; one is based on setting the odd half-
range moments of the flux equal to zero, whereas the other is equivalent to
replacing the vacuum outside (the slab by a purely absorbing medium, i.e., a
medium from which no neutrons return.

For a P, approximation of odd order. i.e.. Nis odd. N + 1 boundary con-
ditions are required on the| N + | expansion coefficients ¢, there being
(N + 1) 2 from each boundary. A natural chotce is to set

s *'3*1’“*'«?%"‘5

i
. PO, p) du =

-

1
, P(—p)¥a, —p)dp =0

. -

i=1,3,5..., N with Nodd. (2.7)
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These are known as the Marshak boundary conditions,*® which may also be
derived from a variational principle.3” They have the virtue of including (for
i = 1) the condition of zero incoming current, familiar in diffusion theory. Thus
fori = 1, P(u) = Py(x) = p, and the appropriate boundary condition is

[Two0 w du = | wota, ~wdu =0 2.72)

In accordance with the results given earlier, this implies that the inward currents
at x = 0 and x = a are zero. The net current at x = 0

1
T = [ 00 1) d

is, of course, not zero. In the P, approximation the boundary conditions of
equation (2.71) lead to an extrapolation distance, as in equation (2.67), which
for c — 1 « 1 is given by?3®

x, =31 — &c — 1) + 2%c — 1)* + ---]. (Marshak P,)  (2.73)

It should be noted that the extrapolation length derived in this manner from
the P, approximation represents the distance beyond the boundary at which the
asymptotic solution to the flux, with its natural curvature, extrapolates to zero
(Fig. 2.6). The linear extrapolation distance of diffusion theory is different in the
respect that it is the distance at which the flux becomes zero when it is extrapo-
lated in a linear manner beyond the boundary, and is equal to ¢(0)/|¢'(0)|, where

)

$(0)

o] X $l0)
| ¢}

FIG. 26 EXTRAPOLATION OF NEUTRON FLUX AT BOUNDARY.
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$'(0) is the derivative of #(x) with respect to x at x = 0. For the P, approxi-
mation, equation (2.57) gives

O(x, 1) = 2= [$o() + I ()]

and, hence, by equation (2.65),

Olx, 1) = 2= [$o(x) — po()]

By applying the Marshak boundary condition of equation (2.71), it is readily
found that the linear extrapolation distance, $o(0)/|$0(0)], is % (in mean free
paths), as in ordinary diffusion theory.

Another possibility for the boundary condition is to set

#0,pn) =0 i=1,2,3,...,(N+ 1)2, with N odd,:
for a finite number of points ;. When the chosen points are the positive roots of

PN+1(,“0) = 0,

the Mark boundary conditions3® are obtained. A derivation of these conditions
for a particular form of the P, method will be given in §5.2c. It has been shown 4°
that the Mark conditions are equivalent to replacing the vacuum by a purely
absorbing medium. In the P, approximation, the extrapolation length, x,,
based on these boundary conditions is

Y=zl 3= D e - D2 +-) (MarkP) @74

The values for the critical half-thickness of a slab, as derived from the Py
approximation, using the Mark boundary conditions, were included in Table 2.6.

Experience indicates that the Marshak boundary conditions are somewhat
more accurate than the Mark conditions,*! at least for small N. In particular,
eduation (2.73) is a better approximation than equation (2.74) to the exact
cx&apolation distance given in §2.5b. The superiority of the Marshak boundary
conditions is probably connected with their being derivable from a variational
principle.*? However, both forms of the boundary conditions have been used
widely.

2.5¢ Adjacent Half-Spaces

The case of two adjacent, source-free media with a source at infinity (Fig. 2.7)
has been solved exactly.*® Just as a boundary with a vacuum can be treated in
terms of an equivalent surface source in an infinite medium, so also the effect of
one medium on an adjacent one can be described in terms of an equivalent
surface source at the position of the boundary in an infinite medium. This source
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MEDIUM 2 MEDIUM | INFINITY

FIG. 2.7 ADJACENT HALF-SPACES WITH SOURCE AT-INFINITY.

////

will introduce asymptotic and transient solutions to the transport equation in
the adjacent media. An essential feature of the analysis is to show how the
asymptotic solutions in the two media are to be connected at the boundary.

A systematic treatment of source-free, one-speed problems can be developed
by considering only the asymptotic solutions in each region. These are joined
across the interface by using the results mentioned above.

According to equation (2.22), the asymptotic solution of the transport
equation can be written as

Doa(x, p) = €77 04ig (n),
so that by integrating over u, and using the normalization condition of equation
(2.17), it is found that

¢u(x) — e* xlvo.

It is evident, therefore, that ¢,,(x) is a solution of the simple diffusion equation

2
N

In an infinite medinm, there is no special reason for choosing the x direction,
and so the asymptotic flux will satisfy the general equation

Vigou(r) — ;',;qsu(r) ~ 0.

By systematically using the known solutions to this equation with exact values
of v,, together with the interface conditions derived in the manner referred to
above, a form of diffusion theory has been developed.** Although accurate, the
theory cannot be generalized readily to multigroup solutions, and so it will find
limited application in this book. '
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2.5f Spherical Geometry

Many of the problems of slab geometry have their counterparts in spherical
geometry where exact solutions have also been found. It was seen in §1.3c, for
example, that the solution of the transport equation for r¢ in a sphere of radius
a is related to that for ¢ in a slab of half-thickness a. Since ré for a sphere must
be an odd function of r (§1.3c), the asymptotic flux in a source-free sphere i1s
given by ‘ :

r

réas(r) = A sin —-
l"oi

‘According to the arguments for the critical slab in §2.5¢c, the sphere will be ap-

proximately critical when its radius a is such that ¢,, is zero at the extrapolated
radius, i.e., #(a + x,) = O; thus,

a = m|ve(c)| — xo. (2.75)

It will be observed that the same extrapolation length appears here as in plane
geometry; the linear extrapolation distance, however, is different in the two
cases.

Values of critical radii determined from equation (2.75) are quoted in Table
2.7, together with the ‘‘exact” results and those given by the P,, P, and Py
approximations with Mark boundary conditions.*® The agreement between the
end-point and exact values is again seen to be very good. The development of
the P, method for spherical geometry is given in §3.3a.

The method of separation of variables has also been applied to spherical
geometry.*® As in the case of a slab of finite thickness, the procedure involves the
solution of singular integral equations. In this manner, systematic improvements
to equation (2.75) have been obtained.*’

In conclusion, it should be remembered that the equivalence between a slab
and a sphere holds only for constant cross sections independent of position (see
§1.3¢c).

TABLE 2.7. CRITICAL RADII OF A SPHERE.*® (IN MEAN FREE PATHS)

¢ End Poins Exact P, Pa Py
1.02 12.027 12.0270 12.252 12.045 12.034
1.0§ 127 7.2772 7.543 7.296 7.284
1.10 4873 4.8727 51717 4.895 4.880
1.20 3an 3.1720 3.513 3.204 3.181
1.40 1.985 1.9854 2.353 2.039 1.999

1.60 1.476 1.4761 '1.850 1.550 1.497
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2.6 ANISOTROPIC SCATTERING

2.6a Plane Geometry: Spherical Harmonics

In realistic multigroup problems the scattering is invariably anisotropic and the
effect of such scattering on solutions of the transport equation must be ex-
amined. Plane geometry will be considered, as before, although in many respects
spherical geometry is just as simple.

In plane geometry with anisotropic scattering, the one-speed neutron transport
equation (2.5) takes the form

u ad>a(;r, D) + P(x, p) = cf:" do’ ﬁlf(sz' > Q)O(x, 1) du’ + Q(x, p),

(2.76)

where the angular flux ®(x, ) and the source Q(x, i) are assumed to be inde-
pendent of the azimuthal angle ¢. Except for special cases, such as when the
medium is moving or consists of a single crystal, f(' — ) is a function of
Q.9 = p, only (§1.1b), where Q' and L are the neutron directions before and
after scattering, respectively. Consequently, f(§2" — £2) may be expanded as the
sum of a series of Legendre polynomials, 1L.e.,

' <2 + 1
fR > ) = fa) = Z o fiPipo) @77
By the orthogonality of these polynomials,
1
fi=2m [ fo)Piuo) de 2.78)

with the normalization condition
1
fo=2n [ flho)dua = 1.

As seen in §1.6¢, the Py term (isotropic scattering) is dominant except for scatter-
ing by light elements and for neutrons of high energy:

According to the addition theorem of Legendre polynomials (see Appendix)

’ 1
Pt = PGIP) + 2 . ST PRGIPTG) cos mie = 9)

me]

where p and y’ are the direction cosines and ¢ and ¢’ are the azimuthal angles
specifying the directions £ and £, respectively, and the Pi(u) are associated
Legendre polynomials (see Appendix). Upon insertion of this into equation

e
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(2.77) and the result into equation (2.76), the terms containing cos m(p — @)
vanish upon integration over ¢’; then

od(x, 1) S

p 2B 00 = 5 @1+ ARG [ 00 PG i’ + O, )

(2.79)

The angular flux, ©, and the source, Q, are also expanded in Legendre
polynomials; thus,

00 Tl oY

l=

[+ ]

o,y = > 22 E Ly P (2.80)

m=0

as in equation (2.57), and correspondingly

-]

00w = > 221 0 (Pa(w), o ean

m=0

where, by the orthogonality of the polynomials,

Bulx) = f O(x, 1) Po(p) dQ = 2m f il O(x, 1W)Po() di

and similarly,

0nl) = 2 [ QCx, W)Palh)

If Q(x, p) 1s an isotropic source, then for m = 1, it is seen that Q,(x) is zero.

When the expansions of equations (2.80) and (2.81) are inserted into equation
(2.79) and the recurrence relation for Legendre polynomials is used, 1t is found
that

2, [d¢2£'r) {m + DPuss(p) + mPp_y(w)} + 2m + 1>¢m<x>Pm(p)]

o

= ¢ D @+ VS0P + D @2m + DOa(x)Pulp).

{=0 m=0
Upon multiplying both sides by $(2n + 1)P,(u), integrating over u from —1to 1,
and making use of the orthogonality of the Legendre polynomials, the result is

d¢l¢ l(x) +n d¢l-l(x)
dx

(n+1) I

+ 21 + 1)1 = of)ba(x) = (2n + 1)Qu(x),

n=012... (282

with the requirement that ¢ _,(x) is zero. As in §2.4b, a Py approximation may
be defined by considering the first N + 1 of these equations and setting
#N*l/dx = 0. . ”
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A result corresponding to equation (2.82) in spherical geometry will be
derived in §3.3a.

2.6b Diffusion Theory and the Transport Cross Section

In the P, approximation, i.e., with n = 0 and 1, equation (2.82) gives

%ﬁ + (1 = C)po(x) = Qo(x) | (2.83)
and
d¢§ix) + 3(1 = ¢f)$a(x) = 3Q:(x). (2.84)

Furthermore, if 0.(x) is zero, i.e., for an isotropic or zero source, equations
(2.83) and (2.84) are identical with equations (2.64) and (2.65), respectively,
except that 3¢,(x) in equation (2.65) is replaced by 3(1 — cf1)$i(x) in equation
(2.84). As before, therefore, equations (2.83) and (2.84), for isotropic or zero
source, are equivalent to simple (Fick’s law) diffusion theory, except that

1
~ 31— o)
It is seen that 1 — cf; is what is usually called the transport cross section and
1/(1 — ¢fy) is the transport mean free path, with distances in units of the collision

mean free path.
The physical significance of f, may be seen by writing out the expression for

the average cosine of the scattering angle, fio; thus,

D

- 2m J’il o f(1o) dio _ N _f

PO om [2, f(po) duo fo
since f, is normalized to unity. Thus, f, is equal to the mean cosine of the
scattering angle in a collision. In a medium containing no fissile material, with
¢ < 1, the mean cosine of the scattering angle may be designated fi,,. Further-
more, in such a medium, ¢ = g,/o, where o, is the scattering cross section and
o is the collision (total) cross section; it follows, therefore, that

o(l — ¢fi) = 0 — Outoe = Oy

where o, is the fransport cross section. Hence, with distances in units of the

collision mean free path, the diffusion coefficient derived above can be repre-

sented by '

_ 1 1
3(o — oufiod) 3o,

as commonly used in a modification of simple diffusion theory.

D
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For a source-free medium, both Q, and Q, are zero; it follows then from
equations (2.83) and (2.84) that

Th0 30 - 01 ~ fiMo = 0

or, since 1 — c is equivalent to a,,

&gy
dx?

30,090 = 0.

The solution to this (diffusion) equation is of the form e**'*, where the relax-
ation (diffusion) length L is given by
1

L=
V' 30,0

or, in the original notation,

1

L= : 2.85
V31 = o — df) (25

For isotropic scattering, f; is zero, and this reduces to the diffusion theory result
given earlier. A more exact calculation of the relaxation length will be developed
shortly.

It has thus been shown that the P, approximation to the one-speed transport
theory is equivalent to ordinary diffusion theory in a source free medium,
regardless of whether the scattering is anisotropic, as considered here, or iso-
tropic, as mentioned earlier. multigroup theory, however, scattering from
higher groups constitutes an Jnisotropic source and then diffusion theory and
the P, approximation are nojfequivalent.

It should be noted that in P, theory, with an isotropic source, the anisotropic
scattering enters only in determining f; and thus the transport cross section.
Consequently, in the P, approximation, anisotropic scattering could be treated
as being isotropic but with a cross section reduced by the factor | — fFo. This
result suggests that in more general transport problems, even when P, theory i1s
not used, it may be a reasonable approximation to replace anisotropic scattering
by isotropic scattering with a cross section reduced by 1 — j,. In one-speed
theory this procedure is known as the transport approximation and it has been
found to be quite accurate in many applications.*® (See also §5.4b.)

2.6c The Asymptotic Relaxation Length

Exact values of the asymptotic relaxation length can be obtained from equation
(2.79) by trying solutions of the form

O(x, p) = e~ *"(v, p), (2.86)



l c 3 c 6
‘—((14-3;-2'4-"')' f1;(1+"5';§+"') _ifZ;E(‘+T7'L_2'+"')
lc 3 3 c 6
: -3";(I+§'V—2+) l—flc(l'f"s-v—i-{*'--) §f2|—»(l+:7_v§+) “l=0
2 c 6 27 € 6 11
‘Ts?('*v’rz*'“) ,fl;(1+7y-5+---) '"f2‘(1+ii'ﬁ+"')
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so that for v # 0and Q = 0, equation (2.79) becomes

L
(v — wWn ) = 5 D @+ DAPEHE) (2.87)

1=0

with
bo) = [ $lo PG i

It is assumed here that the scattering expansion may be terminated after L + 1.
terms.*

Since asymptotic solutions are being sought, it will be postulated, as in the
method of separation of variables for isotropic scattering (§2.2b), that v is not in
the interval —1 < v < 1. If equation (2.87) is now divided by v — p and multi-
ptied by fi [ Pmlp) dy, a series of equations connecting the y,(v) values is found
tobe
bty = 5> @+ D [ B

-1 — u'fv

=0

m=20,1,2,.... (2.88)

The first L + 1 of these equations give L + 1 equations in L + 1 unknowns;
hence. the determinants of the coefficients must be zero, i.e.,

- ' (1 P Pulk)
‘é,m—%(2/+l)ﬁj_1%’i_)—;—"(f:)dp\=0, | (2.89)

where 8, is the Kronecker data, i.e.. 1 when / = m, otherwise zero. Fore = 1,
the ‘determinant in equation (2.89) is satisfied by v = +oo, and for ¢ near to
unity. - will be large. The quantity 1/(1 — u'/v) may then be expanded in a
power series and the determinant can be written as

Since solutions are being sought for large values of v, the terms far from the
main diagonal may be ignored. Furthermore, the term in the expansion of the

* Note that L in equation (2.87) is the limiting value of /, and not the diffusion length of
the preceding section.
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determinant that arises from the product of the diagonal elements is given
approximately by

Product of diagonal elements ~ (1 — C)I_I (1 — fic).

i=1

All other terms in the expansion are of the order of 1/»? or smaller, and therefore
the diagonal term must also be of the order of 1/v? or smaller if the determinant
is to vanish. In fact for 1 — ¢ « 1, the first factor, namely 1 — ¢, is small, and
it will be smaller than any other factor, since f; < 1. Hence, the first element of
the determinant must be of order 1/v? and the largest terms in the determinant,
i.e., O(1/v?), are found by mytiplying the diagonal elements, except for the first
two, by the subdeterminant
| — % = fi=
Yo

31’0 _ 0’

§;; l—flC

which must be zero if the full determinant is zero. It follows, therefore, that

1
v = 1 — 0)]. 2.90
V(1 - o)1 = cfy) [+ 0 = o] (2.50)

When | — ¢ « | the quantity in the brackets is close to unity, and the result is

equal to the relaxation length, given by equation (2.85), derived from the P,
approximation.

Better approximations to the asymptotic relaxation length can be obtained
by the use of the full determinant. This treatment also leads to additional roots
of the determinant and thus to additional discrete eigenvalues v.*® Further
discussion of the asymptotic relaxation length is given in Ref. 50.

2.6d General Solution by Separation of Variables

The general nature of the solution of the one-speed transport equation with
-amsmropm scattering may be found by multiplying equation (2.87) by
| . Palp) du. as before, but not dividing by v — u. In this way a recursion
relalmn between the various values of i, is obtained.>! namely,

Qm + Dl = ofunv) — (m + D (v) — mp_1(v) = 0. (2.91)
I Yo(r) 1s normalized so that
Po(v) =
forms of equation (2.91) are
Pi(v) = (1 — ¢)
$a(v) = A1 — ofi)1 —¢) — &
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and so on. Since the y,,(v) have been found in this manner, equation (2.87) may
be used to write
L .

bou ) = S > (21 + DEPGIE) + A0 =) (292)

by analogy with equation (2.26) for isotropic scattering.

The discrete eigenvalues v of equation (2.92) may be found by integrating
over p and setting the result equal to unity. Solutions have been obtained for
some special cases. The singular eigenfunctions have been examined and the
completeness of the discrete plus singular eigenfunctions has been established.®?

In general, it is seen that by expanding the scattering cross sections in Legendre
polynomials, the solution to the one-speed transport equation for anisotropic
scattering can be obtained by the separation of variables in much the same way
as it is for isotropic scattering.

2.7 RECIPROCITY RELATIONS

2 7a Derivation of the General Relation

The flux of neutrons at a point r; due to a source at r, can be related to the flux
at r, due to a source at Iy by means of the one-speed transport equation. Such
reciprocity relations. as they are called, are frequently useful in relating the
solution of a particular problem to that of a simpler problem or to on¢ for
which the solution is known. The only assumption made is the same as that in
§2.6a, namely, that the scattering function f(r; ' — £2) depends only on the
scattering angle, and so is a function of Q-Q' = p,. Actually, a slightly less
stringent assumption, that fir: Q' — Q) = f(r: - — — ). would be ade-
quate here. In energy-dependent or multigroup problems similar reciprocity
relations exist but, except for neutron thermalization (Chapter 7), they involve
solutions of adjoint equations (se€ Chapter 6).

Consider neutron transport in a region bounded by a convex surface. In this
section. it will be convenient to allow a boundary condition of a specified 1n-
coming flux, rather than zero incoming flux, v.c.. free-surface conditions, thereby
departing from the usual procedure of replacing an incoming flux by a surface
source plus a free surface. In Case A, let the source be Q,(r, ) and the angular
flux @ (r, Q); the boundary conditions are represented by ®,.c..(r. ), where r
represents a position on the boundary, and #- & < 0, where fl is a unit vector in
the direction outward normal to the surface (§1.1d). Similarly, in Case B, the
source, flux, and boundary conditions. for the same surface, are Q.(r, ),

®.(r, Q), and O, , for i-Q < 0, respectively. The functions ®,, arc assumed’
" to be known.

Since the scattering function is assumed to depend only on the scattering
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ahgle,f(r; ' — ) may be replaced by f(r, 2- ). Hence, for @,(r, £2), the one-
speed, time-independent transport equation (2.3) can be written as

Q-VD(r, Q) + o(r)D,(r, Q)
= a(r)c(r)ff(r, Q- -Q)0,(r, R)dR + O,(r, ) (2.93)

with @ (r, ) = O, ,(r, ) if r is on the bounding surface and fi- < 0. Al-
though o, ¢, and f are functions of r, this dependence will not be included speci-
fically in the subsequent discussion. The corresponding equation for ®,(r, ) is

QYO (r, Q) + ody(r, Q) = oc f A(Q-Q)Dy(r, R)dR + Qu(r, R), (2.94)

with @,(r, ) = O, o(r, ) for r on the boundary and fi-2 < 0. It has been
shown that the source and boundary conditions in equation (2.93) and (2.94)
uniquely determine the solutions®® when ¢(r) < 1, and this is assumed to be
true for any subcritical system.

Suppose that in equation (2.94) and its boundary condition, the signs of §2 and
Q' are changed. This will leave the f term unaffected and integration over all
directions £’ will still be over all directions. Consequently, equation (2.94) may
be written

—Q-VO,y(r, — Q) + oD,y(r, — Q)

= oc [ f(Q-@)0y(r, — ) dQ + Oslr, ~ Q). (295)
Equation (2.93) i1s now multiplied by ®,(r, —€) and equation (2.95) by
®,(r. ). and the expressions obtained are subtracted. The result is next inte-
grated over all angles and over the whole volume under consideration; the terms
involving ¢ and oc then cancel.
The two gradient terms in the integral, namely,

‘ ' [Dur, —2)Q -V, (r, R) + D,(r, R)QL-V,(r, — Q)] dV dR
may be combined. by noting that - VO = V.- Q®, to yield

“ V.Q0,(r. Q)b,(r, — Q) dV d.
Then by using the divergence theorem, this volume integral may be converted
to a surface integral and the result obtained is

[da | vV Qo )y, @) - fdszf dAd-QO,(r, Q)0y(r, —Q),
« . A
where d171s a volume element and dA is an element of surface on the boundary
represented by A.
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If this relationship 1s used, the integration referred to in the last paragraph
but one can be expressed as

f fn QO (r, Q)®,(r, — ) dQ dA

_ f f [0,(r, R)Dy(r, — Q) — Oafr, —R)O5(r, )] dQ dV. (2.96)

On the left-hand side, the angular integration may be divided into two parts, one
for which A-§ < 0 and the other for -2 > 0. Thus,

Left side of equation (2.96) = f J f- QO (r, R)0,(r, — Q) dS dA

<0

+ f f B-Q0,(r, Q),(r, — Q) IR dA.
hAf2>0Q 7

In the first of these integrals, represented by 7, it is seen thati-Q < Oand @, 1s
the boundary value ®y, ,; hence,

I, = — J:[ fi- Q] Py 1 (T, 2)Por, —Q)dQ dA.

<o

In the second integral, I,, the variable may be changed from £ to —Q, so that
the integral is now over fi-Q < 0, and @, is the boundary value @y, 5; thus,

I, = H |- Q| Dy(r, — R)Pyac o(r, Q) dQ dA.

nfl<o

The left side of equation (2.96) is then obtained by summing /, and /,; conse-
quently, this equation may be written as

[ 18-QU0.0. ~ 2P, ) = Oucalr. DOs(r, ~ )42 4

afl<o
= ” (0,(r, )0, (r, —Q) — Qy(r, —)Oy(r, Q)] dQ dV, (2.97)

which is the desired reciprocity relation in a general form. A number of special
forms of this equation are of interest.

2.7b Applications of the Reciprocity Relation

(i) Suppose there are no incoming neutrons in cither Case A or Case B; then
i = Pnca = 0. Consequently, it follows from equation (2.97) that

J f 0:(r, )Pofr, —R)dR AV = f f 0.(rs. —R)O,(r, Q) A2 dV. (2.98)
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FIG. 2.8 REPRESENTATION OF OPTICAL RECIPROCITY THEOREM ; THE TWO
FLUXES ARE EQUAL. ‘

Furthermore, if in Case A the source is a point source at r; with direction Q,,
then

Qi(r, Q) = 8(r — 1;)d(8 — Q,),
and if in Case B the point source is at r, with direction £2,,
Qofr, Q) = 8(r — r,)3( — 25).

If the flux atr,  due to the point source in Case A is represented by the Green’s

function G(r,, £, —r, &), with analogous symbols for other cases, it follows
from equation (2.98) that

G(ry, R, —1,, — ;) = G(ry, R, — 1y, —8,). (2.99)

This equation states that the angular flux at r, in the direction — R,,ductoa
unit source at r, in direction &, is equal to the flux at r, in direction —£,, due
to a unit source at r, in direction £2,. Thus, according to equation (2.99), In one-
speed theory the angular flux is the same in the two situations depicted in Fig.
2.8_The relation in the form of equation (2.99) is frequently referred to as the
optical reciprocity theorem. because of its similarity to a theorem in optics.

If the point sources are isotropic, a similar relation applies to the total flux.
Thus. for isotropic sources

1 1
0, = p 8r—r) and Q, = Z;B(r — Iy),

and if G(r, — r,) represents the total flux at r; due to an isotropic unit source at
r,, it follows from equation (2.98) that

G(r, =>r1y) = G(ry—>r1;).

(il) Suppose, again, that there are no incoming neutrons, and that the volume
under consideration is divided into two separate regions (Fig. 2.9) with volumes
V, and V/,. A practical situation of this type might be a fuel element and the
moderator of a heterogeneous reactor. For the present, however, a completely
general case will be considered. Let @, be an isotropic source of intensity
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FIG. 2.9 VOLUME DIVIDED INTO TWO SEPARATE REGIONS.

1/4=V, in V, and zero in V,, and let O, be an isotropic source of intensity
1/4=V4in V, and zero in V,. Thus, Q, is a uniform source emitting 1 neutron/sec
in the volume V; and Q, is a uniform source emitting 1 neutron/sec in V.
Equation (2.98) then reduces to

1

l
i f 80 dV = f $(0) dV. (2.100)

Let the neutron absorption cross section in ¥, have the constant value o,,
whereas that in V, has the constant value o,. Then the rate of neutron absorption
in V, due to a uniform unit source in V, is also the probability that a neutron
produced uniformly in ¥, will be absorbed in V,. This is represented by P,_,
and is given by

Rate of neutron absorption in V; due to unit source in V,
= 01 fv ¢2(r) (IV = P2"l‘
}

The quantity P, ., may be defined in a similar manner and hence it follows
from equation (2.100) that

o09VoPyy = o VP, (2.101)

[n the next section. and also in Chapter 8, it will be seen that this relationship is -

useful in treating heterogeneous media. It is important to note that there IS NO
restriction on the geometrical forms of the regions ¥, and V,: some possibilities
are indicated in Fig. 2.10. The regions need not be convex, since they can always
be surrounded by a convex free surface so that equation (2.97) can be applied.

The reciprocity relation between region |, e.g., a fuel lump, and region 2, e.g.,
surrounding moderator, may be understood by the following heuristic argu-
ment. Suppose that all space is filled with a uniform and isotropic flux. Then no

LTI TR
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REGION 1

FIG. 210 POSSIBLE SHAPES OF TWO REGIONS.

net current will flow between the two regions. Such a situation would be realized
by a source which will precisely balance the absorption in- each region, i.e.,
0,47 in region 1 and o, '4m in region 2. Then o,V,P,.., 1s the flow of neutrons
from 2 to | which must be exactly balanced by the flow o, ¥, P, ., in the opposite
direction from | to 2. The general derivation given above is, of course, more
precise and shows that the result is independent of the geometry of the system.
In practice. }, is usually a more-or-less periodic array of fuel elements in the
moderator },. and the general reciprocity relation is still applicable (§2.8c).

(iii) A third example of interest is that in which in Case A there is an incoming
boundary flux @, but no source and in Case B there is a uniform source
Q.(r. ) = | throughout the volume but @, = 0. Equation (2.97) then
becomes

[ 18R Oer(r, R)0(r, —2) dS2 da =J¢1(r)dV. (2.102)
afl<o
Case A is here related to an albedo problem and Case B to a problem in

escape probability. For example, suppose that in Case A there is incident on a
planar surface at x = 0 a unit flux in the direction g (Fig. 2.11A); then

l
Dppe 1(F. ) = 5= 81 = ).

In the albedo problem, it is required to determine the probability of neutron
reflection from the surface. Equation (2.102) then becomes

po®5(0, — o) = j $,(x) dx. (2.103)
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The right side of equation (2.103) multiplied by the absorption cross section is
clearly the rate at which the neutrons are absorbed. Case B (Fig. 2.11B) 1s
equivalent to the half-space problem with a uniform source. If the angular
dependence of the emergent angular distribution from this source, i.e.,
O,(r, — Q) = ®(0. r) at the boundary. is known. then the solution of the albedo
problem is obtained from equation (2.103).

If .., in the situation described by equation (2.102) is isotropic and equal
l in magnitude to /74, where A is the total area of the surface under considera-
| tion. then | neutron’sec is incident on the surface in Case A. Further, suppose
Q,is 1/4m 1’ where }is the volume, so that | neutron sec is produced uniformly
and isotropically in Case B. Then, from equation (2.102)

- fe A o i e 8 Y 3 4

N L S A

I
I

|‘ $1(r) dA. (2.104) 3

La
P =N

- || 8oy @)dRda =
i T a0
v The integral on the left side represents the number of neutrons per second
crossing the surface and is. therefore, the escape probability. Pesc. i.e., the prob-
ability that neutrons born uniformly and isotropically in a volume will escape
without making a collision. For constant absorption cross section, the integral
on the right side of equation (2.102) is the neutron absorption rate in Case A
divided by the cross section: this quantity is denoted by P, us/o, where Py, is the
probability that a random incident neutron will be absorbed and o is the con-
stant absorption cross section. Consequently, equation (2.104) leads to
4lo

Pan = — Pesc (2.105)

b,

&yt gy

T o Ty Sy

which will be used later.
i The foregoing treatment has been concerned with the one-speed transport
equation. It will be seen in Chapter 6 how the relations obtained here can be
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generalized to energy-dependent problems by the use of adjoint functions. It
may be noted, however, that if neutrons of a single energy are considered in an’
energy-dependent problem, any process which removes neutrons from that -
energy group can be treated as an absorption. The relations derived above then
hold with the energy present as a parameter which determines the cross section
and sources. In this sense, the results obtained will be found useful in connection
with resonance absorption problems (see Chapter 8).

2.8 COLLISION PROBABILITIES

2.8a Introduction

Diffusion theory (or other Py approximation of low order) fails whenever the
angular dependence of the flux is complicated or varies rapidly over angle ()
or distance (x): this is especially the case, as has been seen, near localized
sources and boundaries or in strongly absorbing media (¢ « 1). Instead of
utilizing approximations of higher order in such situations, some special methods
based on the use of collision probabilities in purely absorbing media are fre-
quently useful.>*

Consider a common situation in which reactor fuel, localized in the form of
lumps. e.g.. rods. is surrounded by moderator. It 1s then sometimes useful to
formulate the problem in terms of the probability that a neutron which appears
in some region makes its next collision in that region. In a lattice structure, for
example. fission neutrons may be born more-or-less uniformly in a fuel rod;
then. for the computation of the fast multiplication, it is required to determine
the probability that these neutrons will undergo collisions in the rod before
escaping. The neutrons which escape will be slowed down in the moderator, and
for calculating resonance absorption the probability may be determined that the
moderated neutrons will make their next collision in the fuel (see Chapter 8).
Colliston probabilities have also been incorporated in a widely used diffusion
theory calculation involving thermal neutrons.®®

In the tvpical one-speed collision probability calculation, the space iIs con-
sidered to be divided into a finite number of regions and it is assumed that
neutrons are produced uniformly and isotropically in one of these regions. The
problem 1s then to determine the probability that neutrons make their next
collision in the source region or in one of the other regions. Frequently, there
are only two regions, namely, fuel and moderator. Some general methods are
presented below for calculating collision probabilities which are often used in
conjunction with the reciprocity relations derived above in the treatment of
heterogeneous media.

2.8b Escape Probabilities: The Chord Method

Suppose neutrons are generated isotropically and uniformly in a convex region
of volume ¥ containing material of constant (total) cross section a. Now, con-

sider a neutron which is produced at position r with direction Q. If R(r, Q) is the
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FIG. 212 CALCULATION OF ESCAPE PROBABILITY.

distance from this point to the' boundary of the region (Fig. 2.12) in the direction
Q. the probability that the neutron will escape from the region without making
a collision 1s

Probability of escape = ¢ 7R

But with a uniform and isotropic source, the probability that a neutron will be
generated in the direction dQ about & and position in the volume element dV
aboutris

dQ dV

Probability of generation = w7

The escape probability P,,. for neutrons born in the whole volume V is obtained
by integrating the product of the two probabilities derived above over all
directions and volume: thus,

1
P = — |’ - oRiP, Q) /. 2.106
. f e 4Q d (2.106)
For the evaluation of this expression. the volume V is divided into tubes parallel
to a fixed direction  (Fig. 2.13); a typical tube then has a length R, and a cross-
sectional area (f-S2) dA, so that

dV = (-R) dA dR,

with fi-Q > 0. Consequently, equation (2.106) may be integrated over R to
yield

[ 820 - e-m)de da. (2.107)

g -
P2e 0 13N TN
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(R-Q)os

FIG. 2.13 VOLUME DIVIDED INTO PARALLEL TUBES.

path, 1/o, the exponential term can be set equal to zero, and the integral is
simply

[J A-QdQdA = A,
>0

n'e
where A is the total surface area. Consequently, equation (2.107) becomes

A

Pesc:m

(2.108)
for bodies with dimensions that are large relative to a mean free path. Numeri-
cally, A 4o} is equal to the fraction of neutrons generated within a quarter of
a mean free path, i.e.. 1 /40, of the surface. It is, therefore, as if all neutrons born
within a quarter mean free path of the surface escape.

Equation (2.108) can be derived in a simple manner by assuming that, on the
scale of a mean free path, the surface of a “large™ body can be treated as a
plane. Consider, therefore, an infinite half-space and a plane boundary (Fig.
2.14). The half-space contains a uniform source Q, per unit volume, i.e., Qo/4n
per unit solid angle per unit volume. A neutron born at O at a distance x from
the surface and directed at an angle 6 to the x coordinate, where u = cos 6, will
have a probability e~°** of escaping without making a collision. The total
number of neutrons escaping per unit area can be found by integrating over p
for 0 < px < | and over x from 0 < x < o; hence

1l fx
Numl?cr of neutrons Qo [2”ff - oxIk d,u.]
escaping per unit area 4w 0oJo

- Qo
4o
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The total number of neutrons escaping from the area A is then QoAl4a;
the probability that a neutron will escape is thus A/4eV, as iIn equation

- (2.108).

Since P,.. given by equation (2.108) applies to large bodies, whereas for small
bodies P,.. must approach unity, a rational approximation proposed by E. P.
Wigner ¢ for bodies of all sizes Is

Pose = T 20774

(Wigner rational approximation). (2.109)

-

In Table 2.8.57 this approximation is compared with the results of exact calcu-
lations for spheres and slabs and infinitely long cylinders; R. which is defined
below, is the average chord length, so that oR is the average chord length ex-
pressed in mean free paths. It is seen that the Wigner rational approximation 1s
in general too small, but it is frequently accurate enough to be useful. For
example, it facilitates the treatment of resonance escape in heterogeneous
systems (see Chapter 8).

The evaluation of P from equation (2.107) has been carried out along the
following lines.>® Let chords be drawn from a surface element d4 (Fig. 2.15) such
that their number in direction & is proportional to |- |. Let p(R) dR be the
probability that the chord is of length between R and R + dR; then

[[18-Q| 4 d4

R)dR = 2 .
p(R) [[a-a dor i (2.110)

where R, is between R and R + dR and integration is restricted to f-& > 0.

.2
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TABLE 2.8. ESCAPE PROBABILITIESS?
Rational
oR Sphere Cylinder Slab appreximation
0.04 0.978 0.974 0.952 0.962
0.1 0.946 0.939 0.902 0.909
0.2 0.896 0.885 0.837 0.823
0.3 0.850 0.819 0.785 0.769
0.5 0.767 0.753 0.701 0.667
1 0.607 0.596 0.557 0.500
2 0.411 0.407 0.390 0.333
3 0.302 0.302 0.295 0.250
5 0.193 0.193 0.193 0.167
10 0.099 0.099 0.100 0.091

The denominator, as before, is equal to mA4. Furthermore, the average chord
length, R. is defined by

. [] Rif-Q| d d4

[[ 18- dQd4 '

(2.111)

The volume of each tube of length R (in Fig. 2.13) is equal to R|ii- | dA4; hence
the total volume V is given by

me-sz\ dd = V.

R +dR
dA

n

FIG. 215 CHORDS FROM SURFACE ELEMENT JdA.



— ..., :_._,...' :J? \ w
i}

iy : &
/ﬁx;

120 ONE-SPEED TRANSPORT THEORY

Consequently, equation (2.111) becomes
4v

R =
A

(2.112)

Upon insertion of equations (2.110) and (2.112) into equation (2.107) the
result 1s

|
Pac = =% f p(RY(1 — e=°®) dR, (2.113)

o

and the rational approximatibn equation (2.109) may be written

| i o
Pese = — (rational approximation). (2.114)

1 + oR
For simple geometries, the probability p(R) can be found and then P, can be
derived exactly from equation (2.113).%°
" Consider. for example, an infinite slab of thickness a: the chords are chosen
so that the number in du is proportional to u, where u = cos 8 = a/R (Fig.
2.16). From equation (2.110).

—p(R)dR = 2p dp,

and hence.

2a2
p(R) = R

Consequently, equation (2.113) can be written as

| ""’202 —eR
Pasc = UR.a Ra (l — € )dR (2115)

In this case, it follows from equation (2.112) that

R = 2a.

[}
- o
T i i
3 des “” FIG. 2216 CHORDS IN INFINITE SLAB.
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Evaluation of the integral then gives
Pose = 1 [3 — Ejs(ao)], (2.116)
ac

where Ej is the exponential integral function of the third order (see Appendix).
For a sphere of radius a, equation (2.113) takes the form *°

P.. = g%'? [2(a0)? — | + (1 + 2ac)e™2%]. (2.117)
Corresponding expressions have been evaluated for infinite cylinders, spheroids,
and hemispheres.®! and aiso for finite cylinders and cuboids.®?

The region from which the probability of neutron escape has been derived
above may be regarded as a lump of fuel, volume V5, surrounded by a moderator,
volume V, (Fig. 2.17). The escape probability is thus equivalent to P, .., for
purely absorbing media* in §2.7b, which is represented here by the symbol
P _.: thus,

Pesc = PF-»M-

It is now possible to find P, . in terms of P, from equation (2.101), where
P, .. is the probability that a neutron produced uniformly in the moderator
region M makes its first collision in the fuel lump, F.

For this simple geometry. i.e.. a single lump of fuel in an extensive moderator,
the reciprocity relation may be developed from the following argument. Suppose
there is a uniform and isotropic source of intensity |47}’ in a large volume V),

* Since P.,. is the probability of escape without collision from medium | and, in addition,
the neutron must not return from medium 2. P.s is equivalent to P, ., provided that, in
computing the latter. all collisions are regarded as absorptions or, in other words, the
media are treated as being purely absorbing.

FIG. 217 FUEL AND MODERATOR RE-
GIONS. -
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P .

of the moderator. The flux incident on V,, will appear to be like that from an
infinite medium  thus, writing oy for the moderator cross section,

1

dnV oy

DOy, (T, S2).
The collision rate in the fuél region F due to this source, i.e., Py_y, is then
Pue = —— ” 8- Q(1 — e~orh) dS dA.
4oy Vy . )
n.$2<9

Upon comparison with P._,, given by equation (2.107), with V; and o., and
noting that the integrals have the same value for i- > 0 and for #-Q < 0, it
follows that

Tm VMPM—or = OFVPPP—M~

which is exactly equivalent to the reciprocity relation of equation (2.101).
Equation (2.105) may be derived directly in a similar manner.

2.8c The Dancoff Correction

In the practical case in which a number of fuel rods in a periodic array are
separated by moderator which is not very thick. in mean free paths, the foregoing
calculations can still give the probability for a neutron to escape from a fuel rod.
To compute the probability, P,_,. that a neutron born in the fuel will make its
next collision in the moderator. the escape probability for a single rod must be
multiplied by the probability that the escaped neutron will make its next
collision in the moderator.

For this purpose. by using equations (2.111) and (2.112). equation (2.107)
may be written as '

-2 — e ") dQ dA

oR || AR dQ dA

where P... is represented as an average over direction (dQ) and surface (d4) and
the integrals are to be evaluated over #-Q > 0. For any surface element d4 and
direction . the chord under consideration may be extended and further fuel
elements may be intercepted. as indicated in Fig. 2.18. Hence, in computing
P, _... the contribution of this chord should be reduced by

(2.118)

[.£.28

(I - e-"n’“) + 8"!3.1("'“"(] —_ ("n“uz) 4+ -,

where e~ “% is the transmission probabilityand I — e~ *® the collision probability
in the indicated regions. Consequently, this factor must be included in the inte-
grand of equation (2.118) to give P, ... Because of the resulting complexity,
Monte Carlo methods are often used for computing P,_,. The integrand is
sampled at random dQ dA points and in this manner the integral is approxi-
mated.
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MODERATOR

FIG. 218 PERIODIC ARRAY OF FUEL RODS.

In spite of the complexity of the integrand, useful approximations to P, .., can
be found by simple methods. For this purpose, the following probabilities are
defined for the case in which neutrons are produced uniformly in the fuel:

Py = probability that a neutron incident on the moderator after i previous
traversals of fuel will collide in the moderator.

Pr = probability that a neutron incident on fuel after i previous traversals
of fuel will collide in fuel.

Then.

Peaw = Peso[PE + (1 = PO — PP + (1 — PS)
x (I =PI — PO — PHPE +---]. (2.119)
In the majority of cases. the first few terms of this expression are the most

important and a good approximation can be obtained by replacing all the
Pl by PS and all the P! by P?. After summation of the series, it is found that

P |
— (1 = PO = PY)

Pr——u = Pesc 1 (2120)

It is customary to set P& = | — C, where C is called the Dancoff correction.®
Extensive tabulations of this correction factor are available and a selection of
values is given in Table 2.9.5* Furthermore, from equations (2.105) and (2.112).
it is possible to write

"J = OFR}‘Pescs
and then equation (2.120) becomes

| - C _
I - C(l - UPRPPesc)

(2.121)

P’-N : 28C

The Dancoff correction is often calcuiated for * black,” i.e., perfectly absorbing,
cylinders, and considerable work has been done on this subject.®s
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TABLE 2.9. DANCOFF CORRECTIONSS*

ro
N 0 0.25 0.50 1.0 1.5 2.0

2.0 0.182 0.170 0.160 0.144 0.132 0.123
2.5 0.136 0.107 0.0849 0.0550 0.0364 0.0245
4.0 0.081 0.040 0.0205 0.0057 0.0016 0.0005
7.0 0.046 0.0094 0.0021 0.0001 - -
10.0 0.032 0.0028 0.0003 - ~ -

r = radius of fuel cylinder

d = spacing between cylinder centers

¢ = macroscopic cross section of moderator
Correction in table is for one adjacent fuel cylinder. For lattices, a sum is taken
over all adjacent cylinders, i.e., C = 2, C;, with C, taken from the table.

For preliminary survey calculations, it is adequate to use the rational ap-
proximation of equation (2.114) for P and then equation (2.121) takes the
form
' (1 — C),R. .
o + (1 — C)/R,.

By comparison with equation (2.114) it is seen that. in the rational approxi-
mation. the Dancoff correction is equivalent to increasing the mean chord
length. R,. by the factor 1'(1 — C) or. what is the same thing. decreasing the
surface area of fuel by I — C.

Fair accuracy is also obtained by using the rational approximation for
P8 = 1 — C:thus. from equations (2.105). (2.112). and (2.114).

Prony = (2.122)

5 LN R.\l

(4]
Py = ‘7.\1R.\1Pesc..\|

1+ oyRy
Substitution of this expression for I — C in equation (2.122) then gives the so-
called fully rational approximation to Py _y,.
I

P, ~ ———= (fully rational). (2.123)
1 + o,.R,
where R, is the effective chord length defined by
R, = R, Lol (2.124)
ouRy

The accuracy of this fully rational approximation is similar to that for Pe
obtained by using the Wigner rational approximation, as given in Table 28.A
detailed comparison of the results obtained by various methods of computation
is to be found in the literature.®® '
The fully rational approximation to P, ., has desirable limiting properties.

First,»if the moderator is thick in mean free paths. so that o, R, is large, it
follows from equation (2.124) that R, = R,. Then P,_,,. as given by equation

e e
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(2.123), approximates P, as expressed by equation (2.114). Second, if both fuel
and moderator regions are thin in mean free paths, 1.e., oo Rr « land oy Ry < 1,
a neutron will, on the average, cross both regions several times before making a
collision: as far as a neutron is concerned, therefore, the system is essentially
homogeneous. For o,Ry « 1, equation (2.124) becomes
R. = Re
o Ry

If R, and R, are expressed in terms of equation (2.112) and this result for R is
substituted into equation (2.123), it is found that

Oy VM

Py ¥ —————
oM™ a0 Ve + oV

, (2.125)
as would be expected in the homogeneous limit. It will be noted that.in deriving
equation (2.125), the only assumption made is that ouRy < 1, i.e., that. the
moderator is thin; the result is thus independent of the fuel thickness. The reason
is that the neutron flux is nearly uniform in both fuel and moderator provided
the moderator is thin and the source is in the fuel. In order that both P;_, and
P, . have the form for a homogeneous system, however, it is necessary that
both fuel and moderator be thin, i.e., 6, R, « 1 and ¢, Ry < 1.

Finally, in connection with the fully rational approximation, it can be shown
that the fully rational forms of P, ., and P.., satisfy the exact reciprocity
relation of equation (2.101).

It may be mentioned in conclusion that, as will be seen in Chapter 8, collision
probabilities are useful for computing resonance absorption of neutrons in
reactor lattices, i.e., periodic arrays of fuel elements. For “tight” lattices, in
which the fuel elements are closely spaced, such as are common in water-
moderated reactors, the collision probabilities are determined by using the
Dancoff corrections to the escape probability or equivalent methods, as
described above.

EXERCISES

& 1. Use the integral equation (1.37) of plane geometry to find the discrete eigen-
values of §2.2b. Suggest other possible ways of finding them (see Ref. 67).
2. Show that equation (2.50) is the same as the transient part of equation (2.40).
& 3. Verify equation (2.52). Students familiar with complex variable theory should
also attempt to evaluate the solution.
4. Derive equation (2.82) in detail.
5. Obtain an expression for the values of v (§2.4b) in the P3 approximation.
6. Derive the flux from a plane isotropic source in an infinite medium in the four
ways indicated below, and compare and discuss the results for ¢ = 0.5 and 0.9.
(a) Exact transport theory; use Tabics 8 and 21 in Ref. 68.
(b) Diffusion theory; use L given by equation (2.24).
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i

LL (¢) Asymptotic diffusion theory; use exact values of v, in Table 2.1.

(d) An approach in which the uncollided flux is treated separately and used as
l the source for a diffusion theory calculation of the collided flux (cf. Ref. 69).
I 7. Derive equation (2.116) from the integral equation (1.37) for the neutron flux in
; plane geometry. Take the source as constant, compute the absorption, and
” hence the escape probability for a purely absorbing medium. Determine the
Q angular distribution of the emerging flux and current, and also obtain the escape
i

probability from the total emerging current. L

4 8. Show that the fully rational forms of Pe_ and Py-r, as defined in §2.8c, satisfy '

I equation (2.101). A :

9. Derive Py, and the Dancoff correction for a periodic array of fuel and modera- [

I tor slabs having thicknesses dr and dy mean free paths, respectively. Consider the ;

limits of large and small spacings and examine the validity of equation (2.116)
and of the rational approximation for Pr.,. The interested student may review Do
the corresponding problem for a periodic array of fuel cylinders (cf. Ref. 70). :

!10. Suppese that a right half-space (x > 0) is a uniform medium, with o = 1 and

¢ < 1, containing an isotropic uniform source, Q. The left half-space (x < 0)is
a vacuum and free-surface boundary conditions apply at x = 0. Discuss the

{%‘_ exact solution of the one-speed, time-independent transport equation near the

i boundary, far from the boundary, etc. Obtain the exact solution for ¢ = 0 and

: relate it to the general discussion.”

1. In a medium consisting of uranium-235, the neutrons are essentially all fast
(E = 100 keV) and, as a first approximation, all the neutrons may be considered
to have the same energy. Calculate the critical radius and mass of a sphere of

: uranium-235 (density 18.8 g/cm?®) by (a) end-point theory and (b) diffusion

i theory. assuming isotropic scattering. The following data are to be used:

o, = 1.3 barns, e, = 4.0 barns, 0, = 0, and ¥ = 2.5. (The results may be com-

BEIE o

EY S

set of colliston probabilities Py.c, etc., and derive the reciprocity relations be-
tween them.
13. Derive cquation (2.117). q

pared with the critical radius of the Godiva assembly in Table 5.6.) ' T
o 12. Consider a reactor lattice consisting of three regions, namely, fuel, cladding, and 1
a thick moderator with volumes Vi, Ve, and Vy, respectively. Define a consistent y 4
| .
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3. NUMERICAL
METHODS FOR
ONE-SPEED PROBLEMS:
SIMPLE P,
APPROXIMATIONS

31 EXPANSION OF FLUX IN LEGENDRE POLYNOMIALS
FOR PLANE GEOMETRY

3.1a Introduction

In the preceding chapter. several methods were described for solving the one-
speed transport equation. The emphasis was on procedures for obtaining
accurate solutions for very simple situations and on the general properties of
these solutions. In the present chapter. consideration will be given to some
methods for arriving at approximate numerical solutions of problems with more
comphcated geometries and source distributions. The one-speed transport
equation will be treated here, but it will be seen in Chapter 4 that the techniques
developed are directly applicable in the multigroup methods used for the solu-
ton of reabstic (energy -dependent) physical problems.

The procedures to be discussed in this chapter are based on the expansion of
the angular distribution of the neutron flux, i.e.. the dependence of ® on the
direction S2. in a complete set of orthogonal functions, namely, the Legendre
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130 NUMERICAL METHODS FOR ONE-SPEED PROBLEMS

polynomials in simple geometries and the spherical harmonics in general. The
expansions are truncated after a few terms in order to develop practical methods
for solving the resulting form of the neutron transport equation. The spatial
dependence of the angular flux is obtained by imposing a discrete space mesh
and evaluating the flux at discrete space points, rather than as a continuous
function of position. In an alternative general procedure, which will be de-
veloped in Chapter 5, the direction variable, &, is also treated as discrete.

In Chapter 2, a general form of the time-independent, one-speed neutron
transport equation was derived as equation (2.3). This expression will be pre-
sented here with a slightly different notation which is desirable in order to estab-
lish the connection between the results obtained in this chapter and those in
Chapter 4.

As before, it will be assumed that scattering is a function only of the cosine
of the scattering angle, i.€., po = Q.-Q', where Q' and Q are the neutron
directions before and after scattering, respectively. A quantity oy(r, Q-Q’) is

then defined by
o (r, Q- Q') = o(De@f(r; X' — Q), 3.1)

where the notation o, is intended to suggest, although not to be limited to, a

scattering cross section.
It will be assumed in the present chapter that

j ofr, Q-Q)dQ < ofr),

implying that c(r), the mean number of neutrons emerging from a collision, is
less than unity. There will then exist a unique, time-independent solution to the

transport problem with a given source (§1.5d).
With this change in notation, the one-speed transport equation (2.3) becomes

Q.-Vo(r, Q) + o(n)(r, Q) = J' ofr, R.Q)Or, R)dL + O, Q). (3.2)

Methods will first be examined for solving this equation in plane geometry. Then
more general geometries will be considered, with particular emphasis on the P,
and diffusion approximations. Finally, some more specialized treatments for
plane and cylindrical geometries will be described.

3.1b Plane Geometry: Spherical Harmonics Expansion

From the arguments in §2.1c, it follows that, in infinite plane geometry, ® can
be expressed as a function of the spatial coordinate, x, and of the direction

4
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cosine, u, relative to the x axis, i.e., p = -X, where X is a unit vector in the x
. direction. Hence, with p, = S2-&’, equation (3.2) becomes

oP(x, 1)

1) 1 o) 0x, 1) = [ o5, m)D(x, 1) AR + O, 1)

- f : " f il os(X, po)P(x, p) dp’ + Q(x,p),  (3.3)

where ¢’ is the azimuthal angle corresponding to the direction £'.

These results are equivalent to equations (2.4) and (2.5), except that the total
cross section, o, and the scattering function, o,, are here arbitrary functions of
position x, whereas in Chapter 2 it was usually assumed that o /o i1s independent
of position.

The procedure for solving equation (3.3) i1s similar to that used for amsotropxc
scattering in plane geometry in Chapter 2. First, the scattering function is
expanded in Legendre polynomials, by writing

o) = S 2 o )

I 0

and then P(u,) is expressed in terms of the Legendre polynomials and associ-
ated Legendre functions of the direction cosines x and p’ by using the addition
theorem. Upon carrying out the integration over ¢’ as described in §2.6a, equa-
tion (3.3) then leads to the result, analogous to equation (2.79),

M i-g + ofx)®
«xY

|
[\/] 8
[i
+_

5%

ou(X)P 3 f O(x, )P i’ + O(x, ). (3.4)

-

o

The angular flux, ®, and source. Q. are now also expanded in Legendre poly-
nomials. and by following the steps described in §2.6a it is found that

dé, . ,(x) . dd, _ (x)

(n+ 1) dx dx

+ (2n 4+ 1oy (X)da(x)

=21+ D0.x), n=0,1,2... (3.5
where the quantity o,(x) is defined by

(X)) = o(x) — o.,(x). (3.6)
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The expansion coefficients ¢, and O, (cf. §2.6a) are given by the orthogonality
conditions as

$alx) = 2 [ O, 1) Polie) (3.6a)
and

0.x) = 2n [ 0Cx, WP (1) d- (3.65)

Apart from the treatment here of o and o, as space dependent, equation (3.5) is
the same as equation (2.82), in which o was unity.

Since the Legendre polynomials are complete for functions in the range of
—1 < p < 1, the set of equations (3.5) is equivalent to the original one-speed
transport equation in infinite plane geometry. The only assumption made is that
o, is a function of -’ and, as noted in Chapter 1, this is a good approximation
in most physical situations.

Although Legendre polynomials were used above to represent the angular
dependence of the neutron flux, the set of equations (3.5) is said to result from
the use of the method of spherical harmonics. In plane geometry, however, it was
not necessary to expand the angular dependence of the flux in spherical har-
monics: because of the symmetry of the angular flux about the x axis, the expan-
sion could be made in those spherical harmonics which are symmetrical about
the rotation axis, namely, the Legendre polynomials (see Appendix). More
general situations, where this is not possible, will be encountered later in this
chapter.

3.1c The P, Approximation

In order to solve the infinite set of equations (3.5) it is necessary to place a limit
on the number in the set. As explained in §2.4b, this is done by setting

d¢N - l(-\‘) _
dx = 0.

thereby reducing the number of unknowns to A" + i. The resulting setof N + 1
equations in N + | unknowns then represents the P, approximation for the
one-speed neutron transport problem.

3.1d The P, Approximation

From the considerations in Chapter 2, it would appear that reasonably accurate
solutions might be obtained for small N if the systems under consideration were
large and neutron absorption small. Most reactors are, in fact, large systems and
for computing the gross spatial dependence of the flux the P, approximation
(N = 1) has been found to be very useful. .

e ira st
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In this case, the only equations that need to be considered are those. for which
n =0 and n = 1 in the set of equation (3.5). Moreover, as seen in §2.4a, the
quantities ¢o(x) and ¢,(x) which appear in these equations are equal to the total
flux, ¢(x), and the current in the x direction, J,, respectively; thus, from equation
(3.6a),

$olx) = 27 [ O, 1) du = $()
and

¢mo=hj:mmwy¢=un

The two equations from the set in equation (3.5) can thus be written as

PO 4 o) = Qo) R

~and

d¢( Y)

+ 3a,(x)J(x) = 30,(x), (3.8)

where, from equation (3.6b),

Qo(x) = 27 fil Q(x, ) du

and

O)(x) = 27TJ11 pO(x, ) du.

If Q(x, 1) 1s an isotropic source, then Q,(x) = 0. It is of interest to note that, in
the terminology of §2.6b, g, is the absorption cross section and o, Is the transport
cross section.

If the source 1s isotropic, so that Q, is zero, equation (3.8) becomes a form
of Fick’s law, namely,

J(x) = = D(x) B

with D = l,/3&,. This result may be combined with equation (3.7) to give a
diffusion equation

P() ro(B() = Qal) (3.9)

d<l>(x)]
The procedures for solving these P, and dlﬁUSlon equations for the spatial
distribution of the neutron flux will be described later in this chapter.

It will be seen in Chapter 4 that, in multigroup theory, the source, equivalent
to Q.. in a group is rarely isotropic. The transition from P, theory to diffusion
theory will then involve some physical assumptions (§4.3b).
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3.1e Boundary and Interface Conditions

To obtain solutions to the Py equations, or to spherical harmonics equations in
general, boundary conditions are required. Thus, for a set of N + 1 ordinary,
first-order differential equations for the N + 1 scalar expansion coefficients, it is
necessary to have N + 1 conditions. Furthermore, the set of equations (3.5) are
not defined at interfaces, where o,(x) 1S discontinuous; consequently, interface
conditions are also required.

Free-Surface Conditions

Suppose that a solution for the Py equations is sought for aregion 0 < x < @
and that free-surface boundary conditions (§1.1d) are to be imposed at the two
surfaces for which x = 0 and x = a. It was seen in §2.5d that the exact boundary
conditions cannot be satisfied in a Py approximation and there is some freedom
in the choice of approximate boundary conditions. For example, either Marshak
or Mark boundary conditions can be used.

For the P, approximation, the Marshak conditions of zero incoming current

(§2.5d) would be [cf. equation (2.72)]
Ty
[} £ 140 + 30O du = 0
0 v
and
0 u
[[ £ 1@+ 3ws@ids =0,
-1 4T
which lead to the conditions

J(0) = —44(0) and J(a) = i¢(a).

More generally, the requirement of zero incoming current could be represented
by
i-J = 14, (3.10)
where @ is an outward unit normal vector. |
For diffusion theory, Fick's law in plane geometry is
d¢

1=-pZx

and then equation (3.10) can be written as

d$ . o
$+20Fh2=0.

In general, since
J = — DV¢,

;
]
:
i
:
i
i
i
|
'
3
!
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the Marshak boundary condition in equation (3.10) for diffusion theory becomes
é + 2DVé-i = 0. (3.11)

Boundary conditions such as those in equations (3.10) and (3.11) are fre-
quently used to represent a free surface in plane geometry. In diffusion theory,
the flux is often simply set equal to zero on some extrapolated boundary, as

described in §2.5d.

Reflecting and Periodic Boundary Conditions

It is often required to perform a calculation of the neutron flux for a unit cell of
a periodic lattice. As an example, consider a regular array of fuel sheets sepa-
rated by moderator in a critical assembly. In these circumstances, a calculation
can be made for a cell composed of half a single fuel sheet plus half the modera-
tor and then periodic boundary conditions can be imposed (see Fig. 3.1). The
neutron flux is an even function of pu at x = 0 and x = x,, so that odd-order
expansion coefficients would have to vanish at these two points. For example, in
P, theory. J would be zero at x = 0 and x = x,. Conditions of this type are
sometimes referred to as reflecting boundary conditions, since they would be
obtained if specular reflecting surfaces were placed at the boundaries. An
alternative approach is to make the cell run from x = 0’ to x = x, in Fig. 3.1;
the requirement is then that ¢,(0) = ¢,(x,) for all values of n considered. These
are called periodic boundary conditions. Either reflecting or periodic boundary
conditions will give the required N + 1 conditions in plane geometry.

7 7
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FIG. 3.1 BOUNDARY CONDITIONS IN PERIODIC LATTICE.
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General Boundary Condition in Diffusion Theory

In diffusion theory. a variety of situations can be included in the general
boundary condition

¢ + bi-Vg = 0, (3.12)

where b is a nonnegative function on the boundary. Thus, if b = 2D, the free-
surface Marshak condition of equation (3.11) is obtained. On the other hand, if
b is very large, the condition becomes essentially one of zero current (or reflec-
tion) on the boundary. As indicated. the function & must be nonnegative, other-
wise, since ¢ is positive, the neutron flux would exhibit the unphysical behavior
of increasing outward beyond the boundary. The general boundary condition in
equation (3.12) will be used from time to time in this chapter and the next.

Interface Conditions

At various interfaces between different regions in a reactor system. the cross
sections change discontinuously. The expansion coefficients, however, are con-
tinuous across interfaces. It was seen in Slid that &(r + sQ. Q. F.7 + s/t) 1s

a continuous function of s. In the present context of a time-independent, one-

specd problem in plane geometry. this means that d(y + Sp. ) must be a con-
tnuous function of s.

It follows. therefore. except possibly for 4 = 0, that
®(x. k) is a continuous function of v (The special case of u

{3.54.) Since for any i # 0. the angular flux & is a continuous function of x, so

also will be the integrals of @ over p.ole. da(x). Thus. the expansion coefficients
are continuous functions of x.*

When localized strong absorbers of neutrons ar
lation,

= 0 1s treated in

¢ to be treated in a P, calcu-
or by any other low-order approximation to the angular dependence of
the flux. then the interfuce conditions are often adjusted to give results which are
In better agreement with “exact ™ solutions, The tre

atment of such adjustments
i1s usually called blackness theory.?

3.2 DIFFERENCE EQUATIONS IN PLANE GEOMETRY

3.2a Difference Equations in the P, Approximation

A pracucal method for solving the P, equations (3.7) and (3.8) is based on
superimposing a discrete mesh of space points on the region of interest. Consider

it is supposed that

* For P, approximations of even order, the foregoing conlinuity conditions are not self-

consistent and must be modified ! they are correct, however, for the odd-order approxima-
tions. In reactor calculations, the la
of even order.

tter arc used much more frequently than approximations
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REGION'1 REGION II REGION III

AT ———o ¢ —o—o—o—o—,,
of x x, xy |xg x5 g
I'4
——————
x

FIG. 3.2 MESH POINTS IN ONE DIMENSION.

within each region the cross sections o, and o, exhibit no spatial variation. Most
physical systems can be closely approximated by such a set of discrete regions
and usually each physical region with a uniform chemical composition will be
represented by one of these regions.

In plane (one-dimensional) geometry, a set of points x,, where k = 0,1, ..., K
is chosen such that the boundaries of the problem are at x, and xx and there is a
point at each interface between two regions (Fig. 3.2). The distances between
successive points should ordinarily be small compared with a neutron mean
free path: for a typical practical one-dimensional problem, K might be of the
order of 50. Consider the mesh in the vicinity of x,, as indicated in Fig. 3.3. It is
possible to derive difference equations which approximate equations (3.7) and

{’_—Ak-% — =l iz—“’:
|
|
: ’k'—fz- : “k+ 5 |
| | | | |
| | | | |
| I | | |
| b= —8,—— |
| | I | |
l 1 l | I -
b -4 X EX

FIG. 3.3 MESH IN VICINITY OF x,.
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(3.8) by integrating over a region of x in this figure. If equation (3.7) is integrated
from X -z tO Xi+qz» Where

Xz = ¥HXe-1 + x) and  Xpiqu = 30 + X 41)s

it is found that

Jk+(1/2) - Jk—(lIZ) + J‘

X - (112)

ro(p) dx = [ Qo) dx, (3.13)

Xie - (112)

Xk +(1/2)

where J, , g is the value of J at x = X;c4q2) etc. Since o, Is constant between
any two mesh points, the integrals may be approximated by

J'"“‘”z’ ao(x)¢>(x) dx ~ 00.k+(1/2)Ak+(112) + 0o k-2 Ak-—(l/Z) ¢k = b0k¢k

Xy _ 12 2
(3.14)
[ gy ds = Brrum g B0 g = 8,00 B9
Xk -0112)
and then, from equation (3.13),
v — Je-a + boxbx = BiQox: (3.16)

where ¢, and Qo are the values of ¢ and Q, at x = Xx,.

Similarly, equation (3.8) can be integrated over the interval x, < X < Xi41
or X,_; < X < X, to obtain equations for Ji v and Jy_q e in terms of ¢, 1,
é., and ¢, ,,. By using the same approximation for the integrals as before, it is
found that ‘

¢k+1 - ¢k + 30k Ak?(umjmnm = A)c+(1/ax)Q1.k+(1/2) (3-17)
' ¢’k - ?”k—x + 3°k—u/2) Ak—(llzrlk—(lm) = Ak-(lm)Ql.k—(llz)- (3-18)

3.2b Approximation Errors in the Difference Equations

in deriving equations (3.16), (3.17), and (3.18), the integrals, such as those in
equations (3.14) and (3.15), were approximated in a very simple manner. Better
approximations to these integrals could have been used, but the resulting dif-
ference equations would have been more complicated than equation (3.16).
Experience has shown, however, that in reactor calculations such complications
are not worth the extra effort required for their treatment.® Nevertheless, it is
of interest to consider the magnitude of the error involved in the approximation
used above.

Suppose, for simplicity, that the point x, does not lie on an interface, so that
oo(x) is a constant in the integral in equation (3.14). The approximation in this
equation consequently is equivalent to setting

J' X+ (1D ¢(X)dx ~ A#k,

X~ (UD

iR ok B AT T

.
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If (x) is assumed to be continuous and differentiable as many times as required,
it may be expanded in a Taylor series; thus,

(x xk)2

$(x) = plxi) + (x — x)b'(xi) + =7 ¢"(x) + -

where the primes indicate derivatives with respect to x. When this expression for
#(x) ts used in the integral for ¢(x), it is found that :

fx““m $(x) dx = Dughy + (3 Dysrym)® — (—3 Av—2)?] % (x)

Xk =(t:2)

13 Aram) — (~3hean) 2 £ 3a9)

Hence. equation (3.14) is obtained by truncating equation (3.19) after the first
term.

The resulting truncation error can be estimated from the magnitude of the
first neglected term in equation (3.19). In general, for a nonuniform spacing of
the mesh points, this will be the second term on the right of the equation. For
a uniform mesh. however. A, |5 = A._ 5 = A and then the coefficient of
¢'(k) 1s zero: the first neglected term is now the third in equation (3.19) and it is
equal to (} A% 31)é"(x,). In either case, it is evident that the neglected term can
be made small compared to A.¢, by selection of a sufficiently fine space mesh,
1.e., small values of A,. The mesh can be relatively coarse, however, where the
flux does not change very rapidly. for then ¢’ and ¢” are small in comparison
with é. Some discussion of the effects of the truncation errors in certain reactor
calculations will be found in Ref. 4.

As a practical matter, the truncation effects can be examined by varying, e.g.,
halving, the mesh spacing in a problem of interest and determining the magni-
tude of the resulting change in the flux or other calculated quantity. In this
manner 11 1s found that, as a rule of thumb, the choice of one mesh point per
mean free path 1s reasonable. Where the flux is changing rapidly in space, a
somew hat finer mesh 1s desirable, but where it is varying slowly a coarser mesh
will suthce.

3.2c Solving the P, Difference Equations

The system of equations (3.16). (3.17), and (3.18), plus boundary conditions,
could be solved directly. For application in multigroup diffusion theory in
Chapter 4. however, it 1s convenient to solve equations (3.17) and (3.18) for
Ji.i 2 and J, _,, 3 and substitute in equation (3.16); the result is

at.t-l‘h-l + ak.k¢k + ak.k+1¢’k+1 = S, (3.20)
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where the coefficients ay i _1, @.x, and ay k., are given by

1
e x+1 = — = Ay 41,k
3°k+(1/2) Ay +(1/2)
1
A -1 = = Qy-1,k

30k -1z Bic-qu2)
Qe = box — Q-1 — Qrek+1

and s, represents the source term

5 = A Oox — Q1 ke+aim + Ql.k—(lIZ)_

3°k +(1/2) 3‘7k—(1/2)

(3.21)

(3.22)

(3.23)

(3.24)

Equation (3.20) can be derived for k = 1,2,..., K — 1, so that there are
K — 1 equations for the K + 1 unknowns, ¢, ¢1, ¢2, . . ., Pk, the neutron fluxes
at the mesh points. The remaining two equations must be obtained from
boundary conditions. For a vacuum (free-surface) boundary, it is convenient and
sufficiently accurate for most P; calculations simply to set ¢ = ¢x = 0 and let
x, and xy be at some extrapolated boundaries. With these boundary conditions,
éo and ¢, can be eliminated from the set of equations (3.20), thereby making the

number of unknowns equal to the number of equations.

If the vectorsé and s, having {¢,} and {s.} as their components, are defined by

$o So
¢\ 5y
$ = é2 S = 52
Pk Sk
and the matrix A, with components a, . by
oo doy O 0
a,, a, a2 0
0 ay dz2 dz3
0 O 032\\\033

~
-~

‘\ax.x
then equation (3.20) may be written in matrix form; thus,

Ad = s.

(3.25)

It will be recalled that in this equation A and s are known, and ¢ is to be found.
Formally, if an inverse exists of the matrix A.i.c., A~! suchthat A=A =1, the
unit matrix, then equation (3.25) could be multiplied by A~* and solved for¢;

that is,
$ = A's.

(3‘.26)
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The problem of solving for the spatial distribution of the neutron flux is con-
sequently reduced to that of inverting the matrix A.

For the case under consideration, all values of a, ,, are zero except those for
which m = n — 1, n, n + 1; the inversion of the matrix can then be readily
effected. More direct methods for finding ¢ can, however, be used in the present
case. As an example, the Gauss elimination method will be described. By starting
with equation (3.20) with k = 1 and using the boundary condition ¢, = 0 (or
some other boundary conditions that eliminates ¢,), this equation becomes

a, ¢y + aiape = 5y, (3.27)
and hence
_ ~ayo¢e + 51
é1 — 0.

Next consider equation (3.20) with & = 2; it is found that

ay1$1 + Qgahs + Azzds = Sy. A (3.28)

Upon substituting the value for é; given in equation (3.27), it is possible to
solve for ¢, in terms of ¢,.

By repeating this process, the equation (3.20) for k = K — 1 is finally reached
and since ¢, = O, this is

g 1 k-2Px-2 + A1 k- 1Pk -1 = Sk -1 (3.29)

But an expression for ¢, _, in terms of ¢, _, has been obtained from the preced-
ing (kK = K — 2) equation, and so equation (3.29) can be solved to obtain an
explicit value for ¢, _,. The chain of equations can now be reversed to find the
other values of é,. It can be shown that, because the diagonal elements of the
matrix A are larger than the off-diagonal elements, this scheme is stable for
numerical work.” The procedure just described is often called the method of
sweeps®: the name derives from the fact that two sweeps through the mesh, one
in the direction of increasing x and the other in the direction of decreasing x,
are required to determine the solutions.

The essential point about the method of sweeps is that, in each step, an equa-
tion like (3.27) 1s solved for the particular component ¢, which has the largest
coefficient and then that ¢, is eliminated from the following equation. If the
reverse procedure had been adopted, namely, if equation (3.27) had been solved
for ¢, 1n terms of ¢,. and ¢, had been carried through the chain of equations,
the coefficient of ¢, would increase exponentially. It would then become so
large that the method would be unstable against numerical round-off errors.

The solution in the case given above was simple because the matrix A is
tndiagonal; that is to say, only the elements on the main diagonal and the two
adjacent diagonals are nonzero. When the geometry is not one-dimensional,
however, the matrix 1s more complex, as will be seen shortly, and other methods,
iterative rather than direct, of matrix inversion are used. These methods take
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advantage of some general properties of the matrix A, which are evident in the
simple case already considered. In particular it is apparent from their definitions
in equations (3.21), (3.22), and (3.23), and (3.14) where by, is defined, that the
elements of A have the following properties:

(1) @pn > 058 <0 if m#Fna,n=2ann

(i) dpns+1 #0

i) [anal > O |annl-
m#n

In technical terms, the property (ii) makes sure that the matrix is irreductble ;
physically, this means that a neutron can get from any one point to any other
point in the mesh. Property (iii) implies strict diagonal dominance. i.e., that the
cross section oo, defined by equation (3.6) and in accordance with the assumption
stated after equation (3.1), is positive. The matrix A is then said to be irreducibly
diagonally dominant. This property guarantees that the matrix is nonsingular and
has an inverse; a solution ford given by equation (3.26) then surely exists.”

No mention has been made thus far about conditions at the interfaces between
the regions in Fig. 3.2. They are, in fact, automatically satisfied by the difference
equations. Consider a very fine mesh such that all the A values approach zero in
the vicinity of an interface at x,; then it follows from equations (3.16), (3.17),
and (3.18) that both ¢ and J are continuous across the interface.

The difference equations for the P, method have been derived by making
particular approximations to the integrals in equations (3.14) and (3.15). Other
simple approximations would lead to difference equations like equation (3.20),
except that the coefficients a, , would be slightly different, but they would still
have the properties (i), (i), and (iii) enumerated above. Diffusion theory also
gives rise to the same difference equations although with different coefficients.
Since diffusion theory is used extensively, it is of interest to develop the appro-
priate difference equations.

3.2d Difference Equations in Diffusion Theory

'Diffusion theory can be regarded as being equivalent to the first P, equation,

i.c., equation (3.7),

dJ
—-zg-) + ao(x)M(x) =" QolXx) (3.30)
together with Fick's law |
| J(x) = - D(x) B2, (3.31)

dx

The difference equation corresponding to equation (3.30) is the same as for
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equation (3.7), namely, equation (3.16). For currents at x,, (5 and x,_,q,
equation (3.31) may be approximated by

vz = —'Dk+(1/2)Sé‘_kA‘LI_——"ﬂ (3.32)
k+(1/2)

k- = = Dy_qyz "52 i T (3.33)
k—(1/2)

Upon substituting equations (3.32) and (3.33) in equation (3.16), a difference
equation of the form of equation (3.20) is obtained with the coefficients

Dl-c+(l/2) _
Ay e+l = ———_A = Qe +1,k
k+(1/2)

Q= box — k-1 — ik +1
_ Dy _ 12 _
A k-1 = AT k-1
k—(1/2)
and
Sk = A Qog.

Once more it can be shown that the elements of the matrix A have the properties
referred to earlier. ‘

In deriving the difference equations, a space region extending from x, _y,, t0
X+ Was considered, and the various terms in the equation correspond to
accountings of the neutron economy. This will be seen more clearly below in
connection with spherical geometry. Thus, the difference equation may be
regarded as a neutron balance (or conservation) equation for a small region in
the system. It is important to have this conservation property in the difference
equations, so that track can be kept of the fate of all fission neutrons in a
numerical solution. In a criticality calculation, the balance between the produc-
tion and loss of neutrons is, of course, decisive: it is essential, therefore, that
neutrons are not created or destroyed in an artificial or uncertain manner.

3.2e Solution of the P, Equations

In the preceding sections a numerical method was described for solving the P,
and diflusion theory equations in plane geometry. The Py equations for higher
values of N can be converted into a system of difference equations in a similar
manner. Several methods are available for solving these equations,® and one
versatile technique will be described in Chapter 5. Moreover, it will be seen in
§3.5b that the *‘double P, method is superior to the Py method in plane
geometry. Some results obtained by both of these two procedures will be given
in Chapter 5.
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3.3 FLUX EXPANSION IN SPHERICAL AND
GENERAL GEOMETRIES

3.3a Expansions in Spherical Geometry

The discussion so far has been concerned with plane geometry and consideration
will now be given to the application of the spherical harmonics method to other
geometries. For a system which is symmetrical about a point, spherical co-
ordinates may be used, and it will be shown that the spherical harmonics equa-

tions are then very similar to those for plane geometry. Such systems will be

treated in the present section, and more general geometries, for which expansion
of the neutron flux distribution in terms of Legendre polynomials is not ade-

- quate, will be described in §3.3c for the P, approximation. The use of spherical

harmonics in cylindrical geometry will be taken up in §3.6b.

For a system which is symmetric about a point, the neutron angular flux is a
function only of the distance, r, from the point and of p = Q-1 (§1.32); the
expression for -V is then given by equation (1.32) with @ replacing N.
Hence, the time-independent, one-speed transport equation in spherical
coordinates takes the form

| — p2cd

od
(nr’ 2 + — + a®
or r op

1 1
221 o iorpi [ O wIPG) di” + Q). (339)

=0

where, as in the derivation of equation (3.4), the scattering function, o, has been
expanded in Legendre polynomials, and the addition theorem for these poly-
nomials and the azimuthal symmetry of the flux have been used.

If, now, ® and Q are expanded in Legendre polynomials. as in equations
(2.80) and (2.81), and the same procedure followed as in §3.1b for plane geom-
etry, it is found that all the terms in equation (3.34) except [(I — p2)r}c®lip
give terms corresponding to those in equation (3.5). To evaluate this exceptional
term, the relation ]

2 dPu(p) _ m(m + 1)
=m0 = m+ 1
may be used. The expression satisfied by the expansion coefficients é,(r) in
spherical geometry, equivalent to equation (3.5), is then

d
(4 D2 4 2 s0) (= T el + @ D))

= (2n + 1)Qu(r) n=0123.... (335

This infinite set of equations is similar to that for planc geometry, and P,
approximations and the same numerical techniques can be used here, just as for

[Pu-l(i‘) - Pmox(.“)]

n—1
r
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plane geometry. The boundary conditions, however, are somewhat different, as
will be seen below.
The two equations for the P, approximation in spherical geometry are

(5 + D90 + ob) = 0ulr) (3.36)
and
d‘ffr’) + 30y(r)J(r) = 30:(r), 3.37)

where. as before, ¢ and J(r) are written for ¢, and ¢,, respectively. These equa-
tions differ from the corresponding equations (3.7) and (3.8) in plane geometry
by the presence of the term 2J(r)/r in equation (3.36). The reason for this will be
apparent in due course.

[t is sometimes convenient to write equation (3.36) in the form

]
2

| =

[r2J(r)] + oo(r)d(r) = Qolr). (3.38)

2

r

If the source is isotropic, so that Q,(r) = 0, equation (3.37) may be used to
eliminate J(r) from equation (3.38): by writing D for 1/30,, as in §3.1d, the result
1S

1 d ., d
5[] + ) = 0t (3.:39)

This equation is in conservation form in the sense defined in §1.3b, since upon
multiplving by a volume element 4=r2 dr, the derivative term in equation (3.39)
contains no functions of r outside. Use will be made of this fact shortly.

3.3b Boundary Conditions in Spherical Geometry

For a spherical region, free-surface boundary conditions can be imposed, as in
plane geometry, giving 3N + 1) conditions for a Py approximation. The re-
maining condittons must be determined at the origin, 1.e., at the center of the
sphere. 1t 1s required that the angular flux, @, be finite at the origin; hence, the
coeflicients é,(0) must be finite forn = 0, 1,2, ..., Nin a Py approximation. It
can be shown that for analytical work this provides the additional ¥(N + 1)
conditions.*

An alternative condition that is useful for numerical calculations is to require
that & be an even function of u at the origin, i.e., ¢,(0) = 0 for n odd. This will
be used 1n Chapter 5. In fact, the neutron flux should be isotropic at the origin
in spherical geometry and this condition can also be imposed.'® In the P,
approumation, the current would be set to zero at the origin, i.c., J(0) = 0.
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3.3c Difference Equations in Spherical Geometry

Difference equations may be derived for spherical geometry, in much the same
way as for plane geometry. Consider, for example, equation (3.39) for diffusion
theory; the fact that this equation is in conservation form is more important
than in plane geometry, as indicated at the end of §3.2d. If equation (3.39) is
multiplied by 4=r? and integrated from ry _ (12 1O Fr+c2) the result 1s

_amr2p B[ 4y J N o dr = 4m f D20, dr. (3.40)

Tie - (1) Tk - (12) Tk - (1/2)

By assuming, for simplicity, that the cross sections are the same on both sides of
r., equation (3.40) may be approximated to

1 — Pk = by)

"4TTF§+(1/2>D(‘—————‘—¢I( : ¢s) + 47":%—(1/2)1)—————‘((#’\1_\ =l
TAVROPP) Kk =(1/2)
4mao, 4

+ '—3"("2“1/2) - rﬁ-mz))d’k = —3—(r2+(1,2) - r?c—(l/z))Qom (3-41)

where M. = Fv.1 — Iy €tc. In order, from left to right, the terms represent
the following quantities: net flow of neutrons across the outer surface of the
region. net flow across the inner surface. absorption, and source. The difference
equations (3.41) are again of the form of equation (3.20), and the same methods
of solution may be used.

In spherical geometry. the conditions at the origin must be imposed in place
of one of the boundary conditions of plane geometry. For spherical geometry,
the required conditions can be derived from equation (3.40) by integrating from
r=0tor = r, , In this way a two-term relation is obtained involving only ¢,
and ¢,. It could be written in the form of equation (3.41) by setting ¢,_; = 0
andr, .2 = 0.

3.3d Expansions in General Geometry

The plane and spherical geometries considered so far are unique in the respect
that there is everyw here a preferred direction in space, i.e.. X or £. and the neutron
flux is independent of rotations about this direction. In other words, the flux
distribution is azimuthally symmetrical. Thus, for these two geometries, the
directional () dependence of the neutron flux can be specified with only one
vartable. u. In any other geometry, the angular distribution of the flux will not

have azimuthal symmetry and so an additional variable is necessary to represent -

direction. Examples of the choice of variables for different geometries were given
in the appendix to Chapter 1. Itis always possible, however, to expand the angu-
lar dependence of the neutron flux in a set of spherical harmonics.
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If the unit vector  is specified by two angular coordinates, i.e., a polar angle
g and an azimuthal angle ¢, then the expansion for the angular flux in one-speed
theory. may be written as

@©

o(r, @) = > Z $1n(E) Yin(6, @),

=0

where the functions Y, are the spherical harmonics (see Appendix). The latter
are expressed in terms of associated Legendre functions P/" of u(= cos 8) and
trigonometric functions as

20+ 1 (0 —m)! . i
il ) = [ C— T prugee.

The usefulness of the spherical harmonics depends on the following properties:
(a) they are a complete set of functions in the sense that any continuous function
of 8 and ¢ may be expanded in spherical harmonics, (b) they are orthonormal,
and (c) when the scattering function, oy, is expanded in Legendre polynomuals, as
before. the orthogonality of the spherical harmonics leads to simplifications, as
will be seen 1n §3.3e.

When the angular dependence of the neutron flux is expanded in a set of
spherical harmonics. the resulting equations are relatively complicated, because
of the streaming term (-V®) in the transport equation, and they will not be
given here.'' The special case of cylindrical geometry will, however, be ex-
amined 1n §3.6b.

3.3e The P, Approximation in General Geometry

For the present purpose. it is sufficient to consider the P, approximation only in
general geometry. This can be derived by systematically truncating the spherical
harmonics expansion. but an alternative derivation may provide better physical
insight into the situation.

It follows from equation (2.57) that. in both plane and spherical geometries,
the P, approximation i1s equivalent to assuming that

]
By, p) = i [bo(x) + 3ud (X)]. (3.42)

where 7 will replace v in spherical geometry. As seen in §3.1d, ¢4(x) is the total
flux and &é,(v) 1s the neutron current in the x direction: hence, in the P, ap-
pronvimaton,

Blx.0) = 7= [$() + ()] (3.43)

This relation cannot apply in general since J is usually a vector instead of the
scalar appearing in equation (3.43), but the latter can be extended to general
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geometry. In particular, pJ(x) is equal to €-J(x), so that equation (3.43) may
be written as

1

(D(ra Q) = 4—77_

[$(r) + 3Q2-J(r)]. (3.44)
This result is correct for plane and spherical geometries and it can be proved to
be the P, approximation to the angular flux, independent of geometry, by carry-
ing out the expansion in spherical harmonics.

It will now be shown that the P, approximation to ®. as given by equation
(3.44), is consistent with the definitions of ¢ and J. For this purpose, certain
mathematical identities are required and these are collected for convenience In
Table 3.1: the coordinate system used in the derivation is given in the appendix
to this chapter.

If equation (3.44) is integrated over Q. the result is

[ 0. 2142 - = 90 | 4@ + 330 [ 240, (3.45)

where #(r) and J(r) have been placed outside the integrals because they do not
depend on Q. The left side of this equation is simply the total flux ¢(r) and the
values of the integrals on the right side are obtained from Table 3.1. It is then
seen that equation (3.45) reduces to the identity

$(r) = &(r).

Upon multiplying equation (3.45) by £ and inlv:gr;mn.g_y over §.1t1s fbund that
l'.sm)(r, Q)dQ = Zl? [qS(r) | QA + 3{J(r)~ ‘ sz}sz dsz]_ (3.46)

The left side is. by definition, J(r); by using the second and third identities in
Table 3.1. the first term on the right side of equation (3.46) is found to be zero

TABLE 3.1. MATHEMATICAL {DENTITIES

_l‘ dQY = 4=
‘ NIN = 0
| u-ardg = ¥ A
[ @-axa-Brun2 - Tas

A and B are any two vectors that are not dependent on Q.
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whereas the second term is J(r). Hence, both sides of the equation are equal to
J(r), again indicating consistency of equation (3.44). This equation will conse-
quently be taken to represent the P, approximation for the neutron angular flux
distribution in general geometry.

The time-independent form of the one-speed transport equation was given
in equation (3.2), and it will be repeated here for convenience; thus,

Q.U Q) + o(n)d(r, Q) = f o(r, R-Q)D(r, V) AR + O, Q).  (3.47)

It will be recalled that in obtaining this equation the reasonable assumption was
made that the scattering function, o, depends only on 2-'. Hence, o, can be
expanded in Legendre polynomials, P,(uo). By use of the addition theorem of
spherical harmonics (see Appendix), equation (3.47) then becomes

Q. Vd(r. Q) + o(n)O(r, ) —jzzl 1o

< PP + 2 Z (. Pru)PrG) cos mie — o)

x O(r, ) dQ + O(r, Q). (3.48)

As before. " and ¢ are the coordinates specifying ', whereas p and ¢ specify
Q. (The coordinates might be given in any of the systems in §1.7a, where, how-
ever. the azimuthal direction coordinate has the symbol y or w, rather than ¢.)

If the P, approximation for ®(r, ), i.e., equation (3.44), is introduced into
equation (3.48). all the integrals over ' on the right side are zero, except those
for which/ = 0 or / = | (see Appendix). For / = 0, the quantity in the square
bracket in equation (3.48) reduces to unity and the integral over ' gives
o(ridtr): for/ = 1, the square bracketiscos 6 cos 8" + sin §sin 8 cos (¢ — ¢'),
where # = cos ' u and 6 = cos™! ', and the integral over ' is equal to
30,,82-J. Hence equation (3.48) becomes

Q- V[dir) + 32-J(r)] + o[é(r) + 3Q-J(r)]
= 0,4(0)B(r) + 30, (NKR-J(r) + 47 Q(r, R). (3.49)

Integration of equation (3.49) and use of the last identity in Table 3.1, with
A equivalent to V and B to J, gives

V-J(r) + oo(r)é(r) = Qqfr), (3.50)
where o, and Q, are defined by

oo(r) = o(r) — o,(r) and Qy(r) = J. Q(r, Q) dS2.
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Next, equation (3.49) is multiplied by €2 and integfated over §: the result,
based on the identities in Table 3.1, is found to be

V(r) + 30,(0)d(r) = 3Qu(D); (3.51)

where

o(f) = o(F) — on(® and Qi) = J' QOa, Q) do.

Equations (3.50) and (3.51) are the P, approximations t0 the neutron transport
equation in general geometry. It should be observed that equation (3.50) 1S
exact, since it is precisely equivalent to the time-independent conservation
equation (1.17). On the other hand, equation (3.51) represents a P, approxima-
tion; in an exact spherical harmonics equation additional terms, arising from
the streaming term in the transport equation, would be included on the left side
of equation (3.51). _

If the source is isotropic, 0, (r) is zero and then equation (3.51) may be written
in the form of Fick’s law of diffusion, 1.€.,

J(@r) = —DV4(r),

where D = 1/30,. Asin §3.1d, this may be used to eliminate J(r) from equation
(3.50) to yield the familiar diffusion equation

_V. DVS(r) + ao(r)é(r) = O,fr). (3.52)

The preceding development has shown the kind of assumptions involved in a
systematic derivation of Fick’s law from the one-speed neutron transport
equation. Their significance in multigroup theory will be examined in the next
chapter.

3.3f The P, Approximation in One-Dimensional Geometries

The P, equations for general geometry involve exactly the same Cross sections,

i.e., oo(r) and o,(r), as do the P, equations in plane geometry. The geometry

enters only through the explicit forms of the gradient and divergence operators,
apart from the boundary conditions.
In spherical coordinates, the radial component of the divergence is

1 d(r3J) _ (d 2
R dr (dr + 7)"”

and this is just the form in the P, equation (3.36). For an infinitely long cylinder,
_the current is also radial, so that

} d(r],) d 1
v.J r-———'dr (dr + ;)J,

Thus, in three geometries, namely, plane, sphere, and infinite cylinder, where the

JUp——
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spatial distribution of the flux depends on only one coordinate, the first P,
equation can be written in the general form

(5 + 2J0) + outr) = Qo) (3.53)

where
n = 0 for plane
n = 1 for cylinder
n = 2 for sphere.

An alternative form of the first term 1s

(5 + )ﬂm—%g[wm

It may be noted, too, that in equation (3.51) the current has a component in only
one direction and that for spherical or cylindrical geometry V¢ = dé/dr. Hence,
equation (3.51) for these geometries in the P; approximation may be written

dé(r
dr

) 4 3o,(r)J(r) = 3Q (r). (3.54)

Furthermore. a similar equation would apply in plane geometry with x re-
placing r.

The ditTusion equation (3.52) for the three one-dimensional geometries may
simitarly be written as

d do(r |
55 [0l + ) = o), (3.55)

r®dr

where n has the significance given above.

It is seen that equations of the same form, namely, equations (3.53) and
(3.54) for the P, approvmation and equation (3.55) for diffusion theory, are
apphcable 1o plane. infimite eylindrical. and spherical geometries. Similarly,
difference equations may be developed for these three one-dimensional geome-
tries and. except for minor variations in the boundary conditions, they can all
be solved in the manner outhned in §3.2¢. Problems in two-dimensional geom-
etry are more complex and these will be considered for diffusion theory in the
next section.

3.4 THE DIFFUSION EQUATION IN TWO DIMENSIONS

3.4a Differance Equations in Two Dimensions

Difference equations that approumate the P, and diffusion equations can be
derived for systems requinng geometrical representation in two (or three)
dimensions. As in §3.2¢. a set of difference equations can be written as a matrix
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equation which must be inverted to obtain the neutron flux at points in a two-
dimensional space mesh. The matrix is, however, more complicated than that
for a one-dimensional geometry, so that it is not practical to invert it directly;
instead iterative methods must be used. Furthermore, the matrix is usually of
much higher order since many more space points (typically of the order of 10?)
are required to approximate a two-dimensional system. For three-dimensional
geometry, the number is, of course, even larger.

For simplicity, the difference equations will be examined for diffusion theory
for a system in rectangular geometry in two dimensions. If the space coordinates
are x and y, the diffusion equation (3.52) for ¢(x, y) becomes ’

——;—c (D %) _ % (D %) + ob = O (3.56)
A rectangular mesh is constructed consisting of points whose coordinates are, in
general,

x, with k=0, 1,2,...,K
and

VYm with m =0, 1,2,...., M.

Let ¢(xy, ym) b€ represented by ¢, m. AS before. it is convenient to have space
points located on the interfaces between regions. For simplicity, however, in the
following treatment a single region will be considered in which D, oo, and mesh
spacing are constant. A portion of the mesh is shown in Fig. 3.4.
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FIG. 3.4 MESH POINTS IN TWO DIMENSIONS.
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~ Equation (3.56) is now integrated over the small shaded rectangle which is
bounded by the lines x = x, + $Avand y = y, * }Ay; the resultis

ym +(1/2)Ay EP\ Xi+(LDAN X +(1/2)Ax C) ym +(LIDBY
- D c/}‘(,——- - D dx|—

v, —(1;2)4y CX/ x, -2ax x, ~ (112)6x 0y/ v, -1I2)ay
Xy +(1/22Ax Um +(1/2AY
+ aof de sdy = [ dx [ @y, (3.57)
x,. —(1i2)Ax ¥, —(1/2)Ay

The derivatives are approximated by

(P |t pax brsim — Pem Prm — Pr-1.m
CX |x, - (2ax - Ax . Ax
—_ ¢k+1.m - 2¢k.m + ¢k—-1.m
Ax

and similarly for y. and each integral is 